DE GRUYTER Journal of Intelligent Systems 2024; 33: 20230292

Research Article

Feng Zhao*
Deep reinforcement learning enhances

artistic creativity: The case study
of program art students integrating
computer deep learning

https://doi.org/10.1515/jisys-2023-0292
received December 02, 2023; accepted March 01, 2024

Abstract: During the artistic journey, creators frequently encounter challenges stemming from pressure,
resource constraints, and waning inspiration, all of which can impede their creative flow. Addressing these
obstacles requires a multifaceted strategy aimed at nurturing creativity throughout the artistic process.
Procedural art generation emerges as a viable solution to invigorate artistic creativity. In this study, the
deep Q-network (DQN) was constructed to solve the shortage of artistic creativity through its automatic
decision-making ability. The model was trained with different types of artistic styles (abstract and minimalism)
in WikiArt dataset. The model generates various artistic elements of different styles, forms, or thinking
according to the input parameters or constraints, and selects specific colors, textures, or shapes to help the
artist maintain focus in the creation process and expand the creativity in the creation process. In order to
achieve this goal, in the process of performing the procedural art generation task with DQN, the experiment
collected the generation speed, interpretability, and creativity evaluation feedback of each style of art. The
feedback results show that the scores of color field painting and minimalism were 83.2, 93.5, 86.3 and 86.6, 91.5,
82.1 respectively. The research shows that employing dynamic mass spectrometry networks enables the
automation of the art creation process. This innovative approach facilitates the exploration of diverse creative
ideas tailored to various artistic tasks, thereby fostering advancements in art creation and nurturing
creativity.

Keywords: program art generation, deep Q-network, deep reinforcement learning, artistic creation, boost
creativity

1 Introduction

In the current field of art, artists face various challenges, including the repetition of creativity, limitations in
expressive forms, and a lack of fresh inspiration. These challenges limit the diversity and depth of artistic
creation, often leading to works of art falling into traditional categories and repetitive imitations of existing
styles. In addition, artists often need to invest a lot of time and energy in seeking inspiration and experi-
menting with creativity in the pursuit of originality and novelty. In this context, deep learning, especially deep
reinforcement learning (DRL), provides new possibilities for artistic creation.

The application of DRL technology in artistic creation has opened a new door for artists. Using DRL, artists
can generate unique and complex artworks through computer models, thereby breaking through the
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limitations of traditional creativity. Technologies such as deep Q-network (DQN) can automatically generate
creative works of art by analyzing large amounts of data and learning complex patterns. This can not only
help artists overcome the problem of creative exhaustion, but also inspire them to explore new forms of art
and techniques of expression. In addition, the application of this technology can also help artists better
understand and analyze the trends of artistic creation, so as to keep up with the times while maintaining
innovation.

The lack of creativity in artistic creation is a long-standing challenge that limits artists’ freedom of
expression and potential for innovation in the creative process. Ishiguro and Okada [1] focused on what works
of art promote the individual’s inspiration for creation (inspiring works of art) and proposed a theoretical
framework to explain the types of creative outcomes consistent with this dual concern. Aiming at the problem
that artistic practice has become the main focus of research activities, Skains [2] proposed a methodology that
takes creative practice as research. In response to the rapid development of computer technology, Al Hashimi
et al. [3] explored the convergence of creativity, technology, and art and design education, and advocated the
use of digital tools and repurposing of social media applications to support creative thinking. Gillam [4] and
other scholars explored how participation in creative arts activities can enhance public mental health and
well-being, with a particular focus on the use of music and creative writing. He combined clinical experience
to explore people’s understanding of the health and well-being benefits of creative arts activities. Taylor and
Kaufman [5] and other scholars showed that the hierarchical value structure of creative individuals was
systematically different from that of uncreative individuals in previous studies, and discussed the impact of
these results on the specificity and motivation of creative domains. Kim [6] argued that the interdisciplinary
practice of art courses can enhance students’ abilities by fostering creativity and provide a foundation for
assessment methods in contemporary art education. Anderson et al. [7] used grounded theory methods to
explore how creative engagement is formed in early adolescent learners. He explores the perspectives and
experiences of students participating in an integrated learning model for the arts during secondary school. The
above scholars put forward their own views on the problem of insufficient creativity in artistic creation. In the
creative process, the emergence of creative inspiration is often unpredictable and sometimes difficult to
sustain, and the limitations of thinking may cause the creator to fall into a fixed thinking in the familiar field,
and it is difficult to break through the traditional creative framework. In this context, this study introduces
DRL to provide artists with a new way to deal with creative challenges.

The application of DRL in enhancing artistic creativity provides a new way to break through the limita-
tions of traditional artistic creation. The traditional process of artistic creation often relies on the artist’s
intuition, experience, and personal inspiration. However, this dependence makes artists susceptible to limita-
tions from personal experience and existing knowledge, making it difficult to explore new forms of artistic
expression or innovative thinking. As an advanced machine learning technology, DRL provides artists with a
new creative tool through its unique learning mechanism - learning and optimizing behavioral strategies
through interaction with the environment. Through DRL, artists can transform their creative ideas into
algorithmic parameters, enabling computers to generate novel and diverse works of art through exploration
and experimentation. The application of DRL in artistic creation not only enables artists to break through the
limitations of their personal thinking, but also stimulates new creative inspiration. By utilizing DRL generated
artworks, artists can gain new perspectives and creativity, thereby incorporating these new elements into
their own works. At the same time, the ability of DRL technology to process large amounts of data and identify
complex patterns allows artists to explore unprecedented artistic styles and techniques, further enriching the
diversity of artistic expression.

Deep Q-network is a reinforcement learning algorithm used to solve discrete action space problems,
applied to procedural art generation can also solve some need to generate discrete, symbolic output problems.
The application of deep learning in artistic creation is gradually demonstrating its unique value and potential.
This technology is not only used for the generation of images and visual arts, but also extended to music,
dance, literature, and other art forms. For example, deep learning models can analyze and learn from the
works of famous artists in history, and then create new works with similar styles. This method has been used
to imitate the art styles of artists such as Van Gogh or Picasso, as well as generate new music works with
unique styles. In the fields of dance and performing arts, deep learning models are used to capture and analyze
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the movements of dancers, and then create new dance movements and choreography based on these data.
This not only provides new tools for choreographers, but also offers new analytical methods for dance
research. In addition, deep learning has also been applied to literary creation, such as automatically gener-
ating poetry or stories. These systems can mimic specific writing styles or create new storylines by learning a
large amount of textual data. Lin et al. and Li et al. [8,9] conducted research on DQN. The former proposed an
edge-based intelligent manufacturing plant framework that extends DQN to solve the decision problem of
multiple edge devices, while the latter developed an airborne DQN to reduce the packet loss rate of the overall
data of sensing devices. Bo et al. [10] and other scholars discussed the application of computational aesthetics
in aesthetic measurement, quantification, and generative art, using computers to judge beauty and ugliness
and automatically generate aesthetic images. Cetinic and She [11] discussed the various practices of artificial
intelligence (AI) art and the role of Al in artistic creation, integrating related works that deal in detail with
these topics. DiPaola et al. [12] and other scholars showed how the concepts of honing theory, intrinsic
motivation, and “seed events” can be implemented computationally, demonstrating their impact on the art
of generating results. They discussed how the exploration of deep learning convolutional neural network
generative systems can help understand human creativity. From the research given by the above scholars, it
can be seen that the use of computer to create inspiration has a significant effect on enhancing artistic
creativity.

In the creative process, artists confront challenges beyond technology and craftsmanship; they must also
tap into their inspiration, embrace creative freedom, and explore their innovative potential. The intervention
of DQN, as a new way of creation, can well solve the problem of insufficient creativity in artistic creation. In
this study, the construction and experimental design of DQN followed a series of rigorous steps to ensure that
the model can be effectively applied to program art generation. The structural design of DQN is customized
for the special needs of programming art. This network includes multiple convolutional layers and fully
connected layers, enabling the network to process and analyze complex visual inputs. The input layer
of the network receives the original artwork data, while the output layer generates new artwork. The
connections between these layers are achieved through a series of nonlinear transformations to simulate
complex decisions in the process of artistic creation. The main hypothesis of the study is that DQNs can
effectively simulate and enhance human creativity in program art generation. The core objective of the
research is to design and optimize a special Q-network structure that can process and produce works of art
with aesthetic value. The expected outcome is to achieve a model that can automatically generate high-quality
artworks under given artistic styles and conditions. By testing the model under different parameter settings,
the aim of the study is to find the most suitable parameter combination for artistic creation, so as to achieve
the best performance of the model in the task of program art generation. Ultimately, the model should
demonstrate a high degree of flexibility and adaptability, capable of generating works with creative and
aesthetic value under different artistic styles and conditions. A special Q network structure is designed for
the procedural art generation task to achieve the input and output of subsequent datasets. For the advantages
and disadvantages of a model, a series of parameters such as learning rate, greedy strategy value, experience
playback buffer, discount factor and maximum number of training rounds are set to test, and the best
parameters are selected which are most consistent with the program art generation. Finally, when the model
is applied to the procedural art generation task, the average reward of the model reaches up to 3,275, and the
overall reward score hovers between 2,800 and 3,300. This is close to the reward obtained in parameter
optimization, indicating that the model has a good effect on this task. Finally, the generated images were
scored, and the scores reached over 80 points, which was at a high level, in terms of generation speed,
interpretability measure, and creativity evaluation. This study demonstrates the innovation and potential
of the integration of computer science and art by applying DQNs to program art generation. The innovation
of the research lies in the successful application of DRL technology to the process of artistic creation. This
interdisciplinary attempt not only expands the application scope of deep learning in different fields, but also
provides a new methodology for artistic creation. By imitating and learning from existing art styles, DQN can
automatically generate innovative and aesthetically valuable works of art, thus breaking through the limita-
tions of traditional artistic creation.
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2 DQN structure design

As a reinforcement learning algorithm [13,14], the core idea of DQN is to use deep neural network to estimate
approximate functions, so as to realize the learning of optimal strategies in complex environments [15]. The
main goal of DQN is to learn an optimal action value function (Q function) in the Markov Decision Process so
that the agent can choose the best action to maximize the cumulative reward. By combining deep learning
techniques with traditional art, DQNs can learn and imitate complex patterns and styles in traditional art, and
then create new works of art based on this foundation. Models can not only replicate existing art styles, but
also discover new patterns and combinations during the learning process, thus creating unprecedented works
of art. By analyzing the characteristics of classical paintings, DQN can generate new paintings with similar
styles but containing original elements.

2.1 Neural network architecture

DQN combines deep learning with reinforcement learning to effectively learn and optimize strategies in
complex tasks [16,17]. The following are the main elements of DQN’s neural network architecture [18,19].

2.1.1 Input layer

The input layer of the network takes the environment condition information as input. In the process of
graphics, the graphical input is a multi-dimensional vector in pixels, because a picture has thousands of pixels
and channels. Therefore, the input layer is not only the input of a picture, but also embodies the “depth”
property of deep learning. The dimension of this input vector depends on the size of the image and the number
of color channels. In a 200 x 200 pixel color image, the input layer of the image has 200 x 200 x 3 nodes. Each
node corresponds to a pixel value or characteristic of an image.

Xije M

Each element is mathematically represented as X; j ., where i and j represent row and column positions in
the image, and c represents color channels. This matrix or tensor would be passed to the next layer, usually the
convolution layer, for feature extraction.

The input layer is responsible for receiving, preprocessing, and representing the observed data of the
environment in the procedural art generation task, providing the data for the neural network to start learning,
and its core goal is to convert the raw data into a form acceptable to the neural network.

2.1.2 Convolutional layers

Convolutional layers are used to extract features from input data. In the convolution layer, the convolution
kernel (also known as the filter) is used to perform convolution operations on the input data by sliding over it.
The size of the convolution kernel is usually a square matrix of size 3 x 3 or 5 x 5. The number of convolution
kernels is a hyperparameter that determines the number of features learned by the convolution layer [20,21].
After calculating the weighted sum of the local area, the output feature map is generated. This process network
learns the features of different locations regardless of their exact location in the input.

Each convolution kernel performs convolution operations on the input data to obtain a feature map.
Feature map is a new feature map obtained after processing input data. One convolution kernel can perform
edge detection in the image, while the other convolution kernel can perform texture detection in the image.
Because there are multiple convolution cores in the convolution layer, multiple feature maps are generated,
and each feature map corresponds to a feature.
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Convolution is an operation between the convolution kernel and the input data. The algorithm slides the
convolution kernel over the input data, multiplies its weight with the corresponding part, and adds it to get the
feature map. The mathematical representation of the convolution operation is as follows [22]:

Z(@1,j) = X x W)(i,j) + b, @

where Z is the generated feature map, X is the input data, W is the weight matrix of the convolution kernel,
and b is the bias term. The convolution operation is performed once for each position of the input data, sliding
the convolution kernel W over the input X. It can calculate the dot product for each position and add a bias
term b, which generates a pixel value in the output feature map. Thus, the entire feature map is generated.

The weight of the convolution kernel is the parameter that needs to be learned. These weights determine
how the convolution kernel slides over the input to extract features. Through optimization methods such as
backpropagation algorithms and gradient descent, the network automatically adjusts the weight of the con-
volutional kernel to minimize the loss function, allowing the convolutional layer to extract features useful to
the task. The initial weights of the convolution kernel are initialized according to the random distribution, in
order to ensure that the initial values of the weights do not have task-related bias, so as to help the model learn
the features of the task better.

The weight initialization method used in this study is Xavier/Glorot initialization [23,24]. The purpose of
using Xavier/Glorot initialization is to keep the variance of input and output of each layer as equal as possible,
so as to ensure that the gradient remains stable in the forward and back propagation. In a fully connected
layer (or convolution layer), where the number of input channels is nj,, the number of output channels is ngys,
and assuming the weights are initialized to W, then the weights W initialized by Xavier/Glorot can be
expressed as follows:

W ~ Uniform|

- \/ 6 \/ 6 ®
(nin + nout) : khkw ’ (nin + nout) . khkw ’

where k; and ky, indicate that the convolution kernel size is k; x ky, the above is the uniformly distributed
Xavier/Glorot initialization formula, and the weights are finally initialized to a uniform distribution. The
normal distribution initialization formula is as follows:

2
(nin + nout) : khkw

w~ NormallO, \/ . 4

The weights of the above formula are initialized to a normal distribution with a mean of 0 and a standard
deviation of /m. Uniformly distributed Xavier/Glorot initialization is suitable for cases where an
in out) * W

S-type (Sigmoid) activation function is used. When the input values of two activity functions approach 0, the
slope is large. Xavier’s initialization scope just happens to set the weight on a slope, so that the activity function
still has a slope when the input value is close to 0. The Xavier/Glorot initialization of a normal distribution is
appropriate when an unrestricted excitation function, such as rectified linear unit (ReLU), is used. When the
input value is greater than 0, the slope of ReLU is very large, so the normal distribution initial value method
can better meet the conditions of ReLU excitation function and extend the application range of weighted initial
value.

The two Xavier/Glorot initialization formulas depend on the startup function used later. It is helpful to
improve the gradient in the learning process and improve the learning effect of the network. In the convolu-
tion layer, the experiment chooses to use the initialization mode of uniform distribution, and the activation
function uses Sigmoid activation function [25]. The Sigmoid activation function maps any real value x to the
interval (0, 1), with the shape of an S-shaped curve, as follows:

1
1+eXx’

fx) = (5)

where f(x) is the output of the activation function.
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After the weights are initialized, the updated weights predict the model through forward propagation,
calculate the losses, and then calculate the gradients using back propagation. Finally, the model can be
gradually optimized by weight updating to make it perform better in the task.

2.1.3 Fully connected layers

Each neuron in the fully connected layer has a connection with each neuron in the previous layer, thus
forming a dense structure of connections. Among them, the function of the fully connected layer is to linearly
merge and nonlinearly transform the features of the upper layer, so as to obtain the feature expression of the
upper layer and the feature expression of the next layer.

The input value of this fully connected layer is the input value of the previous layer (convolution or other
fully connected layer), expressed as a vector. The dimension of this input vector depends on the number of
neurons in the previous layer. The output of the fully connected layer is also a vector, and each unit in the
vector corresponds to a single neuron in that layer.

Similar to the convolutional layer, each link in the fully connected layer has a corresponding weight that is
used for linear synthesis of the output of the previous layer. Specifically, for the ith neuron, its input can be
expressed as [26] follows:

n
Zi= ) (WyX)) + by ®)
j=1
where Z; is the input of the ith neuron, Wj is the weight that connects the jth input neuron to the ith output
neuron, X; is the output of the jth neuron in the previous layer, and b; is the bias.
Similar to the convolution layer, the normal distribution-based Xavier/Glorot initialization method is used
for the weights of the fully connected layer. The ReLU function is used to activate the function, the specific
formula is as follows:

Y = ReLU(Z;) = max(0, Z)), 0]

where Y; represents the output of the ith fully connected layer, the max function keeps the part of the input
value x greater than zero unchanged, and the part less than or equal to zero becomes zero. This means that if
the input x is greater than 0, the output of the excitation function is equal to the input, and if the input is less
than or equal to 0, the output of the excitation function is 0.

In the whole connected layer, each neuron obtains the output signal of this neuron by calculating the input
signal and applying an incentive function. This process would be repeated with each neuron of a complete
connecting layer. The output of the fully connected layer is used as input to the next layer and then transmitted
to the next layer, and in the last few layers, the fully connected layer is often used to produce the final network
output.

2.1.4 Output layer

The output layer is the lowest layer of the neural network, and its function is to generate a final prediction or
evaluation [27]. In DQN, the neurons in the output layer represent various behaviors or strategies, and their
behavioral value function (Q) is called DQN. The construction of its output layer is closely related to the task.

The neurons in the output layer of DQN estimate the behavior value function Q(a) for each behavior a. The
behavioral value function Q(a) represents the expected return of performing behavior a under given current
conditions. This is a core idea of DQN, whereby an intelligent agent can choose from multiple actions and only
choose those that have the greatest value.

In the output layer, the Q value of each neuron is calculated as follows:

Q(a) = f(WX + b), ®



DE GRUYTER Deep reinforcement learning enhances artistic creativity = 7

where Q(a) is the estimated Q value for action a. W is the weight matrix, which contains the connection
weights of each neuron to the previous layer. X is the output of the fully connected layer, that is, the output of
the previous layer. b is the offset term. f is the activation function. In the output layer, since the Q value can be
any real number, the excitation function is generally not used, or the linear excitation function is used. Finally,
every possible action is calculated and Q value is obtained. Q value is an important basis for the decision of the
agent.

2.2 Input and output

In the procedural art generation task, the experiment uses DQN as a key component to guide the art generation
process. The following is a detailed description of the input and output of DQN in this study [28].

2.2.1 Input

The input of DQN model is related to the environment of art creation and the goal of art creation. Specifically,
the input includes the following elements:

Environmental state [29]: in procedural art generation, the state of the environment represents the
current state or progress of the creation. It can be a picture, a component of a painting, or an illustration
of the current stage of creation. In this process, the system would transmit environmental information as data
to the DQN and express it in the form of a tensor.

Generative goal: generative goal refers to a vision produced by the artist in the process of creation, which
includes the expectation of the art work, the style of the art work, and the expectation of the art theme. In
procedural art creation, the object of creation can be a specific artistic effect, or it can be the aesthetic needs
that the artist wants to achieve. Translating the resulting target into a format that the model understands is a
big challenge and often requires special coding and presentation.

2.2.2 Output

The output of DQN is a strategy, that is, the work is created by the model according to the input environmental
conditions and the purpose of production. In procedural art generation, the generation strategy can include
the following:

Painting movements indicate which elements to add, modify, or delete in the artwork, such as patterns,
lines, colors, etc.

Style adjustment describes how to change a painting’s style, color, texture, etc., to meet generative goals.

Composition suggestions guide the way the artist arranges elements on the canvas to achieve the desired
layout and structure.

Through training, the DQN model learns the generation strategy from the environmental state and the
generation goal [30] to meet the artist’s ideas to the greatest extent. This approach allows the artist to interact
with the model, adjust and improve the artwork according to the model’s suggestions, while retaining the
artist’s creativity and intuition.

2.3 Reinforcement learning parameters

Compared with ordinary neural networks, DQN introduces a series of special parameters and techniques, such
as experience playback, goal network, e-greedy strategy, and Q-Learning goal. The introduction of these
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parameters and techniques is mainly due to the particularity of Q network [31]. In order to optimize Q network
training so that it can stably estimate Q value functions, thereby improving the performance of reinforcement
learning tasks, and helping DON to perform well when dealing with reinforcement learning problems in discrete
action spaces, the following DRL parameters need to be considered in detail in procedural art generation tasks.

2.3.1 Discount factor

The discount factor (usually expressed as y) weighs current and future returns. Higher y values value long-
term gains, while lower y values value short-term gains. In procedural art generation, the choice of discount
factors would have a direct impact on the characteristics of the created artwork, for example, whether it
focuses more on general creativity or improvisation.

2.3.2 Experience replay

Empirical playback is a training technique that first randomly samples existing experimental data and then
trains them to improve the robustness and convergence of the model [32,33]. In procedural art generation,
experiential playback can help models learn and improve generation strategies better. In the case of max-
imum use of historical experience, it reduces data correlation and enhances stability.

2.3.3 Target network update

DQN uses a set of backbone networks and a set of target networks to enhance the stability of the learning
process. The weights of the destination network are not updated frequently, but periodically copy the weights
of the primary network. This can reduce the deviation of the object in the training process and improve the
performance of the model. In program art generation, in order to ensure the production of high-quality
program art, the target network needs to be updated.

2.3.4 Q-learning objectives

The DQN network uses Q learning algorithm to update Q function, and the purpose of Q learning is to estimate Q
function based on Bellman equation [34]. Specifically, Q-learning goals (often expressed as TD goals) are as follows:

Q(s, @) = R(s, a) +y x max(Q(s’, a’)), ©))

where Q(s, a) is the Q value of action a performed in state s, R(s, @) is the instant reward obtained after
performing action a in state s, y is a discount factor that balances the importance of immediate and future
rewards, max(Q(s', a)) represents the maximum Q value for selecting the optimal action a' in the next state s'.

The goal of Q-learning is to gradually approach the Q-value in the process of Q-learning to the best
Q-function, so as to guide individuals to make optimal decisions. In procedural art generation, the determina-
tion of Q learning object would directly affect the learning and improvement of production strategy, so that the
project has higher creativity and artistry.

2.3.5 e-greedy strategy
e-greedy strategy is a way to balance development and use. In DQN, the agent selects actions according to the &-

greedy strategy to conduct behavior selection [35]. ¢ is the likelihood of discovery and 1 — ¢ is the likelihood of
using a known strategy.
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When the random variable is less than ¢, the agent would randomly select a behavior in order to explore
various states and behaviors in the environment. When the random variable is greater than or equal to ¢, the
agent chooses the behavior with the largest Q value according to the existing optimization strategy.

The choice of e-greedy strategy needs to be based on the characteristics of the task. The higher the ¢, the
task is more inclined to explore, and the lower the ¢, the task is more inclined to use it. In the process of
programming and generation, the reasonable selection of ¢ directly affects the diversity and stability of the
generation strategy.

2.4 Network training
2.4.1 Loss function

By evaluating the model at the cost of mean squared error (MSE), DQN minimizes the deviation between the
evaluation results of the model and the target results. The loss function is as follows:

L(0) = E[(Q(s, ;) = (r + y x max(Q(s’, @’; Brarge)))’ |, (10)

where 0 is the parameter of the current network. 0,.ge; is the parameter of the target network. Q(s, a; 6) is the
predicted action value of the model taking action a under state s; r is the immediate reward returned by
the environment. y is the discount factor. max(Q(s’, @’; Garger)) is the maximum Q value of all possible actions
in the next state s’ given by the target network.

2.4.2 Optimization algorithm

DOQN is a method that uses Stochastic gradient descent (SGD) and its variants to minimize the loss function in
the network. The purpose of this method is to use backpropagation technology to modify the parameters in the
network, so that the loss function is gradually reduced, and the behavior value function is gradually close to
the actual value function. SGD related calculation formula is as follows:

0 =0- aVeL(0), (1

where 6 represents the parameter vector that needs to be updated, and a (learning rate) is a hyperparameter
that controls the length of the update step and determines how much the parameter changes at each update
step. VOL(0) represents the gradient (derivative) of the loss function L(6) with respect to the parameter 0.

2.4.3 Training strategy

The DQN training process includes the following key strategies:

Experience replay: In order to achieve the robustness of training and the effective use of samples, the
experience-based replay method is often used to store the existing state, behavior, reward, and the next state
and other information, and then randomly extract it. This method effectively reduces the relationship between
samples and avoids the model falling into local minima.

Update of target network: In order to enhance the stability of learning, two kinds of networks are
generally used: one is the existing Q-network (the Q-network described here), and the other is the target
Q-network. On this basis, the existing Q-network is copied periodically to obtain its parameters, reduce the
volatility of the model, and achieve the purpose of stabilization.

Exploration strategy: In the initial stage, the e-greedy strategy is used to randomly select the behavior, and
the probability of 1 — ¢ is selected for the current optimal behavior. As training progresses, the value of €
usually decreases so that the model relies more on what has been learned.
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3 DQN construction generated by program art

DQNs learn how to execute tasks to maximize rewards through interaction with the environment. In the
application of artistic creation, DQN first understands different artistic styles and elements by observing the
data (images or music) of the artwork. These data are considered as environmental states, and the goal
of DQN is to generate new works of art by taking specific “actions.” During the training process, DQN learns
what kind of actions would produce high-quality artwork by trying different actions and observing the results.
For example, when the image generated by DQN matches a certain artistic style, it can receive positive
feedback (reward). DQN uses these rewards to update its internal decision-making strategies, thereby gen-
erating works that better align with the target style in the future. The key technical elements include experi-
ence replay and target network. Experience replay allows DQN to learn from past attempts, breaking the
correlation between data and improving learning efficiency by randomly extracting previous experiences. The
target network is used to stabilize the learning process. It is a copy of the current network, regularly updated,
and used to calculate the expected reward value, so that the algorithm remains stable during the training
process.

3.1 Dataset preparation

The preparation of the dataset is a worthy part of the experiment when performing the task of procedural
art generation. High-quality datasets can affect the performance of DQNs and the quality of the generated
artwork. In this study, WikiArt, an open source dataset, is chosen for the experiment. The dataset is a
large dataset of paintings, which contains a large number of art works, covering various periods, styles,
and artists. A total of 195 paintings by artists are included, including 42,129 for training and 10,628 for testing,
for a total of 52,757. The works are divided into eight categories, including landscapes, figures, still life, and
abstractions. It is a collection of data that is well worth exploring for art lovers, researchers, or practitioners.
This experiment would focus on the experiment of two types of artistic data: color field painting and
minimalism.

The selection of the WikiArt dataset is crucial for the success of this study, as it provides rich and diverse
art samples for DQN. This dataset is chosen because it has several key characteristics that make it an ideal
choice for programming art generation tasks. First, WikiArt contains a wide range of art works from different
historical periods, which means it covers a variety of art styles from classical to modern. This diversity
provides DQN with rich learning resources, enabling the network to learn and imitate various different artistic
styles. In addition, the WikiArt dataset offers a wide variety of art works, ranging from landscape paintings,
figure paintings, still life paintings to more abstract art forms such as abstract and minimalist art. These
different types make the dataset not only visually diverse but also equally rich in concepts and presentation
techniques. Especially, the art styles of color block painting and minimalism, due to their unique visual
features and expressive techniques, provide a challenge for the DQN model and an opportunity for
researchers to evaluate the model’s ability to handle different art styles. In order to ensure the quality and
representativeness of the dataset, strict standards are adopted in the selection process of WikiArt. The selected
artwork not only needs to have sufficient visual resolution and clarity, but also needs to ensure diversity and
balance between samples. This means that the number of works in each category needs to be representative
enough to avoid bias in the learning process of the model. Finally, the historical depth and cultural breadth of
the WikiArt dataset provide a comprehensive artistic worldview for the DQN model. By learning and analyzing
the works in this dataset, DQN can not only imitate existing artistic styles, but also create new forms of artistic
expression based on this foundation.

Although WikiArt covers a wide range of painting art styles for the purposes of this article, its format is not
suitable as a data input for DQN. Therefore, translating the WikiArt dataset into a data format suitable for DQN
model inputs became an urgent problem. The experiment needs to conduct data preprocessing and feature
extraction on the collected dataset to match the experiment format and model.



DE GRUYTER Deep reinforcement learning enhances artistic creativity = 11

Since DQN combines Q-learning, a reinforcement learning algorithm, the model takes the environmental
state as the input and the action as the output. It is sensitive to the scale and distribution of the input, so it is
necessary to process the environmental status and scale of the original data first.

(1) Data cleaning: In the collected data, it needs to detect and remove low-quality images or abnormal data in
the dataset. Data with damage, incomplete information, large image contrast differences, and obvious edge
defects need to be cleaned. It can detect whether there are duplicate art works in the dataset, ensuring the
diversity of the data. On this basis, this article proposes a new method for image classification of art works.

(2) Normalization of image attributes: Standardization requires all images to have the same format, such as
Joint Photographic Experts Group or Portable Network Graphics. This can ensure consistent identification
of image data by subsequent models. It can adjust the size and resolution of images to maintain consis-
tency. This method not only reduces the computational complexity of the system, but also ensures the
consistent dimensionality of the input data of the system. The color, brightness, contrast, and other
parameters of an image can be standardized to have the same visual characteristics during training. On
this basis, the analysis of relevant metadata (author, style, creation time, etc.) can be used to achieve
accurate and consistent metadata, providing a basis for subsequent data annotation and reward functions.

(3) Feature extraction: Next it is necessary to extract features related to states, actions, rewards, and the next
state from each artwork.

State: It can use the current picture to represent a state. Finally, the convolutional neural network can be
used to extract the features of the image and carry out feature extraction. This eigenvector is the state
expression of DQN.

Action: In procedural art generation, action is represented as editing or transforming an existing art
image. These techniques include color adjustment, style change, shape adjustment, blur effect, and line
enhancement. Each action can be assigned a unique identifier and mapped to a form that the model can
understand. In the experiment, for the adjustment of color, style change, shape adjustment, blur effect, and
line enhancement of the five editing operations, this study uses 0-5 integers for each operation.

Reward: The design of the reward function determines how the model evaluates the generated artwork.
Rewards are defined based on factors such as the quality of the generated work, its closeness to the target style,
and its innovation. If the generated work closely matches the target style, a higher reward can be allocated.

Next state: The next state is the Art Nouveau image after the action is performed. Based on the editing of
the current state by the action, a new image can be generated and used as the next state.

3.2 Parameter tuning

When using DQN for training, this article adjusts the following hyperparameters to optimize the performance
of the algorithm: Learning rate (a), € greedy strategy (€), experience playback buffer size (buffer size), discount
factor (y), and maximum training epoch (Epoch). The experiment tested these five parameters separately, and
the specific parameters are shown in Table 1:

Among the above parameters, the learning rate a determines the step size at which the model updates weights in
each iteration. Greedy strategy ¢ is a balance between exploring new ideas and utilizing known effective strategies.
The size of the experience playback buffer is used to store and reuse previous experiences; the discount factor y is
used to balance the importance of current rewards with future rewards. Maximum number of training rounds: the
maximum number of steps or rounds specified for the training algorithm to run is an important hyperparameter.

3.3 Training process

The training process of DQN in program art generation:
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Table 1: DQN parameter table

Sequence a 4 Buffer size y Epoch
1 0.01 0.01 10,000 0.95 500

2 0.005 0.01 10,000 0.95 500

3 0.001 0.01 10,000 0.95 500

4 0.005 0.01 10,000 0.95 500

5 0.005 0.03 10,000 0.95 500

6 0.005 0.05 10,000 0.95 500

7 0.005 0.05 10,000 0.95 500

8 0.005 0.05 20,000 0.95 500

9 0.005 0.05 30,000 0.95 500
10 0.005 0.05 20,000 0.99 500
n 0.005 0.05 20,000 0.89 500
12 0.005 0.05 20,000 0.69 500
13 0.005 0.05 20,000 0.69 500
14 0.005 0.05 20,000 0.69 500
15 0.005 0.05 20,000 0.69 500
16 0.005 0.05 20,000 0.69 500
17 0.005 0.05 20,000 0.69 1,500
18 0.005 0.05 20,000 0.69 3,000
() Initialize the network and experience replay buffer: Before training, the weights and optimizers of the

@

3

4@

@)

(6)

™

DQN neural network can be initialized. It needs to create an experience replay buffer to store samples of
previous states, actions, rewards, and the next state for training purposes.

Environmental interaction: During each training cycle (epoch), DQN interacts with the program art gen-
eration environment. The model selects an action from the current environmental state, executes the
action, and observes the reward returned by the environment and the next state. This process is repeated
until the predetermined number of time steps are reached or the generated artwork is considered
complete.

Experience replay: At the end of each time step, the status, behavior, rewards, and data for the next stage
are saved in an experience replay cache. Its main purpose is to disrupt the interrelationships between data
and enhance the stability of training. In each batch of training, a random batch would be selected from an
experienced playback buffer for training.

Calculate Q value and target value: Existing neural networks can be used to calculate Q value for each
behavior in each state. These Q values are calculated based on the weighting of the current network. At the
same time, the target Q value is calculated based on the weight of the target network (usually a copy of the
current network, regularly updated). After completing various actions, the target Q value is used to
evaluate long-term benefits.

Calculate loss function: By calculating the target Q value and combining it with the actual Q value of the
existing network, the corresponding loss function is obtained. The experiment used MSE to measure the
difference between the predicted values of the model and the actual indicator values.

Optimize the network and update the target network: Backpropagation algorithm can be used and com-
bined with an optimizer to update the weights in the network to minimize the loss function in the network.
The image generation algorithm can be optimized and the weights of the target network can be periodi-
cally updated. Under a given number of training steps, the weights of the target network can be copied,
which can improve the stability and efficiency of training.

Repeat training cycle: The above steps can be repeated until the predetermined number of training cycles
is reached or the stop condition (performance convergence) is met. The number of training cycles is
usually a hyperparameter that needs to be adjusted based on the complexity of the task and computational
resources.



DE GRUYTER Deep reinforcement learning enhances artistic creativity = 13

In this study, the reasons for selecting specific hyperparameters and their impact on model performance
are the core components of experimental design. Choosing the appropriate learning rate a is crucial as it
determines the speed at which the model absorbs new information in each iteration. An excessively high
learning rate may cause the model to fail to converge during the training process, while an excessively low
learning rate may slow down the training progress. In the experiment, different learning rates are tested to
find the optimal balance point, enabling the model to learn effectively without losing valuable information too
quickly. The selection of the greedy strategy value ¢ is crucial for balancing the exploration and utilization of
the model. A higher ¢ value encourages the model to explore more, while a lower value makes the model more
inclined to utilize known information. Determining the appropriate € value can help the model better find a
balance between the two, thereby achieving optimal performance during the learning process. The size of the
experience replay buffer is also a key factor. A larger buffer can store more experience, providing a richer
learning material for the model. However, an excessively large buffer may cause the model to use outdated
information during training, affecting learning efficiency. The setting of the discount factor y affects the
model’s emphasis on future rewards. A higher y value makes the model more focused on long-term rewards,
while a lower value makes the model more inclined to pursue immediate rewards. The adjustment of this
parameter helps to control the behavior strategy of the model, making it more suitable for specific artistic
creation tasks.

Next experimental testing would be conducted on the various parameters selected above, with different
interval ranges set for each parameter. The purpose is to select the most suitable set of parameters for the
experiment. First, the learning rate parameter was analyzed and three different settings were set, namely,
0.01, 0.005, and 0.001. The other parameters are temporarily initialized using the established parameters, with
£ set to 0.01, Buffer size set to 10,000, y set to 0.95, and epoch selected as 500 for the experiment.

Next a was tested, with four parameters set: 0.5, 0.1, 0.05, and 0.01. The variance of performance uncer-
tainty under different parameters, exploration-exploitation balance, and convergence speed were collected.
The higher the value of variance, the greater the volatility of model performance. The convergence speed
refers to the speed at which a model achieves optimal or near optimal performance during the training
process. Exploring utilizing balance is a strategy in which algorithms find a balance between exploring
new actions (finding potentially better strategies) and utilizing known actions (proven effective strategies).
If the value of the exploration-exploitation balance is 0.3, it means that the algorithm has a 30% probability of
choosing to explore new actions, and a 70% probability of choosing to utilize known and proven actions.

This article would analyze buffer size. The experience replay buffer is used to store experience samples of
previously observed states, actions, rewards, and the next state of the agent. The experiment selected 10,000,
20,000, and 30,000 as parameter choices, as shown in Table 2.

Table 2: Impact of different buffer sizes

Buffer size Stability score Memory usage Training time
10,000 63.3 4.6 73.6
20,000 89.3 83 93.5
30,000 93.1 10.6 1331

In Table 2, it can be seen that with the continuous increase in buffer size, there has been varying degrees
of growth in stability, memory usage, and training time.

From the perspective of precision rate, the precision rate with a buffer of 20,000 is 0.927, which is higher
than the precision rate of the other two parameters. The discount factor (y) determines the importance of
future rewards. A larger discount factor places greater emphasis on long-term rewards, while a smaller
discount factor places greater emphasis on immediate rewards. Based on different y values, the model was
tested for reward, learning speed, stability standard deviation, and exploration-exploitation balance, as shown
in Table 3.
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Table 3: Discount factor impact table

y Reward Learning speed Stable standard deviation Exploration-exploitation balance
0.99 1,365 9 0.34 0.58
0.89 2,963 172 0.21 0.35
0.69 2,763 192 0.18 0.30

From Table 3, it can be seen that among the three different y values, the comprehensive performance of
the 0.69 interval is higher than the other two. From the perspective of obtaining rewards, the reward with an y
value of 0.69 is 2,763, which is much higher than the y value of 0.99 and not significantly different from the y
value of 0.89. From the perspective of learning speed, the y value of 0.69 is 192, the y value of 0.89 is 172, and the
y value of 0.99 is 96. It can be seen that the y value of 0.69 is higher than the other two; from the perspective of
stability standard deviation, the stability standard deviation of y value 0.69 is 0.18, the stability standard
deviation of y value 0.89 is 0.21, the stability standard deviation of y value 0.99 is 0.34, and the stability
standard deviation of y value 0.69 is leading in the experiment. Exploration-exploitation balance also presents
the same effect: the y value of 0.69 is 0.30, the y value of 0.89 is 0.35, and the y value of 0.99 is 0.58. The
experiment finally determined that the y value is 0.69.

Epoch defines the number of times the entire training dataset is fully transmitted to the neural network
model in the neural network model, and sets appropriate parameter ranges to achieve effective training and
excellent performance of the model. The initial training frequency given in the experiment is 500 to avoid
wasting resources and time caused by early training. After determining other complex parameters, this
parameter can be adjusted and two different epochs can be set for experimentation.

During the process of Epoch from 500 to 1,500 and then to 3,000, both the training and validation sets
exhibited similar curves in terms of loss value and accuracy. It can be clearly seen that with the increase in
epoch, the trend of these two performance indicators gradually flattens out. Finally, the final epoch of 1,500
was selected for the experiment.

Based on the above tests for each parameter, the optimal parameters were determined in the experiment
as shown in Table 4.

Table 4: Experimental determination parameters table

a 0.005
£ 0.05
Buffer size 20,000
y 0.69
Epoch 1,500

4 Case experiment: Program art generation using DQNs

4.1 Experimental results

In this study, the trained DQN model not only demonstrated its effectiveness in color block painting and
minimalist styles but was also applied to various other art styles to demonstrate its adaptability and versatility.
In the experiment, the model was used to generate impressionist style artworks. After inputting classic works
of impressionism, the model can output images with typical impressionist features, such as blurred contours,
vivid light and shadow effects, and vivid color applications. These works reflect the unique handling of light
and color by impressionists. Similarly, the model was also tested for its effectiveness in surrealist styles.
Surrealist works are known for their dreamy scenes and illogical images. The model generated a series of
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imaginative and creative works in this style of testing, showcasing the unique dreamlike and irrational
expression of surrealism. In addition, in the testing of abstract art, the model successfully created a series
of abstract works that showcase the non-concrete aesthetics of abstract art through the free combination of
color, shape, and line. This indicates that the DQN model can understand and mimic the core concepts of
abstract art, i.e., conveying emotions and concepts through visual language.

This article would test the tested model and input different styles of painting works into the model.
Through learning and testing the model, the task of program art generation can be achieved, as shown in
Figure 1.

Figure 1: Generation of two styles.

In Figure 1, the left side shows the target image of the input model, and the right side shows the output
image of the model. It can be seen that for the model trained in the experiment, after inputting art images of a
specific style, the model would output results of a specific style.

The experiment also collected five DQN performance indicators for each of the two styles, and recorded
the average reward for each experiment, which is the average reward obtained by the model in the environ-
ment. Convergence indicates whether DQN has successfully converged to a stable strategy. If it converges, it is
marked as “convergent,” otherwise it is marked as “unstable.” The exploration rate records the probability of
the model choosing random actions in each experiment, which gradually decreases with training; Q-value
convergence indicates whether the Q-value has successfully converged during the training process. If the Q
value converges, it can be marked as “convergent”; stability is used to evaluate the stability and reproducibility
of DQN performance. If the performance is stable, it can be marked as “stable,” otherwise it is marked as
“unstable.” DQN was applied in the process of artistic creation, and various methods were utilized to improve
and innovate existing models. More complex and customized network architectures were used to better
capture and simulate the subtle features of specific artistic styles. For art styles with complex textures and
rich details, deeper network structures were designed and specially designed levels and activation functions
were added to improve the model’s learning and generation capabilities on these details. Considering the
impact of the exploration rate of the model on performance, the learning process was optimized by dynami-
cally adjusting the exploration strategy. An adaptive exploration rate adjustment mechanism based on per-
formance indicators was implemented to enable the model to conduct extensive exploration in the initial
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stage, and then gradually reduce exploration based on learning progress and performance improvement, in
order to improve learning efficiency and stability.

In Table 5, experiment numbers 1-5 represent the evaluation results during the process of drawing color
field painting styles. Experiment numbers 6-10 show the evaluation results during the process of drawing
minimalist styles. From the entire table, it can be seen that the overall average reward remains between 2,800
and 3,300, with a minimum exploration rate of 0.01.

Table 5: Model performance evaluation indicators table

Number Average reward Astringency Exploration rate Q value convergence Stability
1 3,053 Convergent 0.1 Convergent Stable
2 2,963 Convergent 0.05 Convergent Stable
3 3,275 Unstable 0.2 Convergent Unstable
4 3,096 Convergent 0.02 Convergent Stable
5 3,152 Unstable 0.21 Convergent Unstable
6 3,245 Unstable 0.15 Convergent Unstable
7 3,026 Convergent 0.01 Convergent Stable
8 2,998 Convergent 0.03 Convergent Stable
9 2,865 Unstable 0.2 Convergent Unstable
10 2,986 Convergent 0.02 Convergent Stable

At the end of the experiment, three scoring items were selected: generation speed, interpretability mea-
surement evaluation, and creativity analysis to obtain user satisfaction and feedback on the generated work.
Among them, the generation speed measures the efficiency of the model in generating artistic works. This
indicator is crucial for practical applications, especially in scenarios where a large number of works need to be
generated quickly. An efficient model can produce high-quality works in a short period of time, which is an
important measure for practicality and commercial applications. Interpretability measurement evaluation
focuses on whether the artwork generated by the model can be understood and appreciated by human
audiences. This indicator reflects the model’s ability to capture and imitate subtle differences and complexity
in human artistic creation. An artwork generated by a highly interpretable model is more comparable to the
works of human artists and is more easily accepted and appreciated by the audience. Creativity analysis
measures whether a model can produce novel, unique, and creative works of art. This indicator is particularly
important as it directly relates to the originality and innovation of artistic works. A highly creative model can
break through the limitations of traditional thinking and style, generating works of art with innovative
elements and unique styles. The experiment collected the evaluation scores of 100 viewers, with a maximum
score of 100 points. The average values of these three items are shown in Figure 2.

In Figure 2, the horizontal axis coordinates represent two different styles of art works (one is color field
painting and the other is minimalism). From Figure 2, it can be seen that the generation speed, interpretability,
and creativity scores of color field paintings are 83.2, 93.5, and 86.3, respectively. The generation speed,
interpretability, and creativity scores of minimalism are 86.6, 91.5, and 82.1, respectively.

4.2 Discussion

From Table 5, it can be seen that the average reward of the experiment is around 3,000 under both stable and
convergent conditions. However, it can be observed that the average reward fluctuates significantly under unstable
convergence and unstable stability conditions. The minimum reward is 2,865, and the maximum reward is 3,275. At
the same time, the exploration rate is higher than other groups, with a fluctuation of around 0.2.

In the ratings shown in Figure 1, the ratings for color field painting and minimalism are shown separately.
From the perspective of generation speed, it can be seen that the former has a slightly lower score of 83.2 than
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Figure 2: Program art generation rating.

the latter, but in terms of interpretability and creativity, the score of color field painting is higher than that of
minimalism. In terms of explanatory indicators and innovation ability, due to the manually drawn dataset,
there are limitations in novelty and innovation ability.

From the data in Table 5 and the ratings in Figure 2, it can be observed that there are differences in the
performance of models with different artistic styles, which are mainly influenced by various factors. Color block
painting and minimalist style have significant differences in visual characteristics. Color block paintings usually
contain more details and color variations, which may provide DQN with richer learning materials, thereby making
the model perform better in this style. In contrast, the minimalist style is characterized by simplicity and limited
color usage, which may result in models facing fewer changes during the learning process, and may explain its
relatively low ratings in interpretability and creativity. The different exploration rates also affect the performance
of the model. A higher exploration rate means that the model attempts more new actions, leading to fluctuations in
performance in specific tasks. In experiments, unstable convergence and stability are often accompanied by higher
exploration rates, which leads to fluctuations in the average reward.

In this study, the advantage of the DQN model lies in its ability to learn and adapt to the characteristics of
different art styles, generating works of art with high aesthetic value. By adjusting key parameters, the model can
flexibly transition between different styles, demonstrating good adaptability and creativity. However, the model
also has limitations. For example, high exploration rates may lead to unstable performance, while the model’s
dependence on the dataset means that its creativity and novelty are limited by the provided training data. The aim
of this article is to improve the model’s adaptability and creativity to different art styles by adopting more advanced
network architectures and learning algorithms. Second, by enhancing and diversifying the training dataset, the
learning range of the model can be expanded, improving its ability to generate novel and creative works. Finally,
the exploration strategy of the model is further optimized to reduce performance fluctuations and improve the
overall stability and reliability of the model while ensuring learning efficiency. Through these improvements, the
application effect of the model in program art generation has been significantly improved.

5 Conclusion

This study successfully explored the application of DQN in program art generation, demonstrating the enor-
mous potential of deep learning technology in improving artistic creativity and promoting automation in
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artistic creation. By constructing and applying DQN based models, the experiment not only achieved signifi-
cant improvements in the quality of artistic works, but also demonstrated enhanced innovation and diversity,
indicating that deep learning techniques can effectively imitate and expand human artistic creativity. Key
findings include the effectiveness of the DQN model in capturing and imitating different artistic styles, as well
as its potential in generating works with high aesthetic value. These achievements are of great significance for
understanding the application of Al in the field of art, and provide new paths for the integration of art and
technology. Although this study has achieved positive results, there is still potential for further optimization of
the model and expansion of its application scope. Future research can focus on optimizing hyperparameters in
models to enhance the diversity of generated works, which would expand the understanding of DRL in art
creation and promote deeper integration of art and technology.
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