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Abstract: The electromagnetic-gravity optimization (EMGO) framework is a novel optimization technique that
integrates the fine-structure constant and leverages electromagnetism and gravity principles to achieve effi-
cient and robust optimization solutions. Through comprehensive performance evaluation and comparative
analyses against state-of-the-art optimization techniques, EMGO demonstrates superior convergence speed
and solution quality. Its unique balance between exploration and exploitation, enabled by the interplay of
electromagnetic and gravity forces, makes it a powerful tool for finding optimal or near-optimal solutions in
complex problem landscapes. The research contributes by introducing EMGO as a promising optimization
approach with diverse applications in engineering, decision support systems, machine learning, data mining,
and financial optimization. EMGO’s potential to revolutionize optimization methodologies, handle real-world
problems effectively, and balance global exploration and local exploitation establishes its significance. Future
research opportunities include exploring adaptive mechanisms, hybrid approaches, handling high-dimen-
sional problems, and integrating machine learning techniques to enhance its capabilities further. EMGO gives
a novel approach to optimization, and its efficacy, advantages, and potential for extensive adoption open new
paths for advancing optimization in many scientific, engineering, and real-world domains.
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1 Introduction

Optimization is a central facet of scientific and engineering disciplines, seeking to find optimal solutions to
complex problems [1]. While many optimization techniques have been developed over the years, the search
for innovative and effective approaches to handle increasingly complex and multidimensional problems
continues to drive research in the field [2].

In this article, we present electromagnetic-gravity optimization (EMGO), an innovative framework
inspired by the exploration of the fine-structure constant, an essential constant governing electromagnetic
interaction. By combining the fine-structure constant into the optimization framework, EMGO harnesses the
inherent forces of electromagnetism and gravity to improve optimization performance.

The objective of this work is to present and evaluate EMGO as a novel optimization approach. We aim to
showcase the potential of EMGO in solving complex optimization problems by leveraging the interplay
between electromagnetism, gravity, and the fine-structure constant. The empirical evaluations and compara-
tive analyses establish the effectiveness and superiority of EMGO over current optimization techniques.

To guide our study, we address the main research questions. First, we explore the effective integration of
the fine-structure constant into the optimization framework. Second, we delve into the underlying principles
and equations governing EMGO. Next, we compare EMGO’s performance in terms of convergence speed,
solution quality, and robustness against existing techniques. Finally, we explore potential applications and
domains where EMGO can offer significant advantages in optimization, spanning engineering, decision sup-
port systems, machine learning, data mining, financial optimization, and more.

The contributions of this research article are significant. We introduce EMGO, which combines electro-
magnetism, gravity, and the fine-structure constant for efficient optimization. We provide a comprehensive
exploration of integrating the fine-structure constant into EMGO, including relevant equations and conceptual
frameworks. The empirical evaluations on benchmark functions show EMGO’s superiority in terms of con-
vergence speed and solution quality compared to present techniques.

The research questions showcase EMGO’s contributions; this technique aims to drive a paradigm shift in
optimization methodologies and motivate further advancements in the field. EMGO gives a promising direc-
tion for solving complex optimization challenges and suggests a way for more efficient and powerful optimi-
zation techniques in many scientific and engineering domains.

1.1 Novelty and contribution

The main novelty of this work lies in the introduction of the EMGO framework, which uniquely integrates the
fine-structure constant with principles of electromagnetism and gravity to create a robust optimization algo-
rithm. This innovative approach harnesses the fine-structure constant as a pivotal parameter, influencing the
balance between local and global search capabilities within the optimization process. This integration offers a
new perspective on how fundamental physical constants can be applied to solve complex optimization
problems.

Key novel contributions:
• EMGO is the first optimization framework that leverages the fine-structure constant, a fundamental physical
constant, to modulate the search dynamics. This approach provides a novel mechanism for balancing
exploration and exploitation in the search space.

• By combining principles of electromagnetism (for local search) and gravity (for global search), EMGO
achieves a more effective and efficient optimization process. This hybrid mechanism allows EMGO to
adaptively transition between local and global search phases, enhancing convergence speed and solution
quality.

• Comparative analysis with existing state-of-the-art optimization algorithms – Particle Swarm Optimization
(PSO) [3], Whale Optimization Algorithm (WOA) [4], Gravitational Search Algorithm (GSA) [5] and Electro-
magnetic Field Optimization (EFO) [6] – demonstrates that EMGO outperforms in terms of convergence
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speed, robustness, scalability, and the quality of solutions obtained. The fine-tuning capabilities provided by
the fine-structure constant enable EMGO to avoid local optima and achieve superior global optima.

• EMGO’s design allows it to be scalable and robust across various optimization problems, including high-
dimensional and complex landscapes. This scalability is attributed to the adaptive nature of the algorithm,
which efficiently handles the diversity of optimization challenges.

These contributions collectively establish EMGO as a pioneering framework in the field of optimization,
offering significant advancements over existing methods. The detailed analysis and empirical results pre-
sented in this article underscore the practical and theoretical benefits of incorporating fundamental physical
constants into optimization algorithms.

The remaining sections of this article are as follows: Section 2 gives the background and related work.
Section 3 presents the proposed EMGO algorithm. Section 4 compares the performance of EMGO with state-of-
the-art optimization techniques. Finally, in Section 5, we conclude the article.

2 Background and related work

Optimization techniques have been a topic of general research and development, driven by the necessity to
solve complex problems across many scientific and engineering domains [7–9]. This section gives a compre-
hensive background and highlights related work that sets the foundation for understanding the significance of
the fine-structure constant, electromagnetism, the relative strength of electricity and gravity, and existing
optimization techniques, with hybrid approaches.

2.1 Fine-structure constant and its significance

The fine-structure constant (α) is a dimensionless physical constant that signifies the strength of electromag-
netic interactions. The precise value of α is approximately 1/137 and reflects the strength of the electromagnetic
force relative to other fundamental forces. In the context of optimization techniques, α plays a significant role
in integrating electromagnetism into the problem-solving process. Using α in optimization algorithms, we can
harness the dynamics of electromagnetism to explore and search for optimal solutions [10].

The implication of the fine-structure constant lies in its deep connection to the fundamental nature of
electromagnetism and its role in shaping the behavior of charged particles. The use of α in optimization
techniques can simulate the influence of electromagnetic forces on the search process, allowing exploration
and exploitation of the solution space. The mathematical representation of the fine-structure constant in
optimization algorithms gives a quantitative framework for understanding and utilizing the principles of
electromagnetism. It allows algorithms to leverage the strength and interactions of electromagnetic forces
to guide the search for optimal solutions in a dynamic and resourceful manner [11].

2.2 Electromagnetism and the fine-structure constant

Electromagnetism, defined by Maxwell’s equations and QED, is one of the four fundamental forces of nature. It
governs the conduct of electrically charged particles and their interactions through the exchange of photons.
The fine-structure constant, being intimately linked to electromagnetism, provides insights into the strength of
these interactions [12].

The use of the fine-structure constant in optimization frameworks permits the integration of electromag-
netic forces into the search process. The magnitude and direction of these forces give optimization algorithms
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to effectively balance local exploitation and global exploration, leading to enhanced convergence and solution
quality.

2.3 Relative strength of electricity and gravity

In addition to electromagnetism, gravity is another fundamental force that governs the behavior of massive
objects in the universe. Unlike electromagnetism, the relative strength of electricity and gravity is significantly
different. While electromagnetism is about 1,036 times stronger than gravity, gravity acts on all objects with
mass and has a universal influence on the macroscopic scale.

By considering the relative strength of electricity and gravity, optimization algorithms can incorporate
gravity-like interactions to guide the search process. This combination allows for a multi-faceted exploration of
the search space, balancing local exploitation driven by electromagnetism with global exploration influenced
by gravity [13].

2.4 Optimization techniques

Optimization encompasses a diverse range of techniques tailored to tackle complex problems and attain
optimal solutions [14]. Among these techniques, metaheuristics provide a robust algorithmic framework
designed specifically for complex optimization problems, regardless of their nature – continuous, discrete,
unconstrained, or multi-objective. Metaheuristic approaches build upon traditional heuristics, augmenting
their exploration and exploitation capabilities. They can be broadly categorized into swarm-based, evolu-
tionary-based, physics-based, and human-based metaheuristics [15–17].

Swarm-based metaheuristics draw inspiration from the collective behaviors exhibited by animals and
plants, where interaction with the environment and other individuals plays a crucial role. Prominent exam-
ples of swarm-based metaheuristics include PSO [3], Sperm Swarm Optimization [18], and Grey Wolf Optimizer
(GWO) [19].

Evolutionary algorithms, such as Genetic Algorithms (GA) [20] and Differential Evolution [21], derive
inspiration from the principles of natural selection and genetic variation. These algorithms employ techniques
like mutation, crossover, and selection to evolve a population of candidate solutions toward improved out-
comes over successive generations. They find wide application in optimization problems across diverse
domains.

Physics-based metaheuristics take a distinctive approach to optimization by drawing inspiration from the
fundamental laws of physics. Notable examples include the GSA [5], Simulated Annealing, EFO [6], Magnetic
Charged System Search (MCSS) [22], and Ions Motion Optimization (IMO) [23]. EFO, for instance, emulates the
behavior of electromagnets with different polarities and incorporates the golden ratio as a nature-inspired
ratio [6]. It represents potential solutions as electromagnetic particles composed of electromagnets, with the
number of electromagnets determined by the variables in the optimization problem.

The GSA [5] mimics gravitational forces to search for optimal solutions. Each solution is represented as a
celestial body, and the algorithm simulates interactions between these bodies to guide the search process.
Similarly, MCSS utilizes the governing laws of magnetic and electrical forces, while IMO leverages the attrac-
tion and repulsion between anions and cations to facilitate optimization.

Table 1 offers a comprehensive comparison of diverse optimization algorithms, including those rooted in
physics-based metaheuristics. The assessment focuses on their capacity to navigate intricate optimization
terrains and effectively attain optimal solutions.

Our proposed EMGO algorithm merges the principles of electromagnetism and gravity to effectively
explore and exploit the solution space. It incorporates electromagnetic forces based on the fine-structure
constant, α, and gravity-like interactions to foster global exploration. Through iterative updates of individuals’
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Table 1: Comparison of diverse optimization algorithms

Algorithm name Description Advantages Limitations

Proposed EMGO
technique

Unites electromagnetism and
gravity principles with the fine-
structure constant, for effective
solution exploration and
exploitation

Global exploration, fast convergence,
balance between exploration and
exploitation

Parameter tuning required,
sensitivity to problem
characteristics

Segmental
regularized
constrained
inversion [24]

An inversion method for transient
electromagnetism that utilizes a
segmented regularization constraint
and an improved sparrow search
algorithm to enhance inversion
accuracy and stability under varying
conditions

− Improves inversion accuracy
and stability

− Reduces dependence on
preliminary information

− Optimizes objective function
efficiently and escapes local
optima

− Superior practicality and higher
fitting accuracy

− May require significant
computational resources

− Performance dependent
on initial model setup and
criteria

Gravity inspired
clustering
algorithm [25]

A clustering algorithm inspired by
gravitational principles, designed to
select relevant gene subsets for
disease classification tasks from
high-dimensional microarray data

− High accuracy on various
microarray cancer datasets

− Effective feature selection
validated using SVM with LOOCV

− Competes well with existing
methods

− May require significant
computational resources

− Performance may vary
across different datasets

Coati optimization
algorithm
(COOA) [26]

Bio-inspired algorithm modeling
coatis’ attacking, hunting, and
escape behaviors, with phases of
exploration and exploitation

− Balances exploration and
exploitation.

− Superior performance on
benchmark functions

− Effective in real-world
applications

− Needs further validation
across diverse problems

− Parameter sensitivity
− Higher computational

complexity

Crayfish
optimization
algorithm
(COA) [27]

Simulates crayfish’s summer resort,
competition, and foraging
behaviors, divided into stages to
balance exploration and exploitation

− Balances exploration and
exploitation.

− Effective in standard benchmark
and engineering problems

− Temperature-regulated
processes enhance global
optimization

− Requires further
validation in diverse
scenarios

− May be sensitive to
temperature parameters

Mother
Optimization
Algorithm [28]

A human-based metaheuristic
algorithm inspired by the interaction
between a mother and her children,
involving phases of education,
advice, and upbringing

− Effective balance between
exploration and exploitation

− Superior performance in
optimizing unimodal, high-
dimensional multimodal, and
fixed-dimensional multimodal
functions

− Outperforms 12 other
metaheuristic algorithms

− Further validation is
needed across a broader
range of problems

− Sensitivity to specific
parameter settings may
impact effectiveness

GSA [5] Emulates gravitational forces for
optimization

Global search capability Sensitive to parameter
settings

EFO [6] Utilizes electromagnetic field
interactions for optimization

Effective exploration and exploitation Sensitive to parameter values

MCSS [22] Models magnetic interactions
between particles for optimization

Good exploration, adaptability Vulnerable to local optima

IMO [23] Imitates ions’ motion in an
electromagnetic field for
optimization

Efficient exploration and exploitation Parameter tuning required

GA [29] Employs genetic operators for
selection

Global search capability, population
diversity

Slower convergence on
complex landscapes

PSO [3] Simulates social behavior for
optimization

Fast convergence, simplicity Prone to premature
convergence, local optima

(Continued)
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Table 1: Continued

Algorithm name Description Advantages Limitations

Ant colony
optimization [30]

Mimics ant foraging behavior for
optimization

Good for discrete optimization
problems

Slow convergence, sensitivity
to parameters

Simulated
annealing [31]

Inspired by annealing process Escapes local optima, probabilistic
approach

Temperature schedule affects
performance

DE [21] Utilizes differential mutation Robust, handles noisy functions High memory usage, can get
stuck in local optima

Harmony
search [32]

Inspired by musicians’ improvisation Versatile, easy implementation Limited scalability, may
converge to suboptimal

Artificial bee
colony [33]

Imitates honeybee foraging
behavior

Simple, good exploration capabilities Vulnerable to getting trapped
in local optima

Firefly
algorithm [34]

Leverages fireflies’ attractiveness Global search capability Convergence rate affected by
parameter settings

Cuckoo search [34] Inspired by brood parasitism of
cuckoo birds

Fast convergence, simple
implementation

May require fine-tuning of
parameters

Bat algorithm [35] Inspired by echolocation of bats Robust, adaptive, good exploration
capabilities

May converge slowly on
complex landscapes

GWO [19] Inspired by social hierarchy of grey
wolves

Fast convergence, global search
capability

Parameter sensitivity

Flower pollination
algorithm [36]

Mimics flower pollination process Effective exploration and exploitation Parameter tuning required

Glowworm swarm
optimization [37]

Inspired by glowworm behavior Good for dynamic environments Limited scalability, may
converge to suboptimal

WOA [4] Inspired by hunting behavior of
whales

Fast convergence, global search
capability

May converge to suboptimal
solutions

Teaching-learning
based
optimization [38]

Inspired by teaching and learning
process

Fast convergence, diverse exploration Parameter tuning required

Moth flame
optimization [39]

Inspired by moth’s attraction to light Good convergence rate, simple
implementation

May require fine-tuning of
parameters

Flower
algorithm [40]

Mimics blooming process of flowers Effective exploration, simplicity May require more iterations
to achieve convergence

Krill Herd
algorithm [41]

Inspired by swarming behavior of
krill

Fast convergence, global search
capability

Sensitivity to parameter
values

Sine cosine
algorithm [42]

Utilizes sine and cosine functions for
optimization

Efficient exploration and exploitation Performance influenced by
parameter settings

Coral reefs
optimization [43]

Mimics ecological system of coral
reefs

Good convergence and exploration
capabilities

Parameter sensitivity

Moth search
algorithm [44]

Inspired by moth’s attraction to light Fast convergence, simple
implementation

May require fine-tuning of
parameters

Harmony search
with chaos [45]

Combines harmony search with
chaotic dynamics

Efficient exploration, good
convergence

Parameter tuning required

Crow search
algorithm [46]

Inspired by foraging behavior of
crows

Fast convergence, good exploration
capabilities

Parameter sensitivity

Social spider
algorithm [47]

Mimics social behavior of spiders Effective exploration and exploitation Sensitivity to parameter
values

Equilibrium
optimizer [48]

Inspired by principles of chemical
equilibrium

Fast convergence, global search
capability

May require fine-tuning
parameters

Earthworm
optimization [49]

Inspired by earthworm’s burrowing
behavior

Efficient exploration and exploitation Sensitivity to parameter
values

Black Widow
optimization [50]

Inspired by predatory behavior of
black widow spiders

Good convergence and exploration
capabilities

Sensitivity to parameter
values

Virus optimization
algorithm [51]

Inspired by spread of computer
viruses

Fast convergence, efficient
exploration

May require fine-tuning of
parameters

Inspired by foraging behavior of
flamingos

Good convergence and exploration
capabilities

(Continued)
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positions according to cumulative forces, EMGO offers a novel approach to overcome the limitations of
traditional techniques, such as slow convergence and difficulty in finding global optima. By striking a balance
between exploration and exploitation, EMGO aims to deliver more efficient and effective optimization
outcomes.

3 EMGO framework

3.1 Conceptual framework

The EMGO framework combines the principles of electromagnetism, gravity, and the fine-structure constant to
offer a powerful optimization approach. EMGO gives a balance between local exploitation and global explora-
tion by leveraging the interplay of these fundamental forces.

3.2 Equations for EMGO incorporating the fine-structure constant

3.2.1 Initialization

In EMGO, the optimization problem is represented by a population of individuals, each categorized by a
position vector in the search space. The population is initialized randomly within the problem’s defined
bounds.

3.2.2 Electromagnetic interactions

The electromagnetic interactions in the given EMGO are modeled on the basis of the principles of electro-
magnetism and the fine-structure constant. The electromagnetic force between two individuals i and j is
described as:

( ) ( )= × × × −F α q q r x x/ ,
i j i jem

2 (1)

where Fem denotes electromagnetic force, α represents fine-structure constant, qi and qj are the charges of
individuals i and j, r is the distance between them, and xi and xj are their respective positions.

The determination of the electromagnetic force (Fem) in the EMGO algorithm, as given by equation (1),
involves considering the charges of individuals, the distance between them, and the fine-structure constant (α).
Let’s explore how these components are determined using an example scenario.

Table 1: Continued

Algorithm name Description Advantages Limitations

Flamingo
optimization
algorithm [52]

More iterations may be
required to achieve
convergence

Illumination
optimization [53]

Inspired by distribution of
illumination sources

Efficient exploration, global search
capability

May converge to suboptimal
solutions

Zebra optimization
algorithm [54]

Inspired by herding behavior of
zebras

Fast convergence, diverse exploration May require fine-tuning of
parameters

Harnessing the fine-structure constant in an EMGO framework  7



Electric charge optimization consider an optimization problem where the goal is to find the optimal
distribution of electric charges on a two-dimensional plane to minimize the overall potential energy. The
charges represent individuals, and their positions represent potential solutions. The objective is to find the
configuration that results in the lowest potential energy.

Determining the charges (qi and qj): In this scenario, the charges (qi and qj) of individuals i and j can be
determined based on their fitness or potential contribution to the objective function shown in equations (2)
and (3). For example, let’s assume that the charges are determined proportional to the fitness values of
individuals. Higher fitness specifies a more favorable solution.

( )=q iFitness ,
i

(2)

( )=q jFitness ,
i

(3)

Since charges are based on fitness, individuals with higher fitness will have a stronger charge, repre-
senting their higher potential to contribute to the objective function.

Determining the distance (r): The distance ‘r’ between individuals i and j is a central factor in deter-
mining the electromagnetic force. For this, Euclidean distance between the positions of individuals is con-
sidered shown in equation (4).

(( ) ( ) )= − + −r x x y ysqrt ,i j i j

2 2 (4)

where (xi, yi) and (xj, yj) signify the positions of individuals i and j, respectively. The distance is calculated using
the Pythagorean theorem, considering the difference in the x-coordinates and y-coordinates.

Determining the fine-structure constant (α): Defining α in the EMGO algorithm includes setting a pre-
defined constant value that signifies the strength of the electromagnetic interaction. The value of α is a
significant parameter as it affects the balance between the electromagnetic forces and other factors in the
optimization process. Let us discuss the range of α and its impact on convergence.

The fine-structure constant is a fundamental constant in physics and is approximately equal to 1/137. It
denotes the strength of the electromagnetic interaction between charged particles. In our EMGO algorithm, α
used as a scaling factor for the electromagnetic forces.

The choice of α can have an impact on the convergence behavior of the algorithm. A smaller value of α
reduces the influence of electromagnetic forces, making the optimization process more reliant on other factors
such as gravity interactions or search algorithms. On the other hand, a larger value of α amplifies the impact of
electromagnetic forces, potentially leading to faster convergence towards solutions influenced by local
interactions.

The value of α is within a predefined range to maintain a balanced optimization process. While the specific
range may vary depending on the problem domain and the nature of the optimization problem, it is usually
selected to confirm a reasonable trade-off between exploration and exploitation.

A frequently used range for α in the EMGO algorithm is between 0.01 and 0.1. Values within this range give
a moderate influence of electromagnetic forces without overpowering other factors in the optimization
process. The optimal value of α can depend on the type of problem being solved and may need some
experimentation or fine-tuning.

When determining the value of α, the characteristics of the optimization problem and the desired con-
vergence behavior must be considered. In some cases, a smaller α may be ideal to encourage exploration and
prevent premature convergence to suboptimal solutions. For others, a larger α might be useful to exploit
strong electromagnetic interactions and converge quickly to desirable solutions.

So, the choice of α in the EMGO algorithm should be on the basis of a balance between the problem’s
characteristics, desired convergence behavior, and empirical observations. Experimentation and fine-tuning
of α can help to find the optimal range or value that leads to effective optimization.

Example result: Let us take an example where we have two individuals with fitness values of 10 and 8,
respectively. Their positions are (2, 3) and (5, 6), resulting in a distance of r = 4.2426. Assuming α = 1/137, we can
calculate the electromagnetic force between these individuals using equation (5):
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( ) (( ) ( ))= × × × − −F α q q r x x y y/ , ,
i j i j i jem

2 (5)

qi = 10, qj = 8, r = 4.2426, α = 1/137, xi = 2 (x-coordinate of the first individual), xj = 5 (x-coordinate of the second
individual), yi = 3 (y-coordinate of the first individual), yj = 6 (y-coordinate of the second individual).

( ) ( ) ( ) (( ) ( ))= × × × − −F 1/137 10 8 / 4.2426 2 5 , 3 6 ,em
2 (6)

Calculations for equation (6):
Individuals and their positions:
Individual 1: Fitness value (qi) = 10, Position (xi, yi) = (2, 3)
Individual 2: Fitness value (qj) = 8, Position (xj, yj) = (5, 6)
Distance calculation:
Distance (r) between individuals is calculated using the Euclidean distance formula: r = sqrt((xi − xj)2 + (yi −

yj)2) = 4.2426 (approx)
Electromagnetic force calculation:
Force (Fem) is calculated using the formula:
Given values:
alpha = 1/137, qi = 10, qj = 8, r = 4.2426 (approx),
(xi − xj) = (2 − 5) = −3 (yi − yj) = (3 − 6) = −3
r2 = 18 (approx)
Substitute values: Fem = (1/137) * (10 * 8)/18 * (−3, −3)
Fem = (1/137) × 4.444 × (−3, −3)
Force components: Fem ≈ 0.03245 × (−3, −3) ≈ (−0.097, −0.097) (approx)
Result
The electromagnetic force between the two individuals is approximately.
(−0.097, −0.097). This represents a force vector with negative x and y components.
This example is specific to the context of electric charge optimization. The determination of the electro-

magnetic force may vary depending on the problem domain and the specific optimization problem.

3.2.3 Gravity interactions

In addition to the electromagnetic forces, gravity-like interactions are combined in EMGO to promote global
exploration. The gravity force between two individuals i and j is described in equation (7):

( ) ( )= × × × −F G m m r x x/ ,i j i jg
2 (7)

where Fg signifies the gravity force, G gravitational constant, mi and mj are the masses of individuals i and j,
and r is the distance between them.

To calculate the masses, we assign them to individuals on the basis of their fitness values or other relevant
criteria. The logic is to assign higher masses to individuals with higher fitness values, signifying their impor-
tance or influence in the optimization process. This can be achieved using a fitness-based scaling mechanism
or through a selection mechanism that assigns masses proportional to the individuals’ fitness rankings.

Similarly, the gravitational constant (G) parameter determines the strength of the gravity-like interactions.
It controls the intensity of global exploration in the algorithm. The G value can be predefined on the basis of
empirical knowledge or taken dynamically during the optimization process to adapt to the problem’s char-
acteristics. For some, it can be taken as a constant value throughout the optimization, and for others, it can be
adjusted dynamically on the basis of convergence behavior or specific problem requirements.

Now, let’s consider an example to better understand the role of masses and the gravitational constant in
an optimization problem. Suppose we have a population of individuals representing potential solutions to a
problem. Each individual is characterized by a position vector xi, and the fitness of each individual is evaluated
using an objective function.

Harnessing the fine-structure constant in an EMGO framework  9



Let’s assume we are optimizing a function to find the minimum value. In this case, higher fitness corre-
sponds to lower function values. To assign masses to individuals, we can use a fitness-based scaling approach.
The masses mi can be calculated in equation (8):

( )= +m k ε/ fitness .i i (8)

Here, k is a scaling factor, fitnessi is the fitness value of individual i, and ε is a small positive constant to avoid
division by zero. This scaling mechanism ensures that individuals with higher fitness values receive higher
masses, indicating their importance in the optimization process.

Regarding the gravitational constant (G), we can choose a predefined value based on empirical knowledge
or adjust it dynamically during the optimization. For example, we can set G to a small value (e.g., 0.1) to
promote more localized search and exploitation of local optima. On the other hand, a larger value of G (e.g.,
1.0) can encourage more global exploration and help escape local optima.

By manipulating the values of masses and the gravitational constant, we can control the balance between
exploration and exploitation. For example, in problems where exploration is crucial to finding the global
optimum, assigning higher masses and using a larger gravitational constant can help emphasize global search.
Conversely, in problems with a high degree of local interactions, smaller masses and a smaller gravitational
constant can focus the search on exploiting local optima.

The values of masses and the gravitational constant may differ depending on the problem domain and the
characteristics of the optimization problem. Experimentation and fine-tuning of these parameters are impor-
tant to achieve optimal results.

In summary, determining the masses and the gravitational constant in the EMGO algorithm involves
assigning masses to individuals based on their fitness values and setting the gravitational constant to control
the strength of gravity-like interactions. These parameters play a crucial role in balancing exploration and
exploitation during the optimization process. Through careful selection and fine-tuning, we can enhance the
algorithm’s ability to find high-quality solutions.

3.2.4 Updating and selection

The positions of individuals are updated by considering the cumulative forces acting on them given in
equation (9). The updated position of an individual i is given by:

∑ ∑= + × +x x α F F ,i inew em g (9)

where xinew represents the updated position of individual i, xi is its current position, and ∑Fem and ∑Fg
represent the cumulative electromagnetic and gravity forces acting on individual i, respectively.

3.3 Methodology

3.3.1 Population initialization

A population of individuals is initialized randomly within the defined search space. The number of individuals
and their positions depend on the specific problem being optimized.

3.3.2 Fitness evaluation

The fitness of each individual in the population is evaluated using the objective function of the optimization
problem. The objective function determines the quality of the solution corresponding to an individual’s
position.
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3.3.3 EMGO algorithm

The EMGO algorithm is a metaheuristic optimization algorithm that draws inspiration from the principles of
electromagnetism and gravity. It combines the attractive and repulsive forces of electromagnetic interactions

// EMGO Algorithm 

InitializePopulation() // Initialization 

EvaluateFitness() // Fitness Evaluation 

// Main Optimization Loop 

while (stopping criterion is not met) { 

    CalculateElectromagneticForces() //Electromagnetic Interactions 

    CalculateGravityForces() // Gravity Interactions 

    UpdatePositions() // Updating and Selection 

    EvaluateFitness() 

} 

SelectBestSolution() // Select the best solution 

// Fitness Evaluation Function 

function EvaluateFitness() { 

    for each individual in the population { 

        fitness = objectiveFunction(individual.position) 

        individual.fitness = fitness 

    } 

} 

// Electromagnetic Interactions Function 

function CalculateElectromagneticForces() { 

    for each pair of individuals (i, j) { 

        distance = calculateDistance(i.position, j.position) 

        electromagneticForce = alpha * (qi * qj) / (distance^2) * (i.position - j.position) 

        i.electromagneticForce += electromagneticForce 

        j.electromagneticForce -= electromagneticForce 

    } 

} 

// Gravity Interactions Function 

function CalculateGravityForces() { 

    for each pair of individuals (i, j) { 

        distance = calculateDistance(i.position, j.position) 

        gravityForce = G * (mi * mj) / (distance^2) * (i.position - j.position) 

        i.gravityForce += gravityForce 

        j.gravityForce -= gravityForce 

    } 

} 

// Position Update Function 

function UpdatePositions() { 

    for each individual in the population { 

        electromagneticForce = individual.electromagneticForce 

        gravityForce = individual.gravityForce 

        individual.position += alpha * electromagneticForce + gravityForce 

        individual.electromagneticForce = 0 

        individual.gravityForce = 0 

    } 

} 

// Select Best Solution Function 

function SelectBestSolution() { 

    bestIndividual = findIndividualWithMaxFitness() 

    bestSolution = bestIndividual.position 

    bestFitness = bestIndividual.fitness 

    return bestSolution, bestFitness 

} 

Figure 1: EMGO algorithm.
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with the global exploration capabilities of gravity interactions to efficiently search for optimal solutions in a
given problem space. The EMGO Algorithm is shown in Figure 1.

In the EMGO algorithm, a population of individuals is initialized randomly within the search space, and
their fitness values are evaluated using a specified objective function. The algorithm iteratively updates the
positions of individuals based on the cumulative forces acting on them.

The electromagnetic forces are calculated by considering the fine-structure constant, which scales the
interaction between individuals based on their charges and the distance between them. These forces drive
individuals towards each other or it may repel them, on the basis of their fitness values.

In addition to electromagnetic forces in EMGO, gravity-like interactions are combined for global explora-
tion. Gravity forces are proportional to the mass of individuals and their distances, attracting individuals near
each other and giving better solutions.

The EMGO iteratively updates the positions of individuals based on the cumulative forces, thus exploring
the search space to find optimal solutions. The algorithm continues until a stopping criterion is met, such as
the maximum number of iterations or achieving convergence.

EMGO is a flexible and robust optimization algorithm that can be suited for various problem domains. It
combines the strengths of electromagnetic and gravity-like interactions to balance local and global explora-
tion, easing the discovery of high-quality solutions.

3.4 Algorithmic variations and adaptations

EMGO can be changed to suit specific problem characteristics and requirements. Variations may comprise adjusting
the balance between electromagnetic and gravity forces, using adaptive parameters, or including problem-specific
constraints. Also, researchers can explore hybridizations with other optimization techniques to enhance the perfor-
mance of EMGO in diverse scenarios. The EMGO framework offers a unique optimization approach because it
incorporates the fine-structure constant and uses the principles of electromagnetism and gravity.

4 Performance evaluation

In this work, we have used MATLAB 2015a on a Windows 11 system equipped with a CPU Core i5 and 8GB of
RAM. The objective of the experiment was to assess the performance of the EMGO algorithm using a varied set
of benchmark functions obtained from the CEC 2017 competition [55]. These benchmark functions cover both
unimodal and multimodal functions with changing search space dimensions.

Table 2 shows the functions used in this experiment, their characteristics (unimodal or multimodal), the
search space dimensions, and their respective names. In Table 3, we have given a comprehensive list of the
parameters used for the EMGO algorithm, PSO [3], WOA [4], GSA [5], and EFO [6].

Table 2: Description of the 12 benchmark functions

Function Nature Search space Name

F1 Unimodal [−100, 100] Sphere function
F2 Unimodal [−100, 100] Ellipsoidal function
F3 Unimodal [−100, 100] Bent cigar function
F4 Unimodal [−100, 100] Discus function
F5 Unimodal [−100, 100] Rosenbrock’s function
F6 Multimodal [−32, 32] Ackley’s function
F7 Multimodal [−32, 32] Weierstrass function
F8 Multimodal [−600, 600] Griewank’s function
F9 Multimodal [−5.12, 5.12] Rastrigin’s function
F10 Multimodal [−5, 5] Katsuura function
F11 Multimodal [−5, 5] Lunacek Bi-rastrigin
F12 Multimodal [−100, 100] Schwefel’s problem 2.21
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4.1 Performance metrics

To quantitatively evaluate the performance of EMGO, several performance metrics are employed. These
metrics include the following:
• Convergence speed: Measured by the number of iterations required for the algorithm to converge to an
acceptable solution or reach a predefined stopping criterion.

• Solution quality: Assessed by the proximity of the obtained solutions to the known global optima of the
benchmark functions.

• Robustness: Examined by analyzing the algorithm’s ability to consistently find high-quality solutions across
multiple runs with different initializations.

• Scalability: Investigated by assessing the algorithm’s performance on high-dimensional benchmark func-
tions to determine its ability to handle complex optimization problems.

4.2 Comparative analysis with existing techniques

To gauge the effectiveness of EMGO, a comparative analysis is performed against state-of-the-art optimization
techniques. Existing techniques such as PSO, WOA, GSA, and EFO are chosen as benchmarks. The comparative
analysis includes evaluating the convergence speed, solution quality, robustness, and scalability of EMGO in
comparison to these techniques. Figure 2 presents a comparative analysis of EMGO, PSO, WOA, GSA, and EFO
based on convergence speed, solution quality, robustness, and scalability. EMGO and GSA demonstrate higher
convergence speed and robustness, providing high-quality solutions. PSO and EFO show moderate perfor-
mance in these aspects, while WOA exhibits lower convergence speed and solution quality. EMGO and GSA
also demonstrate higher scalability compared to other techniques.

Figure 3 shows a comparison of four state-of-the-art optimization techniques, including PSO, WOA, GSA,
EFO, and EMGO. The evaluation is performed on benchmark functions representing different problem types
with varying search spaces. The figure provides insights into their effectiveness and applicability for complex
optimization problems in various domains.

The statistical tests shown in Table 4 include the Wilcoxon signed-rank test and t-test, performed to
determine the significance of the differences in performance between EMGO and each technique. The chosen
significance level for the comparisons is 0.05 for the Wilcoxon signed-rank test and 0.01 for the t-test. When
comparing EMGO against PSO using the Wilcoxon signed-rank test with a significance level of 0.05, the results

Table 3: List of parameters of EMGO, PSO, WOA, GSA, and EFO

Algorithm Parameter and symbol Description

EMGO Fine-structure constant (α) A constant representing the strength of electromagnetic forces in EMGO
Population size (N) The number of individuals in the EMGO population
Maximum iterations (MaxIter) The maximum number of iterations for the EMGO algorithm

PSO Swarm size (N) The number of particles in the PSO swarm
Cognitive coefficient (c1) The cognitive coefficient controlling the particle’s cognitive component (self-

awareness)
Social coefficient (c2) The social coefficient controlling the particle’s social component (interaction with

neighbors)
WOA Search agent count (N) The number of search agents in the WOA algorithm

Spiral coefficient (a) The coefficient controlling the spiral updating of search agents’ positions
GSA Gravitational constant (G) The gravitational constant controlling the strength of the gravitational force in GSA

Acceleration coefficient (a) The acceleration coefficient controlling the strength of the acceleration due to gravity
in GSA

EFO Electromagnetic coefficient (β) The coefficient controlling the strength of electromagnetic forces in EFO
Population size (N) The number of individuals in the EFO population
Maximum iterations (MaxIter) The maximum number of iterations for the EFO algorithm
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show a statistically significant difference in performance. This indicates that EMGO’s performance is signifi-
cantly better or worse than PSO with a confidence level of 95%.

Similarly, the comparison between EMGO andWOA using the t-test with a significance level of 0.01 reveals
a statistically significant difference in performance. EMGO’s performance is significantly different from WOA
with a confidence level of 99%.

Figure 3: Optimization techniques comparison on benchmark functions.

Figure 2: Comparative analysis of optimization techniques.
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Instead, the Wilcoxon signed-rank test between EMGO and GSA demonstrates that there is no statistically
significant difference in their performance. EMGO and GSA perform comparably at the 95% confidence level.

Likewise, the t-test between EMGO and EFO indicates no statistically significant difference in perfor-
mance. EMGO’s performance is similar to EFO with a confidence level of 99%.

Figure 4 compares the performance of different optimization techniques, including EMGO, PSO, WOA,
GSA, and EFO. The evaluation is based on many features such as Global Search Capability, Versatility, Con-
vergence towards Optimal Solutions, Parallelization, Robustness to Noise & Uncertainty, Constraint Handling,
Exploration and Exploitation Balance, Dynamic Adaptation, Scalability to High-Dimensional Problems, and
Computational Efficiency. The techniques are characterized into Excellent (4), High (3), Medium (2), and
Limited (1) levels for each feature, giving a comprehensive assessment of their effectiveness in solving varied
optimization problems.

4.3 Potential limitations and areas for improvement

While the EMGO framework offers several innovative features and advantages, it is important to acknowledge
its potential limitations and areas where improvements can be made. Addressing these limitations can help in
further refining the EMGO framework and enhancing its applicability to a broader range of optimization
problems.

Potential limitations:
• One of the main limitations of EMGO is its sensitivity to the fine-structure constant and other algorithmic
parameters. The performance of the algorithm can be significantly influenced by the initial parameter
settings, which may require careful tuning for different problems.

Figure 4: Comparative optimization techniques.

Table 4: Statistical comparison of EMGO with state-of-the-art optimization techniques

Comparison Statistical test Significance level Result

EMGO vs PSO Wilcoxon signed-rank 0.05 Significant
EMGO vs WOA t-test 0.01 Significant
EMGO vs GSA Wilcoxon signed-rank 0.05 Not significant
EMGO vs EFO t-test 0.01 Not significant
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• Due to the integration of multiple physical principles, EMGO might have higher computational complexity
compared to simpler optimization algorithms. This can lead to longer computation times, especially for
large-scale or high-dimensional problems.

• While EMGO is designed to be scalable, its performance may degrade for extremely large or highly complex
optimization landscapes. This is a common challenge for many advanced optimization algorithms [56,57].

• Despite its hybrid nature, there is still a risk of premature convergence to local optima in highly multi-modal
or deceptive landscapes. This issue arises if the balance between exploration and exploitation is not ade-
quately maintained.

Recommendations for improvement:
• Implementing adaptive mechanisms for parameter tuning can help mitigate the sensitivity issue. Techniques
such as self-adaptive algorithms, where parameters are dynamically adjusted based on the search process,
can enhance the robustness and performance of EMGO across different problem domains.

• Combining EMGO with other optimization techniques, such as GA or PSO, can leverage the strengths of each
method. For instance, hybrid algorithms can use EMGO for global search and other techniques for local
refinement, thereby improving overall performance.

• Integration with Machine Learning Techniques: Machine learning models can be used to predict and adjust
the parameters of EMGO dynamically. Reinforcement learning, for example, can be employed to learn
optimal parameter settings over time, enhancing the algorithm’s adaptability and efficiency.

• To address computational complexity, parallel computing techniques can be employed. By distributing the
computation load across multiple processors, the efficiency of the algorithm can be significantly improved.
Additionally, employing efficient data structures and optimization techniques can reduce computational
overhead.

• To avoid premature convergence, diversification strategies such as introducing randomness or employing
multi-population approaches can be integrated. These strategies help maintain a balance between explora-
tion and exploitation, reducing the risk of getting trapped in local optima.

By acknowledging these potential limitations and actively working on the suggested improvements, the
EMGO framework can be further refined to enhance its robustness, efficiency, and applicability. Continuous
evaluation and incorporation of advanced techniques will ensure that EMGO remains a cutting-edge tool in the
field of optimization. This proactive approach to addressing limitations will contribute to the ongoing devel-
opment and success of the EMGO framework.

5 Conclusion

In this article, we have presented the EMGO framework, a novel optimization technique that harnesses the
power of electromagnetism, gravity, and fine-structure constant. Through a complete exploration of EMGO,
we discussed its conceptual framework, mathematical models, methodology, and performance evaluation.
The performance evaluation on benchmark functions showcased EMGO’s efficacy in achieving convergence,
high-quality solutions, and robustness. Comparative analyses with existing techniques confirmed its advan-
tages in terms of solution quality and convergence speed. The contributions of this work lie in introducing
EMGO as a unique optimization technique that balances exploration and exploitation by leveraging funda-
mental forces. The significance of EMGO lies in its potential to revolutionize optimization methodologies
across scientific and engineering domains, making it valuable for decision-making, system design, and
resource allocation.

Future research opportunities for EMGO include exploring adaptive mechanisms, developing hybrid
approaches with other optimization techniques, addressing scalability challenges, integrating with machine
learning, and addressing real-world deployment challenges for practical usability.
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