DE GRUYTER Journal of Intelligent Systems 2024; 33: 20230320 a

Research Article

Shuanglei Gong*
Transition from machine intelligence to

knowledge intelligence: A multi-agent
simulation approach to technology transfer

https://doi.org/10.1515/jisys-2023-0320
received December 17, 2023; accepted March 01, 2024

Abstract: The traditional machine intelligence system lacks deep understanding and reasoning ability. This
study took the automatic driving system in multi-agent as an example to bring higher-level intelligence and
decision-making ability to automatic driving through knowledge intelligence. It obtained real-world geo-
graphic information data from OpenStreetMap, preprocessed the data, and built a virtual environment. The
inception model was used to identify information in environmental images, and the knowledge information of
traffic regulations, road signs, and traffic accidents was expressed to build a knowledge map. The knowledge
related to automatic driving was integrated, and automatic driving training was carried out through the
reward mechanism and the deep Q-network (DQN) model. About 13 kinds of traffic situations were set up
in the virtual environment, and the traditional machine intelligence autonomous driving and knowledge
fusion autonomous driving multi-agent were compared. The results show that the average number of acci-
dents in 100,000 km of traditional machine intelligence autonomous driving and knowledge fusion autono-
mous driving multi-agents was 3 and 1.4, and the average number of violations in 100,000 km was 4.3 and 1.8,
respectively. The average graphics processing unit (GPU) utilization rate of knowledge fusion autonomous
driving in 13 virtual environments was 75.9%, and the average peak GPU utilization rate was 96.1%. Knowledge
fusion of autonomous driving multi-agents can effectively improve the safety of autonomous driving and
enable autonomous driving multi-agents to have a higher level of decision-making ability.

Keywords: road environment, environment perception, machine intelligence, knowledge intelligence, auton-
omous driving

1 Introduction

With the rapid development of science and technology, machine intelligence has made remarkable progress,
but the traditional machine intelligence system still has obvious shortcomings in deep understanding and
reasoning ability. The deficiency of traditional machine intelligence is particularly significant in complex
interactive scenarios such as autonomous driving systems [1,2]. Traditional machine intelligent autonomous
driving systems are capable of performing basic tasks, but lack deep understanding and reasoning capabilities.
They often perform poorly when dealing with complex traffic situations, changing road conditions, and
multiple decisions. In autonomous driving, although traditional systems can perform basic tasks, they perform
poorly in complex traffic situations, ever-changing road conditions, and multiple decision-making. Autono-
mous driving is an inevitable trend in the development of the automobile industry. In order to overcome the
drawbacks of traditional autonomous driving systems, it is necessary to shift from machine intelligence to
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knowledge intelligence. This can enable the autonomous driving system to understand and respond to com-
plex situations at a higher level, thereby improving road safety and traffic efficiency [3,4]. The multi-agent
simulation method can be transferred by technology to create an autonomous driving multi-agent system
with knowledge intelligence to cope with the limitations of current machine intelligence systems. By introdu-
cing knowledge intelligence into the auto drive system, the transformation from traditional machine
intelligence to knowledge intelligence has been realized. This transformation has brought a higher level of
understanding and decision-making ability to the auto drive system, thus improving the system’s performance
in complex traffic situations.

Machine intelligence is a computer system that simulates human intelligent behavior and decision-making
ability to perform tasks. A lot of studies use machine intelligence to improve the perception and control ability
of the system. Machine intelligence is widely used in the medical field, and it provides intelligent decision-
making for medical diagnosis by analyzing medical data through artificial intelligence (AI) and other tech-
nologies [5,6]. In order to improve the performance of non-invasive endocrine cancer diagnosis, Thomasian
used Al to characterize adrenal, pancreatic, pituitary, and thyroid masses, and to construct machine learning
models in medicine for in-depth analysis of endocrine cancers [7]. In order to conduct intelligent analysis of
high-dimensional clinical imaging data, Shad et al. designed a clinically translatable Al system to realize
automatic medical image acquisition, data standardization, and translatable clinical decision support [8].
For intelligent analysis of cardiovascular medicine, Miller applied machine learning and deep learning Al
to cardiovascular medicine. Through archiving and Al training of raw cardiovascular data, he performed
predictive analysis of clinical outcomes to enhance the real-time performance of cardiologists in emergency
rooms, catheter insertion laboratory, imaging rooms, and clinics [9]. Machine intelligence plays a key role in
autonomous driving, enabling autonomous vehicles to sense, learn, and make decisions to drive more safely
and efficiently [10,11]. In order to reduce the occurrence of autonomous vehicle accidents and improve the
safety of autonomous driving, Hong et al. used Al technology to make intelligent decisions according to the set
driving scenarios and intelligently reduce autonomous driving failures [12]. The method of machine intelli-
gence can improve the ability of intelligent analysis by training the model, but it is difficult to deal with the
complex and changeable environment. Traditional machine intelligence systems have significant shortcom-
ings in deep understanding and reasoning abilities, which leads to limited performance in dealing with
complex and ever-changing environments, especially in complex interactive scenarios such as autonomous
driving.

Multi-agent system can sense the change of environment and take action in time through the cooperation
of multiple individuals. Many people have carried out research on multi-agent system. Multi-agent systems can
choose actions based on perceived information and goals and can cope with scene changes in complex
dynamic and non-deterministic environments [13,14]. In order to ensure the ideal performance of each agent
and the whole multi-agent when encountering faults, Gao et al. improved the fault-tolerant consistent control
of the multi-agent system from the aspects of physical security and logical security [15]. In order to improve the
consistency-tracking ability of nonlinear multi-agent systems, Bin et al. proposed an event-triggered adaptive
control algorithm. He introduced the barrier Lyapunov function to make the tracking error converge within
the specified time range [16]. Autonomous driving involves the cooperative operation and interaction between
multiple vehicles or traffic participants, and multi-agent systems can coordinate the driving of autonomous
vehicles to optimize traffic flow [17,18]. In order to improve multi-agent trajectory prediction in autonomous
driving, Vishnu et al. uses traffic states in interactive driving scenarios to represent the changing spatiotem-
poral interactions between adjacent vehicles to improve trajectory prediction [19]. The existing multi-agent
simulation research still has some limitations when applied to areas such as autonomous driving, and it is
difficult to introduce rich domain knowledge and advanced reasoning into the simulation environment to
enable the system to better understand and cope with complex situations in the real world.

In order to solve the problem that the automatic driving system based on traditional machine intelligence
cannot accurately perceive and understand the complex road environment, this study applies the relevant
driving knowledge to the automatic driving multi-agent through technology transfer. In this study, by intro-
ducing knowledge intelligence, real-time geographic information, traffic regulations, road signs, and other
knowledge are integrated into the automated driving system, so that it can have deeper understanding and
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decision-making ability, thus driving more efficiently and safely in the complex traffic environment. The
geographic information data in OpenStreetMap is acquired; the data is cleaned and the real longitude and
latitude coordinates are converted to Cartesian coordinates, and the virtual environment is constructed by
introducing virtual driving elements. The car uses the camera to obtain the surrounding road environment
information and inception model for environment perception, and expresses the knowledge of traffic regula-
tions, road signs, and traffic accidents. It combines all the driving-related knowledge. It also conducts decision
analysis through the reward mechanism and deep Q-network (DQN) model, and plans the driving path
through the Rapidly Exploring Random Trees (RRT) algorithm. The experiment set up 13 kinds of simulated
driving environment, and the experimental results show that (1) knowledge fusion of automatic driving multi-
agent can improve the safety of automatic driving, (2) knowledge fusion of autonomous driving multi-agents
has better driving efficiency in a variety of driving environments, (3) knowledge fusion of autonomous driving
multi-agents can improve the accuracy of traffic signs and road obstacle recognition, and (4) knowledge fusion
of autonomous driving multi-agent has excellent CPU (central processing unit) and graphics processing unit
(GPU) resource utilization.

2 Multi-agent simulation method

2.1 Building virtual environment

Road traffic accident is one of the major safety hazards around the world, and automated driving technology is
expected to significantly reduce traffic accidents through route planning and intelligent cooperation [20,21]. In
addition, the energy consumption of cars is very large, and autonomous driving technology can improve
energy efficiency, reduce emissions, and increase fuel efficiency, thereby contributing to the sustainability
of future transportation systems.

The emergence of autonomous driving is to solve traffic problems, such as traffic safety, congestion,
sustainability, and efficiency, and improve the performance and quality of the transportation system.
Through rational planning of the driving environment, it has a positive impact on urban life and social
development. In order to carry out intelligent analysis of automatic driving effectively, it is necessary to build
a virtual environment to provide all aspects of data information for the automatic driving system.

It can build a highly realistic virtual road environment, including road maps, road markings, and road
obstacles. Real-world geographic information data can be obtained from OpenStreetMap, an open source
mapping data. Map data can be preprocessed, and the obtained real-world geographic data can be applied
to virtual environment through data cleaning, coordinate system transformation, and road classification.
Some of the real-world geographic information data in OpenStreetMap is shown in Table 1.

Table 1 describes the part of the geographic information data, showing the road type, longitude, latitude,
road name, speed limit, number of lanes, intersection type, and lane markings in detail. Interstate 405 has four

Table 1: Part of geographic information data

Road type City street Highway Backroad Mountainous road
Longitude -73.9877 -118.2437 -97.7431 -118.8610

Latitude 40.7488 34.0522 30.2672 37.7749

Road name Broadway Interstate 405 County Road 101 Mountain View Road
Speed limit (km/h) 40 105 72 56

Number of lanes 2 4 2 2

Intersection type Crossroads Roundabout T intersection Crossroads

Lane marking Dotted line Full line Dotted line Full line
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lanes, with lanes marked as solid lines and intersections as roundabouts. All kinds of road environment can be
simulated accurately through real geographic information data.

Since there may be noise data in the collected real-world geographic data, the missing values and outliers
are processed by data cleaning. There may be data missing in the imported geographic data; the missing data
needs to be deleted; the correctness of the data with large or small anomalies should be verified and manually
corrected. When the abnormal value cannot be explained or is unreasonable, the abnormal value should be
excluded. In order to facilitate geographic data analysis, the original geographic data is converted to the
Shapefile format supported by the virtual environment.

The virtual environment uses the Cartesian coordinate system, while the real geographic data uses the
latitude and longitude coordinate system, considering the curvature and projection of the earth, and converts
the geographic data in the data set to the Cartesian coordinate system. Let the longitude and latitude coordi-
nates of a point in real geography be (b, c), and the points in the converted Cartesian coordinate system be (x, y, z).
The formulas of coordinate system transformation are expressed as

X = R*cos(c)*cos(b), M
y = R*cos(c)*sin(b), 2
z = R*sin(c), 3)

where R represents the radius of the earth.

The Cartesian coordinate system provides a unified coordinate representation, and converting geographic
data into the Cartesian coordinate system can achieve the consistency of geographic data from different
sources and formats. This helps to simplify the data processing and analysis process, allowing different types
of data to be compared and integrated in the same coordinate system.

Weather simulators can be used to model various weather conditions, including simulating sunny, rainy,
snowy and foggy days, and the shape of the sky, raindrops, and snowflakes can be changed through the
parameter settings of the weather simulator. Simulating different weather conditions can change the friction
on the road and the performance of the vehicle, so as to accurately analyze the automatic driving in the real
environment.

Vehicle movement is also influenced by the surrounding dynamics and the complexity of the environ-
ment, through the introduction of virtual motor vehicles, pedestrians, non-motor vehicles, and traffic lights. It
creates a real vehicle scene by adding traffic density and complex routes. The virtual vehicles introduced have
intelligent agent functions and can follow traffic rules, and the simulated traffic lights are also consistent with
those in the real world.

Classification of virtual environments, subdivision of virtual environments, and labeling is conducive to
the subsequent training of autonomous driving models. The classification of virtual environments is shown in
Table 2.

In Table 2, virtual environment classification is described. Six kinds of environments are refined to a total
of 18 types, and each type of virtual environment is labeled. In the actual autonomous driving environment, six
kinds of environments are combined to form a complex virtual environment. The virtual environment settings
can help the system to comprehensively learn and adapt to various complex road scenes, and improve the
robustness and safety of the auto drive system under different conditions.

2.2 Sensing the environment

With the increasing number of vehicles, in order to reduce traffic congestion, optimize traffic fluency, and
improve road utilization rate, it is necessary to effectively coordinate vehicle actions through automatic
driving system [22,23]. The autonomous driving system needs to accurately perceive the surrounding envir-
onment, make quick decisions according to the surrounding environment, and optimize driving efficiency
under the premise of following traffic rules.
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Table 2: Classification of virtual environments

Environment Category Label
Road environment Urban road Al
Highway A2
Backroad A3
Mountainous road A4
Traffic environment Congestion road B1
Free circulation road B2
Construction area B3
Topographic environment Flat road a
Steep road 2
Weather environment Sunny road D1
Rainy road D2
Ice and snow road D3
Foggy road D4
Traffic sign environment Clear sign E1
The sign is not clear E2
Intersection environment Crossroads F
Roundabout F2
T intersection F3

Machine intelligence is a computer system that enables machines to perceive, learn, understand, and
make decisions and perform tasks by simulating human intelligent behavior [24,25]. The application of
machine intelligence to the autonomous driving system can help the car intelligently perceive the road
environment and carry out task planning.

In the process of automatic driving, the car obtains the surrounding road environment information
through the camera, and the image including road signs, vehicles, and pedestrians can be collected through
the camera. It is the basis of automatic driving perception to detect the features of the collected images and
identify the object information in the images.

Inception is a deep convolutional neural network that processes input images in parallel by using multiple
convolutional cores of different sizes to capture image features at different scales [26,27]. Inception model
contains parallel 1 x 1 convolution, 3 x 3 convolution, 5 x 5 convolution, and 3 x 3 pooling, which reduces the
feature dimension through multiple convolution kernels of different sizes.

The inception model adopts a multi-scale convolution design, which effectively captures different scales
and complex features in images by using convolution kernels of different sizes in parallel. This architecture
gives inception models an advantage in processing complex road environment images and can improve the
accuracy of environmental perception.

The purpose of using multiple convolution kernels of different sizes in the inception model is to capture
features of different scales in the input image. This multi-scale convolution strategy helps the model to
understand and learn image information more comprehensively, improving the model’s perception ability
of structures and patterns at different scales.

The inception model can effectively capture multi-scale features in input images and improve the model’s
representation ability for complex images through parallel operations with convolution kernels of different
sizes. Although the inception model reduces the number of parameters through dimensionality reduction
operations, the model still has a certain computational complexity due to parallel operations and concatena-
tion, especially in deep cases.

The activation function used in the inception model is

, x>0

X
ReLU(x) = 0. x<0 @

where ReLU(x) is a piecewise function. ReLU(x) has a value of 0 when x < 0 is used.
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The calculation of the ReLU function is very simple, just checking whether the input is greater than zero,
so the calculation speed is fast. When the input is negative, the output of ReLU is zero, which may cause certain
neurons to never be activated during training, known as the “death ReLU” problem.

The global maximum pooling layer is used to focus on the most obvious feature information in the image
features. The formula for global maximum pooling is as follows:

K- = Max{(x;)"}, ©)

where (x;)" represents the information of the rth feature graph, and K, represents the most significant
information of the rth feature graph.

After sensing the road environment, it is necessary to understand and analyze the surrounding informa-
tion; integrate the road signs, vehicles, pedestrians, and other information collected by sensors; and compre-
hensively analyze the road environment data through the backpropagation neural network model. Let the
perceived road environment data set be A = (a;, ay,***, a,), and the connection weight between data set A and
neurons be W = (wy, wy,**+, wy). The comprehensive analysis of the road environment can be expressed as

n
s =) aw; 6)
i=1
where a; represents the ith perceived road environment information.

During model training, the backpropagation neural network adjusts the weights of different neurons
through errors, so that the errors reach an acceptable range [28,29]. Through forward data analysis and
reverse transmission of errors, the ability of automatic driving to understand the road environment is
improved. The errors are expressed as

E= Z()ﬁj - yy)2, (7
j

where y;; and y,; represent the expected and actual output of the jth output neuron, respectively.

After comprehensive analysis of the perceived road environment information, the automatic driving
system makes decisions based on the surrounding environment, deciding to accelerate, slow down, brake,
turn, and path planning. The automatic driving system uses the RRT algorithm to create a tree, which contains
the starting node as the root node, randomly generates a node, expands the node closest to the new node in the
tree, and adds it if the path is feasible. In the RRT algorithm, the distance between two points A and B is
expressed as

d(A,B) = (xa = xp)> + (yy — V)2 ®)

In the automatic driving system of machine intelligence, the road environment information can be sensed
and intelligently understood. Intelligent decisions can be made based on real-time road environment condi-
tions, and the vehicle can be physically controlled to achieve safe, efficient, and autonomous driving.

2.3 Knowledge representation and knowledge base

The automatic driving system of traditional machine intelligence still has certain technical defects, which
makes it difficult to make accurate decisions in the face of complex road environment. Technology transfer is
the transfer of a certain technology, knowledge, or innovation from one field or organization to another for
wider application or commercialization [30,31]. Through technology transfer, the knowledge about vehicle
driving can be applied to the automatic driving system, thus improving the performance of the automatic
driving.

Autonomous driving should follow the traffic rules, and the safety of driving can be optimized through
previous traffic accident cases. The knowledge base is determined to be traffic regulations manual, road sign
database, and traffic accident case database. Using natural language processing technology to extract text data
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information from knowledge base, the extracted text data can be converted into the first-order logic, which is
conducive to machine understanding.

This study converts the text information of Interstate 405’s speed limit of 105km/h into SpeedLimit
(Interstate 405, 105km/h). The information in the knowledge base can be periodically updated to ensure
that the information in the knowledge base is up-to-date. Domain knowledge related to automatic driving is
associated by building a knowledge graph.

The inception model is used to process perceived environmental images. The inception model can extract
advanced features of images for understanding information such as traffic signs and road conditions in the
environment. The knowledge of traffic regulations, road signs, and traffic accident information obtained from
the data is expressed. The information is mapped to a form that the model can understand, and a knowledge
graph is constructed.

2.4 Reinforcement learning and knowledge integration

In order to comprehensively relate the knowledge related to automatic driving, it is necessary to integrate the
relevant automatic driving knowledge. This article creates an interface that enables the agent to quickly query
information in the knowledge base. This interface can also accept the query and return all knowledge related
to the query content.

The state of the environment around the car can be understood and expressed into a form that the
machine can understand, including vehicle speed, surrounding vehicle position, road sign information, etc.
Specific actions can be performed based on information about the environment around the car and related
knowledge.

Setting the action space for an automated driving agent allows people to define all possible agent actions.
The actions of the agent include acceleration, braking, steering, changing lanes, keeping lanes, stopping,
avoiding obstacles, emergency braking, changing lane signals, turning on the wiper, and adjusting the lights.

Autonomous driving is the process of continuous learning, improvement, and optimization of driving
performance. Based on the data driven on the road, the learning ability of the autonomous driving can be
enhanced by setting a reward function. In autonomous driving, the reward is usually based on the agent’s
behavior, whether it follows traffic rules, whether it conflicts with other vehicles, whether it maintains a
proper distance, and so on. It can positively reward performance that improves driving performance and
penalize performance that decreases it.

The reward mechanism takes into account driving safety, driving efficiency, compliance with traffic rules
and other directions, and safety behaviors such as avoiding collisions, not speeding, and not running red lights
can obtain positive rewards. Positive rewards can be earned for following traffic rules, maintaining flow, and
making efficient lane changes. Parking, yielding to pedestrians, and not driving the wrong way can get a
positive reward. Incentives can be used to encourage agents to adopt safe behaviors and improve the safety of
automated driving.

The design idea of the reward mechanism focuses on the safety, efficiency, and behavior conforming to
traffic rules of the auto drive system. The goal of designing a reward mechanism is to guide autonomous
driving agents to adopt safe, efficient, and compliant behaviors through positive rewards and punishments.

The current environmental state and available actions of the autopilot are input into the DQN model, so
that the output layer of the DQN network is consistent with the available action dimensions, and thus, the Q
value that may occur for each action is output.

The mean squared error is selected as the loss function of the DQN model to analyze the difference
between the predicted Q value and the target Q value [32,33]. The mean squared error formula is expressed as

52
MSE = 720}1' ) , )
n
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where n represents the total number of samples, y; represents the target Q value for sample i, and Y, represents
the predicted Q value for sample i.

In this study, Adam optimizer is selected for DQN model training to optimize the automatic driving
system’s comprehensive analysis ability of driving-related knowledge and driving environment, and gradually
realize the transformation from machine intelligence to knowledge intelligence.

2.5 Autonomous driving multi-agent model

The autonomous driving multi-agent model is a computational model used to simulate and optimize the
driving of autonomous vehicles in multi-vehicle traffic environments, and comprehensively analyze the
road environment and related driving knowledge. Vehicles can operate safely and efficiently in complex
traffic scenarios through the collaboration of multiple agents.

The autonomous driving multi-agent model includes several virtual autonomous vehicle agents, each of
which has the ability of perception, understanding, and decision-making. The autonomous driving system in
the real world can be simulated through the cooperation of various agents, and the agents share information
and cooperate through communication protocols [34,35].

3 Experimental evaluation

3.1 Setting traffic situation

The multi-agent of autonomous driving with knowledge fusion can quickly perceive the surrounding envir-
onment through multiple intelligent agents and combine the relevant driving knowledge to make feasible
driving behaviors. In order to effectively analyze the knowledge fusion of autonomous driving multi-agents,
the experiment simulates various traffic situations in virtual environment and reflects the performance of
autonomous driving multi-agents through simulated traffic situations.

Because there are too many traffic scenarios that can be set in the virtual environment, the labels of traffic
scenario P1 are initialized as A1, B1, C1, D1, E1, and F1. In order to set up different traffic situations, only one of
the environmental contents of road environment, traffic environment, terrain environment, weather envir-
onment, traffic sign environment, and intersection environment is changed, so as to generate different types of
situations.

On the basis of traffic situation P1, the road environment is changed into expressway, rural road, and
mountain road, and the corresponding traffic situation is PA2, PA3, and PA4, respectively. PB2 and PB3 can be
generated by changing the traffic environment to free circulation road and construction area on the basis of
traffic situation P1. By analogy, traffic situations can also be generated: PC2, PD2, PD3, PD4, PE2, PF2, and PF3.

The situational information about the road environment set in the virtual environment is shown in
Table 3.

Table 3 describes the situational information about the road environment, showing the specific content in
P1, PA2, PA3, and PA4 scenarios. By observing the performance of automatic driving in different situations, the
influence of knowledge intelligence transformation on automatic driving performance can be well evaluated.

3.2 Evaluation of automatic driving performance

In order to effectively evaluate the performance of the knowledge fusion autonomous multi-agent system, it is
necessary to compare the knowledge fusion autonomous multi-agent system with the traditional machine
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Table 3: Contextual information about the road environment

Circumstances Content Label
P1 Urban road Al
Congestion road B1
Flat road a
Sunny road D1
Clear sign E1
Crossroads F
PA2 Highway A2
Congestion road B1
Flat road a
Sunny road D1
Clear sign E1
Crossroads F
PA3 Backroad A3
Congestion road B1
Flat road a
Sunny road D1
Clear sign E1
Crossroads F
PA4 Mountainous road Ad
Congestion road B1
Flat road a
Sunny road D1
Clear sign E1
Crossroads F

intelligence autonomous driving system. Traditional machine intelligence autonomous driving systems use
backpropagation neural network models to comprehensively analyze road environment data to determine the
movement of the car.

Knowledge fusion of automatic driving multi-agent system introduces a variety of driving knowledge on
the basis of traditional machine intelligence, integrating knowledge of traffic regulations, road signs, and
traffic accident cases. Through the reward mechanism and DQN model training, it improves the comprehen-
sive analysis ability of the automatic driving system to the surrounding environment.

In order to comprehensively analyze the performance of knowledge-fused autonomous driving multi-
agents, this article sets up a variety of driving scenarios. By observing the safety, efficiency, feasibility,
environmental perception accuracy, and resource utilization of autonomous driving, it can judge the perfor-
mance of autonomous driving multi-agents in simulated driving situations.

The first requirement of autonomous driving is safety, and the number of accidents per 100,000 km and
the number of violations per 100,000 km of autonomous driving are recorded in the simulated environment
P1. Vehicle accidents are identified as vehicle collisions, including vehicle-to-vehicle collisions, vehicle-to-
guardrail collisions, and vehicle-to-pedestrian collisions. The violation of the vehicle is reflected in the viola-
tion of traffic rules, including running red lights and not driving at the specified speed.

Traffic intersections are complex driving environments. In this study, three traffic intersection environ-
ments, P1, PF2, and PF3, were set up to record the average driving speed of vehicles in the simulated environ-
ment. Different weather conditions would also affect the efficiency of driving. In this study, virtual environ-
ments of P1, PD2, PD3, and PD4 were set to record the average driving speed of autonomous vehicles.

The realization of the automatic driving system is based on the perception of the external environment,
and the accurate identification of traffic signs and road obstacles can provide information for vehicle driving.
The traditional machine intelligent automatic driving can perceive the environment through inception model,
while the knowledge-integrated automatic driving establishes a traffic knowledge base on the basis of
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inception model, and comprehensively realizes the environment through knowledge representation and
image recognition.

Automatic driving environment perception can be divided into four categories according to the results of
predictive recognition and actual results: TP indicates that the environment is recognized as a positive example
and the actual is also a positive example. FP indicates that the environment is identified as a positive example
but is actually a negative example. FN indicates that the environment is identified as a negative example but is
actually a positive example. TN indicates that the environment is identified as a negative example and the
actual example is also negative.

Environmental perception performance can be comprehensively evaluated by accuracy, precision, recall,
and F1 value, and the accuracy formula is expressed as

A = (TP + TN)/N, (10)

where N represents the total number of samples, N = TP + FP + FN + TN.

The precision rate measures how much of the model’s predicted positive class of samples is actually
positive class of samples, namely, the accuracy of the predicted positive examples. The formula of precision
rate is expressed as

P =TP/(TP + FP). (1

The recall rate measures the proportion of the number of positive class samples correctly predicted by the
model to the total number of actual positive class samples, i.e., the model’s ability to identify positive examples.
The formula of recall rate is expressed as

R = TP/(TP + EN). (12)
The F1 value is determined by the results of formulas (11) and (12), and the F1 value is expressed as
F1=2(P x R)/(P + R). (13)

In order to more intuitively reflect the environment perception ability of machine intelligent automatic
driving and knowledge fusion intelligent driving, receiver operating characteristic (ROC) curve is drawn to
evaluate the environment perception performance of different automatic driving systems.

In order to fully analyze the performance of the knowledge fusion autonomous driving system, the
resource utilization of the autonomous driving system in the simulated environment is measured. CPU is a
key component for performing various computing tasks in an autonomous driving system, and CPU utilization
represents the extent to which the CPU’s computing power is used to run an autonomous driving application.
GPUs are commonly used in autonomous driving systems for image processing, deep learning inference, and
computationally intensive tasks. GPU utilization represents the extent to which it is used when running an
autonomous driving application. The simulation environment of automatic driving is set up: P1, PA2, PA3, PA4,
PB2, PB3, PC2, PD2, PD3, PD4, PE2, PF2, and PF3.

4 Results

4.1 Security

The simulated environment P1 is composed of urban road, congested road, flat road, sunny road, clearly
marked road, and intersection. The safety performance of the autonomous vehicle is recorded in P1 environ-
ment, and the number of accidents per 100,000 km and the number of violations per 100,000 km are shown in
Figure 1.

In Figure 1(a), the safety of automated driving with traditional machine intelligence is described. In this
study, the number of accidents and violations were measured in 100,000 km in P1 environment, and the
horizontal axis indicates that a total of 10 sets of tests were conducted. Traditional machine intelligent
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Figure 1: Security results: (a) safety of automated driving with traditional machine intelligence and (b) safety of knowledge-integrated
autonomous driving.

autonomous vehicles have been involved in driving accidents and violations in 100,000 km. The average
number of accidents of traditional machine intelligence autonomous driving in 100,000 km was 3, and the
average number of violations in 100,000 km was 4.3. The safety of knowledge fusion autonomous driving is
described in Figure 1(b), and 10 sets of tests were also conducted. In the 100,000-km P1 virtual environment
test, the number of accidents and violations of knowledge fusion autonomous driving was smaller than that of
traditional machine intelligence autonomous driving. The average number of accidents in 100,000 km was 1.4,
and the average number of violations in 100,000 km was 1.8. When perceiving the surrounding environment,
the driving knowledge base can be combined with the knowledge base content and the road environment
analysis results to make driving decisions together. Knowledge fusion of automatic driving can effectively
reduce the number of accidents and violations, thereby improving the safety of automatic driving.

4.2 Driving efficiency

Autonomous driving is autonomous navigation and driving without human intervention, and efficient driving
planning can improve road capacity and reduce traffic congestion. This study analyzes the driving efficiency of
automatic driving in different traffic intersections and different weather conditions.

4.2.1 Traffic efficiency at different traffic intersections

The intersection environment in the virtual environment includes intersections (P1), roundabout (PF2), and
T-intersections (PF3), which use the average speed of the autonomous vehicle to reflect the driving efficiency.
The driving efficiency results of different traffic intersections are shown in Figure 2.

In Figure 2(a), the driving efficiency of traditional machine intelligence autonomous driving at different
traffic intersections is described. This study sets up three kinds of intersection environment: intersection,
roundabout, and T-intersection. Traditional machine intelligent automatic driving in P1, PF2, and PF3 envir-
onment are all urban roads, and the driving speed is not very high. The driving speed of different intersection
environments is different, which is mainly due to the different traffic complexity of different types of inter-
section environments. The average driving speed of the 10th group in P1, PF2, and PF3 environments was 46.7,
49.5, and 55.4 km/h, respectively. Figure 2(b) describes the driving efficiency of knowledge-integrated intelli-
gent automatic driving at different traffic intersections, and the driving speed of knowledge-integrated auto-
matic driving in three traffic intersections is higher than that of traditional automatic driving. This is mainly
knowledge fusion automatic driving that can integrate a variety of driving knowledge, so as to make more
intelligent driving decisions and improve driving speed. The average driving speed of group 10 in P1, PF2, and
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Figure 2: Traffic efficiency at different traffic intersections: (a) driving efficiency of traditional automatic driving at different traffic
intersections and (b) driving efficiency of knowledge fusion automatic driving at different traffic intersections.

PF3 environments was 53.9, 60.0, and 69.5 km/h, respectively. Therefore, knowledge fusion automatic driving
can improve driving efficiency at different types of traffic intersections.

4.2.2 Driving efficiency under different weather conditions

Virtual environments P1, PD2, PD3, and PD4 are set, which are sunny roads, rainy roads, snow and ice roads,
and foggy roads, respectively. The driving efficiency results of different weather environments are shown in
Figure 3.

Figure 3(a) describes the driving efficiency of traditional machine intelligence autonomous driving in
different weather environments. In this study, the driving speed of sunny road, rainy road, snow, and ice road
and foggy road are calculated. Road friction is different in different weather conditions, and self-driving cars
need to adjust their speed according to weather conditions to ensure safety. The driving speed is the highest in
sunny days, which is mainly due to the wide driving field of vision in sunny days and the high friction
coefficient of the ground. The average driving speed of the 10th group in P1, PD2, PD3, and PD4 environments
was 52.0, 40.0, 26.5, and 28.5 km/h, respectively. Figure 3(b) describes the driving efficiency of knowledge fusion
automatic driving in different weather environments. The driving speed of knowledge fusion automatic
driving is generally higher than that of traditional automatic driving. The average driving speed of group
10 in P1, PD2, PD3, and PD4 environments was 62.8, 42.8, 31.5 and 35.0 km/h, respectively. Therefore, knowledge
fusion automatic driving can improve driving efficiency under different weather conditions.
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Figure 3: Driving efficiency under different weather conditions: (a) driving efficiency of traditional automatic driving in weather
environment and (b) driving efficiency of knowledge fusion automatic driving in weather environment.
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4.3 Environment awareness performance

The environmental perception accuracy rate, precision rate, recall rate, and F1 value of traditional machine
intelligence automatic driving and knowledge fusion automatic driving are shown in Table 4.

Table 4 describes the environmental perception performance of traditional machine intelligence auto-
matic driving and knowledge fusion automatic driving. The accuracy rate, precision rate, recall rate, and F1
value of knowledge fusion automatic driving are all higher than those of traditional machine intelligence
automatic driving. This is mainly due to the knowledge fusion of autonomous driving that can conduct
comprehensive analysis of traffic regulations, road signs, and traffic accident-related information. The envir-
onmental perception accuracy of traditional machine intelligence autonomous driving and knowledge fusion
autonomous driving was 87.2 and 96.8%, respectively. The shift from machine intelligence to knowledge
intelligence can effectively improve the environment perception performance of autonomous driving systems.

In order to intuitively analyze the environmental perception effects of different automatic driving sys-
tems, the ROC curve is shown in Figure 4.

Figure 4 describes the ROC curve of environmental perception. The horizontal axis represents the false-
positive case rate, while the vertical axis represents the true-positive case rate. The larger the area under the
curve, the better the performance of environmental perception. It is obvious that the area under the ROC curve
of knowledge fusion automatic driving is larger than that of traditional machine intelligent automatic driving.
Both knowledge fusion autonomous driving and traditional machine intelligent autonomous driving have ROC
curves that exceed random classifiers, but knowledge fusion autonomous driving has better performance. The
ROC curve of knowledge fusion automatic driving is closer to the point (0, 1), which means that knowledge
fusion automatic driving has better environmental perception performance and can more accurately identify
traffic signs and road obstacles in complex driving environments.

Table 4: Environment awareness performance table

Index Machine intelligence Knowledge fusion
Accuracy (%) 87.2 96.8
Precision (%) 88.4 98.2
Recall (%) 85.5 97.6
F1 value (%) 86.9 97.9
l —
0.8 -
2
S 06r
(o)
=
2
~04r
2
&
0.2
Machine intelligence
Knowledge fusion
0 1 | | 1 | 1 1 | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

Figure 4: ROC curve of environment perception.
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4.4 Resource utilization result

The resource utilization of the knowledge fusion automatic driving system is analyzed, and the utilization of
CPU and GPU is shown in Figure 5.

In Figure 5(a), CPU utilization is described, and 13 virtual environments are represented on the horizontal
axis. Average CPU utilization and peak CPU utilization of 13 virtual environments are counted. The CPU
utilization of knowledge fusion autonomous driving system is different in different virtual driving environ-
ments, which is mainly due to the computational complexity of different virtual environments. The average
CPU utilization of knowledge fusion autonomous driving in 13 virtual environments was 34.7%, and the
average peak CPU utilization was 65.1%. In Figure 5(b), GPU utilization is described, and the GPU utilization
of the knowledge fusion automatic driving system is very good. It can make good use of GPU resources, so as to
effectively improve the computing efficiency of automatic driving. The average GPU utilization of knowledge
fusion autonomous driving in 13 virtual environments was 75.9%, and the average peak GPU utilization was

96.1%. Application knowledge fusion of automatic driving can make good use of CPU resources and GPU
resources.

5 Conclusions

Autonomous driving is an important field of multi-agent research. Autonomous driving involves sensing the
environment and making driving decisions according to the environment, so as to cope with the complex road
environment. This study constructed a virtual driving environment; used inception model to identify road
images collected; represented information related to traffic regulations, road signs, and traffic accidents; and
constructed a knowledge map. Autonomous driving is realized through knowledge fusion and reinforcement
learning. This article set up a variety of virtual environments to analyze the performance of knowledge fusion
autonomous multi-agent. The experimental results show that the multi-agent knowledge fusion can effectively
reduce the number of accidents and violations, improve vehicle driving efficiency and environmental percep-
tion ability, and have excellent resource utilization. The shift from machine intelligence to knowledge intelli-
gence can enable multiple agents to have higher logical reasoning, inference, and problem solving. However,
this study only analyzed the automatic driving system, and the analysis of multi-agent was too limited.
Therefore, studies on more knowledge-intelligent multi-agents would be the direction of future research.
The article emphasizes the importance of knowledge intelligence, and future research can be extended to
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Figure 5: Resource utilization: (a) CPU utilization and (b) GPU utilization.
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other fields, not limited to autonomous driving, such as applying knowledge intelligence in medical, educa-
tional, financial, and other fields, to improve system understanding and decision-making ability.
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