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Abstract: An enhanced whale optimization algorithm is introduced to address the challenges associated with
the logistics distribution center location problem, aiming to overcome the traditional heuristic algorithm’s
susceptibility to local optima and enhance the overall efficiency of the logistics system. This improvement
involves the integration of stochastic sinusoidal inertia weights and a variational strategy to augment the
global search capability and convergence accuracy of the conventional algorithm. The results of experimental
simulations indicate that the upgraded whale algorithm exhibits superior computational performance com-
pared to other heuristic algorithms. Furthermore, it demonstrates the ability to effectively compute optimal
distribution center locations, thereby enhancing the delivery efficiency of the logistics distribution system.

Keywords: logistics distribution center site selection, whale optimization algorithm, combined variance, sto-
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1 Introduction

The number and value of Chinese exports are rising with the economy’s rapid development. Unfortunately, the
efficiency of distribution and logistics has never advanced quickly, which raises the cost of distribution and
causes significant losses of numerous products during the distribution process [1]. The distribution center site
selection is the primary cause of the loss. However, other factors include unreasonable distribution path
planning, unwieldy logistics, distribution links, and comparatively outdated transportation conditions [2].
In order to increase distribution efficiency and lower distribution costs, many academics and researchers
have conducted extensive research on optimizing the logistics distribution center site selection model.
Improved whale optimization algorithm (IWOA) is characterized by its enhanced convergence speed,
improved solution accuracy, robust performance on diverse problems, efficient utilization of computational
resources, and adaptability to dynamic environments.

The research problem at hand is considered the highest priority in the study, given its direct bearing on
the effectiveness of logistics distribution. The proposed IWOA presents a fresh and enhanced approach to
address issues with conventional heuristic algorithms. This innovative method significantly contributes to
improving the overall delivery efficiency within logistics systems and optimizing the locations of distribution
centers.

Overall, the structure of this article is meticulously organized to ensure consistency and transparency. The
subsequent sections delve into the intricacies of the research. Section 2 offers a comprehensive literature
review, setting the stage for understanding existing approaches. Section 3 briefly examines the logistics
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distribution center site selection model. Section 4 delves into IWOA, elucidating its components and mechan-
isms. Section 5 provides insights into test simulation, detailing the test functions and practical examples.
Following this, Section 6 provides conclusion.

2 Literature review

An ant colony algorithm with clustering properties was proposed in the literature [3] to optimize the distribu-
tion center location model. A better particle swarm-based optimization algorithm is proposed in the literature
[4] to optimize the distribution center location model. A logistics distribution center location strategy based on
the center of gravity method is presented in the literature [5]. A hybrid particle swarm algorithm was proposed
in the literature [6] to optimize the distribution center siting model, resulting in faster distribution times and
increased distribution efficiency. Under the assumption of considering the production and marketing balance,
literature [7] optimizes the site selection model by applying a composite ant colony algorithm, which success-
fully increases distribution efficiency. The literature suggests a site selection optimization technique based on
the simulated annealing algorithm [8]. AHP-integer planning method [9], forbidden search [10], and center of
gravity method [11] are further methods. All of the aforementioned techniques have increased the efficiency of
agro-logistics distribution, but single-mechanism optimization algorithms still require improvement to handle
problems with highly nonlinear models. Consequently, to maximize the logistics distribution center location
model, this article suggests an enhanced IWOA.

The advantage of the new swarm intelligence optimization algorithm, traditional IWOA [12-14], which was
put forth by academic Mirjalili in 2015, is that it has fewer adjustment parameters and a more straightforward
optimization-seeking mechanism. Its drawback, though, is that the algorithm is prone to early convergence
and local optimum formation in the latter iteration, which compromises the algorithm’s accuracy and rate of
convergence. Therefore, this study effectively improves the algorithm’s global convergence ability and con-
vergence speed by fusing the genetic algorithm with the conventional IWOA and introducing the nonlinear
inertia weights. The improved IWOA is then used in the optimization problem of the site selection model of the
logistics distribution center, which effectively improves the logistics’ distribution efficiency and significantly
reduces the distribution cost.

3 Logistics distribution center site selection model

An essential subset of the logistics distribution center site selection issue is logistics distribution center site
optimization. Every production base can be recognized as a warehouse in the logistics distribution center
location optimization problem, and every warehouse holds a variety of products. The main goal of the logistics
distribution center location model is to reduce costs by identifying the supply chain’s most advantageous
locations for distribution centers. In contrast to other distribution center location issues, this one involves
relatively large distances between each warehouse due to China’s widely distributed production bases.
Additionally, the production of numerous products is impacted by environmental and seasonal factors,
resulting in highly stringent delivery time requirements. Temperature and humidity are two examples of
environmental factors that affect production through their effects on materials and machinery. Seasonal
fluctuations affect demand and planning simultaneously, affecting inventory management and planning for
seasonal goods. These elements work together to determine both product availability and operational effi-
ciency. Therefore, the following criteria must be met when developing the logistics distribution center location
model.

Partitioning the distribution area is required due to the freshness of the product and the stricter seasonal
requirements. Additionally, select the best warehouse from each partition to ensure the shortest distribution
time and distance between the various warehouses within each partition.
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Goods should not be moved between warehouses too frequently because of the variety of production bases and
the seasonality of the agricultural harvest. Instead, the total amount of goods in the distribution center that each
distribution warehouse corresponds to should be less than or equal to the needs of that warehouse.

The establishment of distribution centers should concentrate on the cost of building warehouses, saving
distribution costs, and guaranteeing the primary income of farmers because the product economy is the
nation’s core economy and does not offer excessive profits.

The main challenge in optimizing the logistics distribution center location model is determining which of
the A distribution locations, or distribution locations with a logistics distribution center, should be chosen as
the logistics distribution center. Assuming that there are A trade markets, there are A distribution locations.
The objective function of the logistics distribution center location model, considering constraints such as
construction cost and supply and demand of distribution points, is as follows. This is because the construction
cost of a logistics distribution center varies depending on the geographic location of A distribution locations.

P A P
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where A is the product distribution point; P is the product distribution center location; S; is the construction costs
for all distribution centers; when = 1, §; is the construction cost of a single distribution center, and this distribu-
tion center selection parameter is used. i;; is the demand at distribution point , d; is the separation between the
Jj-th distribution center and the i-th distribution point that is closest to it; when Z;; = 1, the distribution center
supplies the requested goods at distribution point 1, according to the Z; ; distribution condition selection parameter.

Restrictions on the issue of choosing a location for distribution and logistics centers
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According to equation (2), the total quantity of goods required at each distribution point should equal or be
less than that at the corresponding distribution center.

The distribution relationship between the distribution point and the distribution center is represented by equation
(3): if Z;j = 1, it indicates that the j-th distribution center distributes the goods from the i-th distribution point.

The distribution point has only customers if it is within any distribution center’s deliverable range,
according to equation (4).

There are P’ logistics and distribution centers, according to equation (5).

Every distribution point is contained within the distribution range of the corresponding distribution
center, according to equation (6). The farthest a distribution point can be distributed is ¢".

4 IWOA

4.1 Standard whale optimization algorithm (WOA)

Every whale in WOA can be considered a particle, and every particle’s position is a decision variable. During
hunting, whales approach and hunt their prey in spirals rather than straight lines.
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4.1.1 Enveloping the prey

Typically, when hunting, the prey is encircled first. The mathematical model is displayed below:

D = [CX*(t) - X(1)],

3)
X(t+1) =X¥t)-A-D,

where X*(¢t) represents the best whale position vector to date, X(t) represents the current whale location
vector, t is the number of iterations, and A and C are the learning factors. The following formula gives A and C:

A=2axn-a,
C=2><l"2, (4)
a=2-2xt/Thax

where ¢t denotes the iteration count as of right now, r; and r; are the arbitrary values in the range of 0 to 1, the
value of a is between (0, 2) and decreasing linearly, and T,y is the most iterations that can be made.

4.1.2 Spiral hunting

Below is a mathematical representation of a whale, which typically surrounds its prey and hunts in a spiral
pattern:

X(t +1) = X¥(t) + Dy - e - cos(2nl),

(5)
D, = [X*(t) - X()],

where the whale and its prey are separated by D, meters. The optimal position vector for every iteration to
date is X*(t) The spiral’s shape is determined by a constant, b, and a random number, L, in the interval (-1, 1). It
is important to note that the whale must simultaneously constrict its envelope and swim in a spiral toward
its prey.

In order to update the whale’s position, it is assumed in this synchronous behavioral model that there is a
P; probability of selecting the shrink-wrap mechanism and a (1 — P;) probability of selecting the spiral model,
which is mathematically modeled as follows:

X*(t)-A-D P<P,

6
X*(t) + D, - eP! - cos(2nl) P =P, ®

X(t+1)=

WOA is the setting for the synchronous behavioral model, which includes enveloping the prey, spiral
hunting, and prey search. It efficiently optimizes the algorithm by approximating whale hunting behavior
using mathematical representations, such as equations and vectors. As the whale approaches its target, the
value decreases, as does the value of A as it approaches the prey. As the algorithm iterates, A becomes a

random number inside [-a, a] as its value decreases linearly from 2 to 0. When the value of A is within the
range [-1, 1], the whale’s next position can be anywhere between its current position and the prey’s.

4.1.3 Search for prey

Prey is sought after by using random individual locations, which can be mathematically modeled as follows:

D = |CXrand - X(t)|)

@)
X(t+1) =Xana —A- D,

where X;ang 1S @ position vector that was taken at random. The algorithm is configured to randomly select a
search leader when A > 1 and update other whales’ positions based on the leader’s position. This helps steer
whales away from the current prey toward a more suitable target, enhancing the algorithm’s ability to search
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globally. The traditional and contemporary WOA optimization algorithms share foundational principles and
iterative processes involving strategies like enveloping, spiral hunting, and updating positions.

4.2 IWOA

WOA has a higher search ability and faster search times than other heuristic optimization algorithms. It is a new
optimization algorithm with a simple update mechanism, a slight adjustment parameter, and some degree of
randomness [15-18]. The enhancement of global convergence ability and acceleration of convergence speed can
be achieved through benchmark test functions, statistical metrics, comparative analysis, success rate (SR) index,
and consistent parameter settings. However, the algorithm can quickly enter the local optimum due to the spiral
optimization algorithm’s update mechanism, which lowers the algorithm’s accuracy of convergence. By impacting
the exploration—exploitation equilibrium, the update mechanism of the spiral optimization algorithm in the con-
ventional WOA can facilitate the algorithm’s entry into local optima. Thus, this article adds random sinusoidal
inertia weights and a comprehensive variation operator to the algorithm’s optimization process, strengthening its
global search capability and preventing it from reaching the local optimum. The strategic integration enhances the
algorithm’s adaptability, preventing it from being trapped in suboptimal solutions and promoting compelling
exploration of the solution space. This is done in order to address the aforementioned problems.

First, as can be seen from equations (1)-(7), as the number of iterations rises, the convergence speed of the
conventional WOA optimization algorithm falls. The convergence speed of the conventional WOA optimization
algorithm declines as iterations increase, mainly due to more individual whales converging toward the global
optimum, elevating the risk of entering local optima and diminishing overall efficiency.

Additionally, in the algorithm’s late iteration, an increasing number of individual whales progressively
approach the global optimal solution, ultimately resulting in the algorithm falling into the local optimum and
causing the algorithm’s convergence speed to drop dramatically, impacting the WOA algorithm’s convergence.
Given diminishing returns, the traditional WOA optimization algorithm’s convergence speed tends to decrease
as the number of iterations increases. The convergence process is slowed down as the algorithm iterates
because the gains in solution quality get progressively smaller at each stage. This article presents a compre-
hensive variation strategy, the steps of which are shown below, based on the fusion of non-uniform variation
and Cauchy’s variation, to address the aforementioned issues:

1) By setting the variation switch function, the variation operation is performed on the current position of the
whale by judging the switch condition, where the variation switch’s mathematical expression is displayed
2) as follows:

n(k-1)
e sn -1 (8)
en-1 "~

switch(k) = ¢ + u x

where SN is the size of the whale population and n is the dimension. Define the mutation operation for the kth
whale when 0 < switch(k) < 1. ¢ and p are parameters. After conducting numerous simulation experiments, it
was discovered that more than 75% of the whales mutate between 0.2 <1 < 0.5 and 0.1 < y < 0.5, and this is the
optimal time for the algorithm to optimize.

2) The value of A determines the step size of WOA. The algorithm enters the pre-iterative stage and
searches a more extensive range faster when A > 1. The Cauchy inverse cumulative distribution function
[19] is added when the algorithm is in the pre-iterative stage, and the particles are selected into the local
optimum. This is because the Cauchy variation has a broader range of variation than the traditional binomial,
polynomial, and non-uniform variations. The ability to introduce significant perturbation is primarily respon-
sible for the broader range of variation at Cauchy variation. This allows for better exploration of the solution
space and increased chances of breaking out from local optima. The Cauchy variation applies this more
significant perturbation to the particles to help them escape the local optimum. WOA prevents the possibility
that particles that have undergone Cauchy’s mutation will undergo blind mutation because it updates particle
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positions during the global search through spiral motion. The Cauchy’s inverse cumulative distribution func-
tion has the following mathematical expression:

FY(pixo,y) = Xo + y x tan(zr x (p - 0.5)). €)

Therefore, Equation (9) can be improved as
X(t+1)=x,(t) + A- tan(m x (p - 0.5)), (10)

where x;;(t) = A,0 < p < 1, and y is the i-th whale’s j-th position.

3) If a small fraction of whale particles satisfy the variation condition, the particles that do so will be
moved to the global optimal solution through non-uniform variation. The particles that do not will be
approached to the global optimal solution through the original position updating formula. This will enhance the
algorithm's search speed and decrease the likelihood of premature convergence to a local optimum when the
cardinality of set A is less than 1. Unlike the variation strategy used in the conventional genetic algorithm, non-
uniform variation originates from the non-uniform variation evolutionary algorithm [20]. Combining the non-
uniform variation strategy with WOA aims to improve the algorithm’s global search capability by enabling the
algorithm to always jump out of the local optimum in the late iteration. Better exploration and exploitation of
complex problem spaces can be achieved by coupling the non-uniform variation strategy with WOA, which boosts
robustness and diversity and adapts to changing optimization landscapes. This solves the issue of the algorithm
needing to be faster to fall into the local optimum. The non-uniform variation evolution algorithm can adaptively
adjust the search step size during the iteration process, so the convergence speed will increase when the algorithm
is late. Assume that there are SN, X; = {X;1, X2, ***,Xin, **,Xisy}T Whales in the population. The non-uniform variation
formula, assuming that the variation operation is carried out on the nth component, is

, ‘xm +A(t,UB - Xy), 7 <05,
Xi =

= . 11
Xin — A(t,X;n —LB), r =2 05 (1)

The variables, in this case, are as follows: b is the non-uniformity parameter; t is the current iteration
number; T is the maximum iteration number; r is the uniform random number within [0, 1); and UB and LB
are the particle’s upper and lower boundaries, respectively. The non-uniform variation step is represented

1- r[l_%]b .

Second, it is established by equations (9)-(11) that the value of parameter an entirely dictates the WOA’s
capacity for both local and global optimization. The late iteration period sees a linear decrease in a value,
which significantly affects the algorithm’s convergence accuracy. It facilitates the particles’ easy fall into the
local optimum. For this reason, the comprehensive variation strategy used in this article helps the algorithm
escape the local optimum. This article proposes a stochastic sinusoidal inertia weight based on sinusoidal
curve properties to improve the algorithm’s population diversity and global search capability. The algorithm’s
stochastic sinusoidal inertia weight functions bolster population diversity and global search capability. This
pivotal role leads to a more comprehensive exploration of the solution space, promoting adaptability and
enhancing the algorithm’s overall effectiveness in finding optimal solutions. The following is the stochastic
sinusoidal inertia weight expressed mathematically:

w=2x(1- sin(0.5 x 7 x (t/tnax))) * rand(). 12)

by A(t,y) =y -

Equation (12) shows that when the iteration starts, the value t/t,.x tends to 0, w is more significant, and the
algorithm performs a better job of searching globally. When ¢ tends to, tmax and w tends to 0, the algorithm has
a high local search capability in its final iteration. It is possible to modify equations (11) and (12) in the
following ways to improve the population diversity of the algorithm:

wX*(t) - A-D
WwX*(t) + D, - eP! - cos(2nl) p 2 p;’ (13)
X(t +1) = wxyj(t) + A-tan(m x (p - 0.5)).

X(t+1) =

Figure 1 depicts the flow of the IWOA.
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Figure 1: Flowchart of IWOA.

5 Test simulation

5.1 Performance testing based on test functions

This article carries out the simulation verification from the two aspects of the register function and the actual
calculation example to confirm that the IWOA presented can be applied to optimize the logistics and distribu-
tion center location model. The test environment adopts the Windows 10 operating system, the Thinkpad
laptop with 8GB of memory, and the simulation software Matlab2022a.

In order to verify the algorithm’s ability to perform local searches, this article first chooses 16 benchmark
functions to serve as test functions. When selecting the 16 benchmark functions for testing IWOA, several
factors were considered. These included the presence of known optima for accuracy evaluation, mathematical
complexity, diversity in problem characteristics, and varying dimensions for scalability assessment. There are
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four categories for these functions: multi-peak functions (fs to f3), single-peak functions (f; to f,), translational
functions (fy to fi»), and rotational functions (fi3 to fi¢), all of which are shown explicitly in Table 1. Sorting
benchmark functions into different categories is essential to evaluate the algorithm’s adaptability. Translational
functions evaluate adaptability to changed landscapes, rotational functions gauge robustness against rotations,
single-peak functions evaluate efficiency in more straightforward scenarios, and multi-peak functions test their
ability to navigate landscapes with multiple optima. Second, a comparison is made between IWOA and chaotic
serial particle swarm optimization (CSPSO) [16], sinusoidal differential evolution (SinDE) [17], and moth-flame
optimization algorithm with Cauchy mutation (CCMFO) [18]. The CCMFO algorithm becomes well known bhecause
it applies chaos-based adjustments to the moth optimization procedure. This increases the algorithm’s capacity for
exploration, raises convergence accuracy, and helps it solve challenging optimization problems. CSPSO is a cross-
searching-based particle swarm optimization algorithm, which improves the global search capability of the algo-
rithm and was suggested by Meng et al. Drea et al. introduced the SinDE algorithm, a sinusoidal searching algorithm
that improves the algorithm’s local search capability, and CCMFO is a modified moth optimization algorithm based
on chaos. Several benefits arise from enhancing the algorithm’s local search capability, encompassing improved
convergence accuracy, better adaptability to complex problem landscapes, increased solution precision, and an
overall optimization performance enhancement. An enhanced chaos-based moth optimization algorithm is called
CCMFO.

Table 1: 16 test functions

Function number Function Dimension Search scope Optimal value
fi Sphere n [-100, 100] 0

f Schwefel2.22 n [-100, 100] 0

fs Schwefel1.2 n [-100,100] 0

fu Rosenbrock n [-10, 10] 0

fi Ackley n [-32, 32] 0

fis Griewank n [-600, 600] 0

f Rastigin n [-5.15, 5.15] 0

fs Schwefel2.26 n [-500, 500] 0

fy Shift sphere n [-100, 100] -420
fio Shift rosenblock n [-100, 100] 380
fu Shift rastering n [-5.15, 5.15] -320
fi Shift Ackley n [-30, 30] -145
fis Rotated Sphere n [-100, 100] 0

fua Rotated Rosenbrock n [-2.05, 2.05] 0

fis Rotated Rastigin n [-5.10, 5.10] 0

fis Rotated Ackley n [-33,33] 0

This article has the same parameter settings for the four algorithms — CSPSO, SinDE, CCMFO, and IWOA -
where the other parameter settings are the same as those of its references, the population size is 50, the
dimension is 50, the maximum number of iterations is 100, and so on. In order to determine the exact
algorithm parameter settings, various factors are taken into account, including the nature of the problem,
the algorithm’s complexity, the available computational resources, empirical results, sensitivity analysis, and
knowledge from existing studies and literature. Comparisons with CSPSO, SinDE, and CCMFO algorithms
reinforce the IWOA’s effectiveness in local search capability, maintaining consistent parameter settings.
The particular test results are shown in Table 2. This ensures the fairness of comparison in the test process.

First, Table 2 demonstrates that the single-peak function can be solved using IWOA suggested in this study
to a more minor mean and standard deviation. This suggests that IWOA has better local search ability and
stronger development ability and effectively improves the algorithm’s convergence accuracy compared to the
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Table 2: Test results of 16 test functions

Serial number CSPSO SinDE CCMFO IMFO
Mean Std Mean Std Mean Std Mean Std

f 971%x10™  612x107* 245x107° 735x107° 1.06x107° 776x107%° 9.81x10%® 2.03x107%
1, 740x107° 7.03x107%° 855x10% 871x10”" 801x107® 4.04x107" 206x107" 332x107°
f 6.80 x 1077 136 x 107 1.00x10™” 3.44x10™* 340x107® 112x107® 522x10™*° 671 x 107
fi 9.52x107° 531x107° 552x107"® 220x107* 589x107° 7.01x107° 1.64x10° 596 x 107
£ 8.85x107" 8.60x107 562x1077 751x107% 145x1072 504x107% 612x107* 8.41x 107
JA 650 %107 172x107  451x107* 8.03x107° 856x107° 322x107° 562x107% 6.21x107*
f 391x107" 374x107% 672x107” 578x1077 145x107° 6.02x107° 375x107° 3.89x107%
f 232x10™ 434x10™ 7.89x107% 548 x107" 774x1077  8.41x107 471x1072 3.92x107%
f 125x107"° 958 %107 512x107%° 541x10° 7.82x107® 3.16x107°* 555x107"® 132x107*
fo 670107 524x107° 9.01x10™ 276x10* 772x107 352x107% 135x107* 321x 107
fa 530x107%  410x107"  452x107® 274x1077 745x107°  312x10°° 524x107° 6.45x107"
fiy 2361077 412x107  1.62x1072 512x10°? 732x107% 7.01x107 571x107%° 3.22x107°
fis 251x107%  2.01x10° 2.06x107" 632x10" 428x10"> 450x10"" 255x10™ 6.95x107"
fa 716 %107 6.52x107% 1.45x107% 874x107® 421x107® 322x10™ 536x107%° 412x107
fis 231x107% 628x107% 1.62x10°° 165x107%° 312x107* 252x107% 8.84x107°® 122x107>°
fe 175%x 1077 8.01x107% 218 x107°° 2.06x10" 4.02x107 825x107 7.62x107 774x107"

other three algorithms. Improved local search capability and global convergence lead to faster convergence
and higher accuracy in single- and multi-peak functions. This is why the improvement strategy works so well
for IWOA. Simultaneously, for the multi-peak test function, IWOA can also solve for smaller mean and
standard deviation, demonstrating that, when compared to the other three algorithms, it has a higher global
convergence ability and a faster convergence speed. WOA differs from various heuristic optimization algo-
rithms because of its distinctive characteristics, including balanced exploration and exploitation, dynamic
adaptability, mathematical modeling, parallel processing potential, simplicity in implementation, and efficient
exploitation via spiral updating. Second, for the test functions f, to fig, IWOA solves smaller values than the
other three algorithms, demonstrating its higher accuracy in solving complex problems and the applicability

Table 3: SR test results

Function number CSPSO SinDE CCMFO IMFO
fi 0 20 0 30
f 20 20 30 60
£ 20 30 20 30
fa 10 30 10 90
f 20 40 10 100
£ 0 0 10 50
5 0 0 30 50
fs 20 90 20 100
fo 10 20 40 70
fo 40 50 50 70
fu 30 40 50 60
fo 30 40 50 100
fis 20 40 50 90
fu 30 10 50 100
fis 40 20 50 90

fie 20 50 50 90
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Table 4: Plant locations and the supply and demand of goods in thirty cities

Serial number for (Xi, ¥) Supply and Serial number for (Xi, %) Supply and
the city demand/t the city demand/t
1 (1,250, 2,170) 30 7 (4,435, 1,751) 85

2 (2,985, 1,458) 75 8 (3,358, 2,654) 100

3 (3,970, 2,588) 80 9 (4,280, 2,154) 60

4 (3,750, 1,450) 50 10 (3,898, 2,140) 85

5 (3,365, 1,498) 80 M (3,540, 2,987) 60

6 (3,870, 19,995) 80 12 (4,020, 2,215) 65

Table 5: Comparison of four algorithms’ site selection performance

Algorithm Site selection plan Average delivery cost/yuan Iterations Running time/s
Improving the moth optimization algorithm [5,26,8,22,18,12] 960 20 7.4

Composite ant colony optimization Algorithm  [25,10,18,6,8,24] 1,360 48 28.6

Hybrid particle swarm optimization [25,10,10,25,6,17] 1,509 50 30.4

Chaos firefly algorithm [10,16,6,26,28,10] 1,440 40 23

of the improvement strategy suggested in this study in solving complex target problems. Ultimately, the SRs of
four algorithm are compared with the search SR or SR index. The detailed findings are displayed in Table 3,
and the SR formula can be found in the following equation:

SR = . (14)

% 100%

max

IWOA has a much higher SR than the other three algorithms, as Table 3 demonstrates. For the test functions fj,
f5 f, fiz, and fig, the SR even reaches 100%. This suggests that the improvement strategy proposed in this study
makes the algorithm more likely to jump out of the local optimum, enhancing the algorithm’s overall performance
and making it suitable for choosing the location of the agro-logistics industry’s distribution center.

5.2 Simulation tests based on practical examples

Each logistics and distribution point can be thought of as a particle, and the particle is expressed as
X =[x, X3, -**,X4] in this study. In IWOA, logistics points are denoted as particles (X), each chosen from A total
points. Particles (X), each selected from A total points, represent logistics points in IWOA. Suitable simulations
validate this representation, displaying the effectiveness of logistics and distribution center location strategy. A
represents the total number of logistics and distribution points. IWOA will rationally choose P distribution
points as the distribution center from the A distribution points. This optimization process is performed using
the flow distribution center site selection model. Let the optimal particle finally selected be X = [0,1,0,1,0,1],
which means that the second, fourth, and sixth distribution points are selected as the distribution center from
among the six distribution points. The high efficiency of IWOA proposed in this study for solving the site
selection of logistics and distribution centers is verified by selecting the factory locations and supply and
demand quantities of 12 cities for test simulation. By contrasting the test results based on the composite ant
colony algorithm [12] and the site selection strategy based on the hybrid particle swarm algorithm [13], the
effectiveness of the approach suggested in this study is confirmed, and the site selection optimization mode
based on the chaotic firefly optimization algorithm [14]. Each of the four algorithms is executed 50 times
independently for 100 iterations. Table 4 displays the city’s coordinates, supply, and demand for goods, and
Table 5 displays the experiment’s outcomes.
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Figure 5: Site selection results based on chaotic firefly algorithm.

The fitness value curve solved by IWOA decreases at the fastest rate in the iterative preperiod, as seen in
Figures 2-5. This indicates that IWOA is more capable of searching for the optimal value over a larger range
and at an initial value than the other three algorithms [21-23]. Additionally, IWOA can obtain smaller average
and optimal fitness values than the other three algorithms, meaning that the algorithm’s searching accuracy is
higher, and the distribution center address can be found more precisely. More precisely, ascertain the dis-
tribution center’s address. Table 5 illustrates that this study’s IWOA-based logistics distribution center location
strategy has a lower average distribution cost and a faster optimization speed than the other three strategies
[24,25]. This effectively reduces distribution costs and lengthens the time required for location selection.
IWOA’s speed in logistics optimization is due to its superior search, seen in a quicker fitness curve decline
and smaller fitness values, ensuring precise distribution center addresses, reducing costs, and enhancing
efficiency. The decrease in distribution costs yields substantial improvements in operational efficiency,
reduced transportation expenditures, and heightened overall cost-effectiveness. There is a 50% reduction in
computation time needed for distribution center selection and a 30% increase in distribution efficiency.

6 Conclusion

An enhanced approach to the logistics distribution center site selection problem is put forth in this study:
optimization of whales. In order to address the problems of the algorithm’s low convergence accuracy and
tendency to fall into local optimum during the site selection process, it suggests a comprehensive variation
strategy and random sinusoidal inertia weights. This strengthens the algorithm’s ability to search globally and
increases its speed and convergence accuracy. The algorithm’s efficacy is also confirmed by comparing it with
other test functions. The refined WOA will optimize the logistics distribution center site selection model. The
test results demonstrate that the strategy described in this article can rapidly choose an appropriate distribu-
tion center address and, to a large extent, lower distribution costs.
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