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Abstract: With the refinement and scientificization of sports training, the demand for sports performance
analysis in the field of sports has gradually become prominent. In response to the problem of low accuracy and
poor real-time performance in human pose estimation during sports, this article focused on volleyball sports
and used a combination model of OpenPose and DeepSORT to perform real-time pose estimation and tracking
on volleyball videos. First, the OpenPose algorithm was adopted to estimate the posture of the human body
region, accurately estimating the coordinates of key points, and assisting the model in understanding the
posture. Then, the DeepSORT model target tracking algorithm was utilized to track the detected human pose
information in real-time, ensuring consistency of identification and continuity of position between different
frames. Finally, using unmanned aerial vehicles as carriers, the YOLOv4 object detection model was used to
perform real-time human pose detection on standardized images. The experimental results on the Volleyball
Activity Dataset showed that the OpenPose model had a pose estimation accuracy of 98.23%, which was 6.17%
higher than the PoseNet model. The overall processing speed reached 16.7 frames/s. It has good pose recogni-
tion accuracy and real-time performance and can adapt to various volleyball match scenes.
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1 Introduction

With the rapid development of social information technology, sports performance analysis has gradually
become a focus of attention. The rise of the intelligent era has profoundly changed people’s understanding
and analysis of sports. Nowadays, in sports, models are difficult to adapt to posture estimation in multiple
human bodies and different environments, resulting in low accuracy and poor real-time performance of
human posture estimation. They cannot track athletes’ movements and postures in a timely manner, especially
for fast sports types. Precise pose estimation and tracking of sports videos can provide reference for athlete
training and improvement, thus promoting the integration of technology and sports, so as to further respond
to the sports publicity work.

With the continuous advancement of deep learning technology, a large number of research results have
been achieved in posture estimation and motion tracking in sports. Zheng and other scholars conducted
research and analysis on pose estimation solutions and challenges, providing references for future
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experiments [1]. Rohan and other scholars used Convolutional Neural Network (CNN) models to estimate and
classify human postures in order to solve the problem of pose classification accuracy [2-4]. Scholars such as
Dong et al. used multi-directional matching algorithms based on convex optimization to recognize human
postures, improving robustness [5]. In order to track the movements of football players in real-time, scholars
including Felipe et al. developed a multi-camera tracking system (Mediacoach), which improved the tracking
and recognition accuracy [6]. Scholars such as Luvizon et al. proposed a multitasking framework for jointly
estimating 3D (three-dimensional) human posture from monocular color images, resulting in improved recog-
nition accuracy of human actions [7]. Scholars including Li et al. used bounding box constraints and long short-
term memory methods for multi-person pose estimation, which were robust to bounding box displacement
and compactness [8]. Sengupta and other scholars used a millimeter wave radar for real-time detection and
tracking of human bones to improve robustness, achieving excellent robustness and detection results [9,10].
The above scholars have improved the accuracy of human pose estimation to some extent, but their real-time
performance is poor.

In order to meet the current social reality needs, many researchers have conducted research on improving
the real-time performance of human posture tracking. Scholars such as Yi et al. used the TransPose method for
real-time human pose estimation, achieving a real-time speed of 90 fps [11]. Scholars including Xu-Wei et al.
proposed a YOLOv4 (You Only Look Once version 4) model combined with a Kalman filter real-time hand
tracking method to address the shortcomings of gesture tracking in terms of accuracy and speed. The real-time
tracking achieved a speed of 41.822 frames per second (fps) [12]. Scholars such as Wu et al. introduced the
OpenPose pose algorithm for posture estimation of sports athletes, achieving good performance [13-15]. Naik
and other scholars, in order to improve the real-time performance of human pose tracking, used Kalman
filtering and SORT (Simple Online and Real-time Tracking) algorithm with overlapping bounding boxes to
achieve tracking, with a tracking speed of only 11.3 fps [16]. Scholars such as Razzok et al. used the DeepSORT
tracking algorithm for real-time pedestrian tracking, at 46 fps per second [17]. Scholars including Sajina and
Ivasic-Kos compared different tracking algorithms and found that the DeepSORT method performed the best in
tracking bones in dynamic motion scenes [18]. In summary, scholars know that the combination of OpenPose
and DeepSORT models used in this article for real-time pose estimation and tracking of volleyball videos is
feasible and can solve current practical problems.

In order to solve the problem of low accuracy and poor real-time performance in human pose estimation
during sports, this article used the OpenPose and DeepSORT combination model to perform real-time pose
estimation and tracking on volleyball videos. First, the original video was uniformly sampled by frame; pose
recognition regions were annotated, and image enhancement operations such as Gaussian noise and random
rotation were added. Then, the OpenPose algorithm was adopted to estimate the pose of the human body
region, and the DeepSORT model target tracking algorithm was utilized to track the detected human pose
information in real-time. Finally, using UAVs as carriers, the YOLOv4 object detection model was adopted to
perform real-time human pose detection on standardized images. The experimental results on the Volleyball
Activity Dataset showed that the OpenPose model had a pose estimation accuracy of 98.23%, a precision rate of
99.3%, a recall rate of 97.31%, and an overall processing speed of 16.7 frames/s, achieving high pose recognition
accuracy and good real-time performance. At the same time, it has strong robustness and can adapt to
Gaussian noise and multi-person occlusion.

The innovation of this article lies in the creative integration of deep learning models OpenPose and
DeepSORT, and their application in volleyball sports scenes. The challenge of analyzing sports performance
in the field of sports has been solved through real-time pose estimation and motion tracking, providing an
advanced and comprehensive solution for flexible sports performance analysis in actual competitions.

2 OpenPose algorithm for pose estimation

The combination of OpenPose algorithm and DeepSORT tracking algorithm can fully address the challenges of
real-time pose estimation and motion tracking in volleyball sports scenes. OpenPose and DeepSORT have
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complementarity in handling information at different levels. OpenPose focuses on detailed analysis of poses,
while DeepSORT focuses on continuous tracking of targets. Combining them can achieve more comprehensive
and accurate motion performance analysis in pose estimation and target tracking. The complementary advan-
tages of these two factors enable the combination model in this article to achieve good real-time performance
while maintaining high accuracy, providing a comprehensive and effective solution for performance analysis
in volleyball sports. Compared with the pose estimation framework PoseNet, OpenPose exhibits superior
multi-body keypoint detection and pose estimation capabilities in terms of multi-body recognition ability.

OpenPose has a wide variety of practical application scenarios in the field of pose estimation, especially in
sports, demonstrating significant application value. By capturing the key postures of athletes in real-time,
precise data support is provided to coaches during training and competitions, which can be used for perso-
nalized training, tactical analysis, and prevention of sports injuries. OpenPose has also demonstrated its
potential in sports medicine research by monitoring athlete postures and gaining a deeper understanding
of the impact of different sports on the body, providing important support for developing scientific sports
training programs. These practical application scenarios highlight the potential application value of OpenPose
in improving athlete skills, optimizing tactical strategies, and promoting sports medicine research.

OpenPose is a top-down detection algorithm [19-21] that mainly relies on convolutional neural networks
and supervised learning for human pose estimation. Scholars such as Lee M F R constructed a human skeleton
position map and used the OpenPose algorithm to detect multiple postures from a single image using CNN.
Through CMN, the heat map format is used to predict the key points of each body part, and through PAF (Part
Affinity Fields), vector maps are used to reflect the interaction probability between these key points [22]. These
display the corresponding positions of the eyes, ears, neck, shoulders, elbows, wrists, buttocks, knees, and
ankles.

PAF is the core of OpenPose and an important feature that distinguishes it from other key point detection
frameworks, which is mainly used to represent the affinity between different joint points. Among them, the
affinity for different joints of the same person is often higher, while the affinity for joints between different
people is lower. The first level of the partial affinity network uses a 3 x 3 convolutional kernel, and the second
level uses a 7 x 7 convolutional kernel. In addition, the predicted values S and L of the two branches are
connected at the end of each level with the original feature map F as the input of the next level, resulting in a
larger perceptual field. The specific expressions are shown in formulas (1) and (2) [23].

St = pt(F, St—l’ Lt—l)’ (1)
L' = ¢4(F, ST, L. @)

Among them, ¢ in formulas (1) and (2) are both greater than or equal to 2.

3 DeepSORT tracking algorithm

DeepSORT is a target-tracking algorithm with extensive applications in video surveillance, traffic manage-
ment, and sports tracking. DeepSORT is an improvement on SORT, introducing a new data association mea-
surement method based on target motion information and appearance information. The processing steps of
DeepSORT include trajectory processing and state estimation, data association, and cascading matching
[24-26]. The DeepSORT algorithm defines an eight-dimensional space vector (,v,y, h,x, y, y, and h) to
represent the trajectory condition at a certain time, which includes the center position of the bounding box
(u, v) and the aspect ratio of y. h represents height, and X, y, y, and h represent the velocity of u, v, y, and h
relative to the image coordinates.

For the data association part, DeepSORT achieves the association of motion information by detecting the
Markov distance dV(i, j) between the results and the tracker prediction results. Scholars such as Yuemeng
used the DeepSORT algorithm to predict the real-time position of unmanned aerial vehicles [27]. The relevant
calculations cited in this article are shown in formula (3). Among them, d; represents the predicted position of
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the jth detection box; y; represents the predicted position of the ith tracker on the target; S; represents the
covariance matrix between the detection position and the average tracking position.

AW, j) = (d - y)"Si7(d; - ). ®)

To address the significant mismatch of Markov distance caused by the uncertainty of motion caused by
Markov distance, the minimum cosine distance d(i, j) is introduced to associate the appearance information
of the target to adapt to motion uncertainty. The calculation formula is shown in formula (4). Among them, r;

represents the surface feature descriptor of the jth detection box; ||| = 1; R = {n®}%, is used to store the
latest Ly descriptors for each track.

d@(i, j) = min{l - r;"’n D | nOeRy}. 4)

On the basis of the above, the final correlation metric is calculated by combining the weighted Markov
distance and the minimum cosine distance. The specific calculation formula is shown in formula (5). When c;;
is within the intersection of two metric set thresholds, it is considered that the information association is
successful. The DeepSORT algorithm combines deep appearance information to improve the accuracy of target
tracking under occlusion, enabling it to achieve real-time online target tracking.

¢ij = AdY(, j) + (1 - DA, j). (5)

In this article, in order to further improve the model’s detection of athlete posture, YOLOV4 is introduced,
and a four-scale object detection layer is established. The specific steps are as follows. A volleyball match video
is input and first preprocessed into an image sequence. The OpenPose network is utilized for real-time pose
estimation, and each frame is input into the YOLOv4 network to perform human pose detection, obtaining a
set of detection box coordinates, confidence scores, and pose categories for the image. Then, these values are
used as inputs to the DeepSORT algorithm and an identifier is created for the input target. The human keypoint
information provided by OpenPose is associated with the target ID provided by DeepSORT. The DeepSORT
algorithm creates a tracking list, writes the above detection results to the tracking queue for real-time human
posture tracking, and introduces a cascade matching strategy to match the detection target with the tracking
target. Finally, the detected bounding boxes and human posture are utilized to update the target state and
output the target center position.

4 Experimental data

4.1 Experimental data set

This article uses the Volleyball Activity Dataset, which is a collection of annotated volleyball video sequences
captured from professional competitions. This is highly adaptable to this study, and the data are authentic and
widely used by other scholars. The data set consists of six videos with a resolution of 1,920 x 1,080 and 25
frames per second, including serving, receiving, attacking, blocking, and standing. Six actions are set. The
tenfold cross-validation method [28] is used to divide all six videos into training and testing sets, and all data
are randomly divided into 10 subsets, with 30% being the testing set and 70% being the training set. The
experiment is conducted in turns and the average of the results is taken as the final evaluation criterion.

4.2 Data preprocessing

(1) Splitting by frame
For the original video, first, the volleyball video is extracted per frame, extracting multiple consecutive
time periods of actions, each corresponding to an action.
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(2) Image annotation processing
Image annotation adds labels to specific areas or objects in an image in order to enable computer
vision models to understand the content of the image. In the field of pose recognition, image annotation is
used to label key points, body parts, or motion actions in the image, making the model more focused on the
pose recognition of the annotated area.
(3) Image enhancement
To balance the data set, images are uniformly subjected to random rotation and noise addition
operations. The athlete’s action image is uniformly rotated counterclockwise by 30 degrees, and
Gaussian noise is added to the original image. The first row is the image processed by adding
Gaussian noise, and the second row is the image rotated randomly.

5 Real-time pose estimation and tracking experiment for athletes

5.1 Experimental environment

This experiment is based on a Windows 10 system, implemented using the TensorFlow framework in Python,
using an Intel Core i7-6800k CPU (central processing unit), NvidiaTITAN Xp (12GB) graphics card, and 16GB of
memory.

5.2 Experimental process

In this experiment, first, the video is input to perform uniform sampling of video frames, image annotation,
image enhancement operations such as adding Gaussian noise and rotation, and pre training is performed
using ImageNet. After pre-training, the training set of the volleyball data set is added for model training and
fine-tuning parameters. First, all samples in the training set are trained 30 times to better test the effectiveness
of the model (epoch = 30), and when adjusting parameters, the number of training times is dynamically
expanded and stacked in multiples of 10. Then, in the loss function of the model, cross entropy is used to
calculate the error between the predicted value and the true value, and the model is optimized using the Adam
(Adaptive Moment) gradient descent algorithm. The learning rate is initialized to 0.0001, with betas set to (0.9,
0.999). Finally, the performance of different pose estimation models is compared on the volleyball data
validation set to verify the model.

6 Real-time pose estimation experimental results

6.1 Evaluation indicators

In this study, accuracy, precision, recall, and comprehensive evaluation index Fl-score are used to evaluate the
results. Below, based on the combination of OpenPose and DeepSORT models, estimation and classification in
human posture are evaluated [29,30].
Accuracy: the proportion of all correct judgments made by the model to the total.
TP + TN

= 6
Accuracy TP+ TN + FP + EN (6)

Precision: the proportion of all predictions that are truly correct to positive.
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TP
ision = ————— . 7
Precision P + D (7

Recall rate: the proportion of true correctness to all actual positives.

TP
Recall = ——. 8
ecall = 7 8
Fl-score: The Fl-score is the arithmetic mean divided by the geometric mean, and the larger the result, the
better it is. The Fl-score is weighted for both precision and recall, and the Fl-score belongs to 0-1. In this

model, 1 represents the best recognition and classification results, while 0 represents the worst.

2TP

= 9
2TP + FP + FN

f1

In this study, multiple classifications are used as a whole. Among them, the actual positive class prediction

is True Positive (TP), which predicts blocking actions as blocking actions; the actual positive class is predicted
to be False Negative (FN), and the blocking action is predicted to be a standing action; the actual negative class
is predicted to be False Positive (FP), which predicts standing movements as blocking movements; the actual
negative class prediction is True Negative (TN), which predicts standing movements as standing movements.

6.2 Experimental results
After the above experimental process, the detection pose estimation and tracking system of the UAV is

constructed. The results of single-person pose estimation are shown in Table 1, and the experimental results
of multi-person pose estimation are shown in Table 2.

Table 1: Experimental results of single-person posture estimation

Serial Actual Predict Serial Actual Predict
number posture pose number posture pose
1 Attack Attack 7 Serve Serve
2 Attack Attack 8 Serve Serve
3 Attack Attack 9 Setting Setting
4 Block Block 10 Setting Setting
5 Reception Serve " Stand Stand
6 Serve Serve 12 Stand Setting

Table 2: Experimental results of multi-person posture estimation

Serial Actual posture Predict pose Serial Actual posture Predict pose
number number
1 Attack, Attack, Setting, 7 Reception, Setting Reception, Setting
Stand Attack, Stand
2 Block, Block Block, Block 8 Reception, Reception,
Reception, Setting Reception, Setting
3 Block, Block Block, Block 9 Reception, Stand, Reception, Stand,
Stand Stand
Block, Block Block, Block 10 Serve, Stand, Stand Serve, Stand, Stand
5 Setting, Block Setting, 1 Setting, Attack Setting, Attack
Attack
6 Stand, Stand, Stand, Stand, 12 Stand, Stand, Stand Stand, Stand, Stand

Stand Stand
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7 Experimental discussion

7.1 Posture recognition error

The experimental results of single-person posture estimation are shown in Table 1. The position recognition of
the overall individual posture recognition is relatively precise. In sequence 1, the athlete approaches the
volleyball net line in a posture where their feet are spread apart; their left-hand swings backward; and their
right-hand swings forward. The system recognizes it as an attacking posture, but in reality, it is also an
attacking posture. In sequence 2, the athlete is located on the side of the volleyball net line, with his left
foot on the ground and his right foot in a jumping position. The overall center of gravity tilts back, and the
system recognizes it as an attacking position, which is correct. In sequence 4, the athlete is located on the side
of the volleyball net line, with both feet off the ground and jumping up as a whole, with both hands facing up in
a blocking position. The system recognizes it as a blocking position, indicating correct recognition. In sequence
7, the player is located in the serving position, leaning forward as a whole, with the upper hand in a forward-
pushing position. The system recognizes it as serving, but the actual serving position is. However, there are
some errors in individual pose recognition. In sequence 5, the player is located on the right back of the court,
with their feet in a squat position and their hands raised upwards. The system recognizes it as the serving
position, but in reality, it is the receiving position. This is because the serving and receiving positions exhibit
certain similar movements, and there is some error in the system. In sequence 12, the athlete is located on the
left back of the court, with feet forked and hands down. The system recognizes it as a set action, but in reality,
it is a standing action. However, compared to sequence 11, it is found that the athlete can better recognize
standing actions in this scenario. Overall, it can be seen that the estimation of single-person posture is
quite good.

The results of the multi-person pose estimation experiment are shown in Table 2. Overall, the system
model can adapt to the situation of multi-person pose estimation. In sequence 2, both athletes in the detection
area are located next to the volleyball net line, with similar postures. Both of them have feet in the air, and
their hands are extended forward and above, presenting a posture of blocking the ball. The system recognizes
both as blocking postures, and the recognition is correct. In sequence 8, the recognition object is the posture of
three athletes, with their first left foot forked, their center of gravity tilted forward, and their hands facing
down to present the set posture. The other two athletes, with their feet half squatted and forked, and their
hands flat, are ready to receive the ball. The system sequentially recognizes the set and receiving posture. In
sequence 11, the recognition area consists of two athletes. The left athlete is located on the side of the volleyball
field, with their feet bent and their hands extended towards the ball to prepare for the set position, and the
system recognizes it as the set position. The other athlete is located in the middle of the tennis ball near the net,
with their feet bent open and their hands swinging to present an attacking posture. The system recognizes it as
the attacking posture, but there is some error for multi-person recognition. In sequence 1, the recognition area
is the posture of three people. The athlete on one side of the court presents a posture of normal feet apart and
hands akimbo, and the system recognizes it as a standing motion. There are two athletes on the other side of
the field, one of whom is in a running position with both hands open and feet striding forward, and the system
recognizes it as an attacking position; the other athlete is standing normally with both feet and hands
extended, and the system recognizes it as a set action. In fact, this athlete is in an attacking position with a
small amplitude, which is sometimes difficult for the system to distinguish in the current posture. In sequence
5, both athletes are located in the net position. One athlete rises into the air with his hands waving upwards,
which is recognized as an attacking position by the system but actually as a blocking position. The other athlete
bends his feet, moves his hands forward, and leans back as a whole, presenting a set posture, which is
recognized as a set posture by the system. This is mainly because there are some occlusions or incomplete
features in the recognition area, which omit the athlete’s posture and result in failure to recognize. Overall, the
system has achieved good recognition results.
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7.2 Confusion matrix of estimation results for different postures of the
human body

For different pose types, the confusion matrix is shown in Figure 1. The horizontal axis represents the
predicted type, followed by Attack, Block, Stand, Serve, Reception, and Setting from left to right. The vertical
axis represents the actual category, and from top to bottom, it is the same as the horizontal axis. From the
analysis in Figure 1, it can be seen that the highest proportion of correctly predicted actions was concentrated
in Block, and the proportion of correctly predicted actions in the sample reached 98%, indicating a very
impressive classification effect. The lowest concentration was in the Setting, and the proportion of correctly
predicted samples reached 90%, indicating a higher number of classification errors. Among them, 1% was
incorrectly predicted as Block; 3% was incorrectly predicted as Stand; 2% was predicted as Attack; 3% was
predicted as Reception; 1% was predicted as Serve. The prediction accuracy of both Serve and Reception was
95%. For the Serve posture, 1% was predicted as Stand; 3% was predicted as Reception; 1% was predicted as
Setting. For the Reception posture, 1% was predicted as Attack; 1% was predicted as Stand; 2% was predicted as
Serve; 1% was predicted as Setting. Among them, Block is the easiest to detect because it is more pronounced
than other human postures, resulting in higher estimation accuracy. Other categories have good classification
performance and can meet practical application requirements.

Attack- 0.96 0.01 0.01 0 0 0.02
410.8
Block{ 0 0.98 0 0.01 0 0.01
g
= 4
&8 standd 001 0 0.97 0 0.01 0.01 0.6
[oN
[0}
2
= served 0 0 0.01 0.95 0.03 0.01 L 104
Reception-| 0.01 0 0.01 0.02 0.95 0.01
402
Setting4  0.02 0.01 0.03 0.01 0.03 0.90
— 0

Attlack Bléck Stalnd Selrve Recelp!ion Set:ing
Predicted posture

Figure 1: Confusion matrix for estimating results of different postures of the human body.

7.3 Accuracy and F1-score of pose estimation for different models

In order to explore the accuracy of pose estimation for different models, PoseNet, HRNet, AlphaPose, and
OpenPose models were compared and analyzed for their performance in pose estimation, as shown in Figure 2.
Overall, the OpenPose model had the highest performance in both bar and line plots. From Figure 2, it can be seen
that the accuracy of the OpenPose model reached 98.23%, which was an improvement of 0.72% compared to the
AlphaPose model. In addition, the HRNet model reached 95.37%, with the worst being the PoseNet model. Due to its
lightweight design posture estimation accuracy, which was only 92.06%, it decreased by 6.17% compared to the
OpenPose model. For the Fl-score of the model, the OpenPose model reached 0.97, an improvement of 0.04
compared to the HRNet model; the AlphaPose model reached 0.96; the PoseNet model only reached 0.84. Overall,
the pose estimation models OpenPose and AlphaPose have shown good performance in terms of accuracy and Fl-
score.



DE GRUYTER

Accuracy (%)
1

Real-time pose estimation and motion tracking for motion performance

Accuracy (%)
F1

98. 23
0.97 97. 51
0. 96
i 95. 37
4 0. 93
92. 06 .
0. 84
T T T T
OpenPose PoseNet HRNet AlphaPose

Model

Figure 2: Accuracy and Fl1-score of pose estimation for different models.

7.4 Recall rate and precise value of pose estimation for different models

The comparison of recall and precise values for different pose estimation models is shown in Figure 3. In
Figure 3, the red dot position represents precision, and the gray triangle position represents the recall rate.
From the perspective of recall rate, the OpenPose model reached the highest, at 97.31%; the PoseNet model had
the lowest recall rate, only 89.92%; the HRNet model achieved 94.20%, an increase of 4.28% compared to the
PoseNet model. In addition, the AlphaPose model achieved 95.59%, a decrease of 1.72% compared to the
OpenPose model. In terms of precision, the OpenPose model had the highest position of red dots in the figure,
reaching 99.30%, which was 13.98% higher than the PoseNet model; the AlphaPose model achieved 98.91%,
while the HRNet model achieved 96.74%. Overall, the pose estimation models OpenPose and AlphaPose per-

form better in terms of precision and recall.
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Figure 3: Recall rate and precise value of pose estimation for different models.



10 — Long Liu et al. DE GRUYTER

7.5 Real-time detection results of athlete posture

To explore the real-time performance of the model, a video was randomly selected for real-time pose recogni-
tion, and divided into two segments. The real-time specific posture recognition results of athletes are pre-
sented, with the corresponding segmented time periods of posture detailed in Table 3. In the first row, the time
points recorded were 16:18:16, 16:18:19, and 16:18:20, respectively, corresponding to athletes numbered 1, 8, and
9. This segment, extracted from a volleyball match interval, was identified by the system as a standing posture.
Moreover, it can be seen from the figure that the posture varied over time, indicating that real-time posture
estimation can be achieved. In the second row, the time points were 16:40:53, 16:40:54, and 16:40:55. In the first
image, the posture recognition is as Reception, and the estimated posture is correct. The second image is
estimated to be in the Reception position, where the athlete steps forward with both feet in a semi-squat
position and holds down with both hands in a receiving position. In the third picture, the athlete’s posture is
standing with both feet normal, and their hands are lowered and placed flat to present the set posture. The
system recognizes it as Setting, indicating that the posture recognition is correct. In summary, it can be seen
that the system can meet the requirements for real-time recognition of athletes’ postures.

Table 3: Real-time pose estimation results

Time Athlete number  Actual posture Predict pose Time Athlete number  Actual posture Predict pose

16:18:16  Number 1 Stand Stand 16:40:53  Number 11 Reception Reception
Number 8 Stand Stand Number 12 Reception Reception
Number 9 Stand Stand

16:18:19  Number 1 Stand Stand 16:40:54  Number 11 Reception Reception
Number 8 Stand Stand Number 12 —
Number 9 Stand Stand

16:18:20  Number 1 Stand Stand 16:40:55  Number 11 Setting Setting
Number 8 Stand Stand Number 12 —
Number 9 Stand Stand

7.6 Comparison of processing speed and parameter quantity between different
models

In order to delve deeper into the overall real-time performance of the model, the processing speed
and parameter quantity of the OpenPose-DeepSORT, PoseNet-DeepSORT, HRNet-DeepSORT, and AlphaPose-
DeepSORT models were compared and analyzed, as shown in Figure 4. The gray line in the figure represents
the processing speed, while the red line represents the size of the parameter quantity. In terms of processing
speed, the OpenPose-DeepSORT model reached 16.7 frames/s; the processing speed of the HRNet-DeepSORT
model reached 11.3 frames/s; the slowest processing speed was the AlphaPose-DeepSORT model, which was
only 8.6 frame/s and had the worst effect; the PoseNet-DeepSORT had the fastest processing speed, reaching up
to 19.9 frame/s. This is because the PoseNet pose estimation model adopts a lightweight setting, which shows
excellent performance in processing speed despite a decrease in accuracy. From the perspective of parameter
quantity, the PoseNet-DeepSORT model had the least parameter quantity, only requiring 14.5 MB, which was
21.5 MB less than the OpenPose-DeepSORT model. Although the OpenPose-DeepSORT model had fewer para-
meters than the PoseNet-DeepSORT model, it reduced the number of parameters by 16.7MB compared to the
HRNet-DeepSORT model; the highest was the AlphaPose-DeepSORT model, with the worst performance and a
parameter count of up to 61.8 MB. Overall, the PoseNet-DeepSORT model performs best in terms of processing
speed.
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7.7 Model robustness

In real volleyball matches, there are various UAV shooting angles and situations where multiple people are
obstructing. In order to explore the robustness of the model, a comparative analysis was conducted on the pose
recognition performance of the model under Gaussian noise, rotation of 30 degrees, random cropping, and
multiple occlusion, as shown in Figure 5. In Figure 5, light yellow represents estimated accuracy, and light blue
represents processing speed. Overall, the estimated accuracy of the four scenarios was not significantly
different, reaching over 95%, and the processing speed fluctuated slightly. From the perspective of pose
estimation accuracy, the pose recognition accuracy in the presence of Gaussian noise reached 95.65%, a
decrease of 0.82% compared to the case of multiple occlusion. However, in the case of rotation and cropping,
the prediction accuracy of the model reached over 97%, with a relatively small impact. In terms of processing
speed, the fastest was achieved at 15.2 frames/s under Gaussian noise and 12.5 frames/s under multiple occlu-
sion. In addition, the model performed well under rotation and cropping, reaching over 13.0 frames/s. In
summary, it can be seen that this model can better adapt to posture recognition in different situations.
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Figure 5: Comparison of model robustness.
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8 Conclusions

This article used a combination of OpenPose and DeepSORT models for real-time pose estimation and tracking
of volleyball videos. The OpenPose algorithm is employed for accurate pose estimation of human body regions,
while the DeepSORT model facilitates real-time tracking of the detected human pose information. Utilizing
Unmanned Aerial Vehicles (UAVs) as carriers, the YOLOv4 object detection model is integrated to achieve real-
time human pose detection on standardized images. The experimental results demonstrate the model’s com-
mendable pose recognition accuracy and real-time performance. However, the study acknowledges certain
shortcomings, primarily related to the complexity of the combined model, necessitating further improvements
in its real-time capabilities. Future endeavors aim to enhance the model’s performance by developing a
lightweight structure. The integration of OpenPose, DeepSORT, and YOLOv4 models demonstrates promising
results in real-time pose estimation and tracking of volleyball players. Acknowledging the identified short-
comings, future efforts will focus on refining the model’s structure to enhance real-time performance,
ensuring its applicability in dynamic sports environments.
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