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Abstract: One of the key factors driving a country’s economic development and ensuring the sustainability of
its industries is the constant availability of electricity. This is normally provided by the national grid. However,
the power supply is not always stable in developing countries where new businesses, including the telecom-
munications industry, are constantly emerging. Therefore, they must rely on generators to ensure their full
functionality. These generators rely on fuel to function, and consumption is usually high if not properly
monitored. Monitoring is usually done by a (non-expert) human. This can sometimes be a tedious process,
as some companies have reported excessively high consumption rates. For anomaly detection in power
generating plants, the studies by Mulongo et al. and Atemkeng and Jimoh used the same dataset to train a
multilayer perceptron (MLP) and generative adversarial networks (GANs), respectively, achieving an accuracy
of 96.1% with MLP and 98.9% with GAN. Through comparative analysis and the use of ensemble learning
techniques, we found that ensemble learning models outperform both MLP and GAN as proposed by Mulongo
et al. and Atemkeng and Jimoh using the same dataset. Furthermore, we investigated the potential of auto-
encoders to outperform MLPs, GANs, and ensemble learning models. To this end, we have introduced a label-
assisted autoencoder approach for detecting anomalies in power-generating plants. This model includes a
labelling assistance module that adjusts the thresholds. Our results indicate that the label-assisted autoencoder
outperforms the MLP. However, GANs and all ensemble learning models outperformed the label-assisted
autoencoder. Nevertheless, the use of a label-assisted autoencoder offers a distinct advantage in categorizing
anomalies based on their severity, a capability not present in ensemble learning models and GANs.

Keywords: electric grid, fuel consumption, autoencoder, anomaly detection, power generating plants, GANs,
ensemble learning
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1 Introduction

Information communication technology companies use about 3% of the world’s electrical energy, and the
telecommunication industry is one of the fastest growing industrial sectors among agriculture, banking,
infrastructure, and oil and gas [1]. The number of telecommunication industries and the quest for expansion
and growth has led to an increase in base stations across targeted countries to boost their network coverage
and enhance the effective flow of communication. With the increase in the number of base stations, the issue
of base station management needs to be addressed. Grid energy has been known to be the main source of
power in developing countries such as those in Africa, and it is expected that these base stations located across
different rural and urban areas will be powered by grid energy. However, electricity is quite unstable in most
parts of these developing countries, and this has forced base stations to look for a reliable alternative source of
energy. These alternatives include photovoltaic (PV) panels, wind turbines, and diesel generators, but mostly
generators due to a lack of space for the installation of PV or wind turbines [2]. The high cost of fuel and its
transportation to supply stations located in rural areas has increased the operational cost of these companies.
These generators are being refilled manually, thus creating room for irregular or unusual fuel consumption,
which might be caused by several reasons, such as fuel theft, fuel leakages, or poor maintenance of equipment.
A study conducted in a base station in Cameroon has shown that the design of the base station building, room
cooling systems such as air conditioners, and careless handling of lights increase the rate of fuel consumption
in the base station [3]. Espadafor et al. [4] also attested that generator performance could be affected by the age
of the generator, the number of loads powered by the generator, and improper maintenance.

In Cameroon, TeleInfra LTD is one such company whose objective is to manage base stations in various
parts of the country. The services include maintenance of base stations and refuelling of generators. Like any
other businesses relying on grid energy, the unstable power supply has resulted in high operating costs as
companies have to find alternative sources of power supply to sustain the continuous operations of the
business. Alternative sources such as solar panels, hybrid energy, and generators have been implemented
by TeleInfra to sustain business performance. Data on fuel consumed, such as working hours of the generator,
the quantity of fuel refuelled, the rate of consumption, generator maintenance, and total fuel consumed, are
collected from base stations [5].

Many strategies have been proposed to improve energy saving, such as building a well-ventilated base
station and the use of air conditioners as a cooling system and heat pipes to remove hot air from the base
station [6]. However, detecting such irregularities is challenging, especially when numerous base stations are
functioning at once. Anomaly detection in power-generating plants is aimed at detecting such irregularities in
the behaviour of the data provided. Although there are different algorithms for detecting anomalies, machine
learning algorithms are the most used and popular for anomaly detection due to their ability for automation
and their effectiveness in the context of deep learning, especially when involving large datasets. According to
Goodfellow et al. [7], deep learning is a variant of applied statistics with an increasing emphasis on using
computers to estimate complex functions statistically but a reduced emphasis on proving confidence intervals
around these functions. Machine learning algorithms come in several variants. In supervised learning, models
can make predictions on unlabelled data after they have been trained on labelled data, whereas, in unsu-
pervised learning, models can only make predictions on unlabelled data by learning similar features and
patterns embedded in the datasets. In reinforcement learning, a goal is given, and an agent undergoes training
in an environment to find an optimal solution to accomplish the goal.

Anomalies can be an indicator of areas that require attention, and detecting them has been quite popular
among the research community. In the past, the research community has conducted several anomaly detec-
tions ranging from comprehensive to certain application domains with different machine learning algorithms.
Mulongo et al. [5] worked on a similar area; four different supervised learning algorithms were used in their
work for detecting an anomaly in a power generation plant. The dataset used by Mulongo et al. [5] was also
employed by Atemkeng and Jimoh [8] to investigate and detect anomalies using generative adversarial net-
works (GANs). GANs are a supervised learning algorithm that involves training a classifier to assign a prob-
ability score to a sample, indicating whether it is categorized as “normal” or “anomalous.”However, in real-life
scenarios, abnormal behavioural patterns are very few compared to normal behaviour. For instance,
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Atemkeng and Jimoh [8] had to duplicate the data to balance between normal and anomalous data before
training the GANs. These are key challenges in recognizing anomalies with a deep supervised learning algo-
rithm such as GAN since they greatly rely on labelling and balance between normal and anomalous data
patterns. Our study initially explored ensemble learning models for anomaly detection in power-generating
plants, using the same dataset as in the studies by Mulongo et al. [5] and Atemkeng and Jimoh [8]. Six ensemble
learning models were investigated: adaptive boosting (Adaboost), categorical boosting (CatBoost), eXtreme
gradient boosting (XGBoost), light gradient boosting machine (LightGBM), gradient boosted decision trees
(GBDT), and random forest (RF). When trained on the same dataset, we observed that these models out-
performed those proposed in the studies by Mulongo et al. [5] and Atemkeng and Jimoh [8]. Note that the
shallow models trained in the study by Mulongo et al. [5] did not require the balancing of normal and
abnormal samples, a characteristic that we observed in the ensemble learning methods as well during
training. However, balancing the data was necessary to train the GAN discussed [8]. This is because GANs,
being very deep, can overfit quickly when the dataset is unbalanced. By using the same dataset, we explored
an alternative deep learning approach for anomaly detection based on unsupervised learning. The proposed
framework modifies and fine-tunes a deep autoencoder, thus eliminating the need for data balancing required
by the GAN. In addition, we incorporated a module into the autoencoder that uses labelled data to determine
the autoencoder threshold. Depending on the outcome, one of the following actions is taken:
– Update the threshold of the autoencoder to increase overall model accuracy to an acceptable level.
– Adjust the interval of variation for numerical hyperparameters, enabling exploration of the best hyper-

parameter values in the new search space.
– Provide an overall performance score.

This article is organized as follows: Section 2 explains anomaly detection and investigates related works
for anomaly detection in power grid plants. Section 3 discusses ensemble learning and autoencoders, which
replicate the input data through a compressed representation. This section also discusses the different evalua-
tion metrics used in this work, proposes the label-assisted autoencoder, and provides a detailed discussion. The
dataset and feature engineering are also discussed. Section 4 discusses the results and limitations, and Section
5 concludes the work.

2 Anomaly detection and related works

Anomalies, also known as outliers, often refer to instances or data samples that are significantly distanced
from the main body of an examined data [9]. These distanced values often indicate a deviation from its
established normal pattern, which can sometimes be a measurement error or an indication of a data sample
of a different population [10]. Outlier classification depends on the type and domain of the given data as well as
the data analyst. Since many outliers are linked directly with abnormal behaviour, they are also referred to as
deviants, anomalies, or abnormalities in the literature of statistics and data analysis [9]. According to Aggarwal
[9], interpreting data are directly associated with the detection of anomalous samples. Demestichas et al. [10]
suggested that achieving the highest possible interpretability level is essential to properly select the best
anomaly detection method from different ranges of the relevant algorithm. There are two major categories
of anomalies depending on the given dataset: multivariate and univariate [10]. Multivariate anomalies can be
spotted in multi-dimensional data, while univariate anomalies are spotted in single-dimensional data. Besides
the two categories of anomaly, there are other categories which depend on the distribution of the given data.
Data samples that are considered anomalous when viewed against the entire dataset are point anomalies,
while data samples that are considered anomalous with respect to meta-information related to the data
sample are contextual anomalies [11]. In other words, contextual anomalies are classified based on local
neighbourhoods, while point anomalies are classified based on the overall dataset. Collective anomalies
denote anomalous data collection samples, which are considered anomalous patterns together.

Fahim and Sillitti [12] provide two anomaly detection methods; statistical and machine learning methods.
The statistical method uses various algorithms such as density-based, distance-based, parametric-based and
statistical-based algorithms. However, Trinh et al. [13] noted that one of the major challenges that are
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encountered by this approach is the design of a suitable model that can accurately separate normal data from
unusual data points. On the other hand, machine learning methods consist of both supervised and unsuper-
vised learning algorithms in which datasets can either be labelled for supervised learning or unlabelled for
unsupervised learning. Some advantages of this method are an enhancement of detection speeds and its ability
to handle complexity with less human intervention [14].

Many researchers have worked on different machine learning techniques for anomaly detection, but most
of the current works applied artificial neural networks to classification tasks. The labelled data are used
during the training stage, and then the learned model is able to correctly classify sample data never used
during the training process. This technique is generally classified under supervised machine learning techni-
ques. Such an example is trained in the studies by Mulongo et al. [5] and Atemkeng and Jimoh [8] in which
support vector machines (SVM, [15]), K-nearest neighbours (KNNs; [16]), logistic regression (LR; [17]), (MLP,
[18]), and GANs are used for anomaly detection associated with the fuel consumed dataset from an energy
company. However, the energy sector is not the only place anomaly detection with supervised machine learning
has been applied; others include fraud detection in credit card attacks and anomaly detection in IoT sensors
[19,20]. One of the main advantages of supervised learning techniques is the ability to handle high-dimensional
datasets with high performance [21]. However, there is a major problem with this technique. When dealing with
real-life data, the majority of them contain fewer anomalies, which is quite challenging and can cause an
unbalanced dataset. This is an issue for supervised learning techniques since they greatly rely on labelled and
balanced data. However, unsupervised learning techniques can be used to address this problem. For example, the
autoencoder considers a specific kind of feed-forward neural network that can be applied in outlier-based
anomaly detection rather than classification problems. Hawkins et al. [22] proposed an approach that involved
an autoencoder for outlier detection. However, many researchers have investigated hybrid methods, e.g., [21]
proposed an approach based on long short-termmemory (LSTM) autoencoder and one-class SVM. The approach is
used to detect anomaly-based attacks in an unbalanced dataset. The idea is to use the LSTM autoencoder to train a
model to learn the pattern in the normal class (dataset without anomaly) so that the model can replicate the input
data at the output layer with a small reconstruction error. When there are anomalies in the data, the model fails to
replicate the anomalous samples. This arises when the reconstruction error is very high.

Another unsupervised learning technique is the k-means. Zhang et al. [23] used the transformer model and
the k-means clustering method for anomaly detection. The k-means was also used by Münz et al. [24] to detect
traffic anomalies; the main idea is to train data containing unlabelled records and separate them into clusters
of normal and anomalous data.

3 Materials and methods

3.1 Datasets

3.1.1 Data description

The dataset used in this article is gathered from a Telecom base station management company in Cameroon
named TeleInfra and was subject to previous studies for anomaly detection in the studies by Mulongo et al.
and Atemkeng and Jimoh [5,8]. The dataset is collected over the period of 1 year, i.e., from September 2017 to
September 2018. It consists of 6,010 observations from various base stations in 46 towns and villages (known as
clusters) across Cameroon. These stations mainly rely on generators as the main supply of power. The dataset
also consists of several variables, which are defined in both numerical and categorical forms. Table 1 shows a
detailed description of each variable. Anomalies are observed in different features of the dataset, and the observed
anomalies are classified based on three indicators: (1) for a given time period if the generator running time is zero
and the quantity of fuel consumed is not zero. (2) when the running time per day is more than 24 h, and (3) when
the daily consumed quantity of fuel is more than the maximum consumption a generator can consume. For a data
sample to receive anomaly tag 1, it must demonstrate at least one of the three indicators listed; otherwise, it will be
given the normal tag 0. A full workflow of the entire labelling process is illustrated in Figure 1. During the labelling
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process, output variables are assigned labels 0 and 1, representing the normal and anomaly classes, respectively.
For a single generator, Figure 2 illustrates the plot of the working hours per day. For example, all data samples
above the 24 h threshold show anomalies in the running time of one of the generators, and these samples are
assigned label 1 because it is known that 1 day only has 24 h. The 6,010 observations were curated to remove
missing samples, leaving 5,905 observations with all the information. Of 5,905 observations, it is observed that 3,832
samples are labelled as normal and 2,073 samples as abnormal, resulting in 64.8% normal samples and 35.1%
abnormalities in the entire dataset. Figure 3 shows all the clusters and their respective total fuel consumption,
including the degree of anomalies in the entire dataset.

Table 1: Description of the different features in the dataset

Feature description

CONSUMPTION HIS The total fuel consumed between a specific period of time before the next refuelling is done
CONSUMPTION_RATE The number of litres the generator consumes per hour
Cluster The cities where the generator sites are located
CURRENT HOUR METER GE1 The hour metre reading of the generator
Site Name Name of the site where each generator is located
EFFECTIVE_DATE_OF_VISIT The date of metre reading, refuelling, and recording
PREVIOUS_DATE_OF_VISIT The previous date of visit
Months The month when the reading was taken
NUMBER_OF_DAYS The number of days before the next refuelling process
GENERATOR_1_CAPACITY_(KVA) The capacity of the generator
POWER TYPE Type of power used in the power plant
PREVIOUS HOUR METER G1 The previous meter reading of the generator
PREVIOUS_FUEL_QTE The total quantity of fuel left inside the generator tank on the previous date of the visit
QTE_FUEL_FOUND The quantity of fuel found inside the generator tank before refuelling is done
QTE_FUEL_ADDED The quantity of fuel added to the generator during the refuelling process
TOTALE_QTE_LEFT Quantity left in the generator after refuelling
RUNNING_TIME The total number of hours the generator worked before the next refuelling is done
Running time per day The total number of hours the generator worked during one day
Daily_consumption_within_a_period The quantity of fuel consumed within a given period of a day
Daily_consumed_quantity_btn_visits The quantity of fuel consumed between successive visits of a day
Quantity_consumed_btn_visits The total quantity of fuel consumed between all successive visits
Maximum_consumption_perDay The maximum quantity of fuel that a generator can consume a day

Figure 1: Flowchart showing how the labels are decided: For a data sample to receive the anomaly tag 1, it has to demonstrate at least
one of the three anomaly indicators listed otherwise, and it is given the normal tag 0.
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3.1.2 Feature importance

Feature selection is performed by fitting the data using a RF classifier with 16 features. Note that one could use
any other method to find the most important feature. Since the relative importance of the most important
feature is too high (100% as shown in Figure 4) compared to other features, any algorithmwill predict the same
feature as the most important. Figure 4 shows that the feature Running time per day has the greatest influence
on the output and can be coined as the most important feature in the dataset. Even though it is followed by the
Daily consumption within a period, the huge difference between the Running time per day and the remaining

Figure 2: Observed anomaly in the number of working hours in a day for a single generator. For example, all data samples above the
24 h threshold show anomalies in the running time of the generator, and these samples are assigned label 1 because it is known that 1
day only has 24 h.

Figure 3: Fuel consumed per cluster showing the degree of anomalies in the dataset.
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features shows that priority should be given to the feature Running time per day when considering its
reconstruction error for anomaly detection.

3.1.3 Correlation

The correlation matrix is used to visualize the linear relationship between two variables. The values produced
by the covariance matrix range from −1 to 1, where 1 indicates a strong positive linear relationship, −1

indicates a strong negative linear relationship, and 0 indicates that there is no linear relationship between
the variables. Figure 5 shows that the key variable Running time per day and the variable Daily consumption
within a period have a strong positive correlation, which is reasonable since the daily quantity of fuel
consumed by a generator is a function of the running time. A strong correlation is also observed between
the three pairs of features: Total quantity of fuel after refilling, Quantity of fuel found, and the Previous quantity
of fuel recorded. However, the feature Previous hour meter G1 has no significant correlation with any of the
features.

3.2 Ensemble learning models

RF is an ensemble learning method used in machine learning that operates by constructing several decision
trees at the training phase. The individual trees are then aggregated to produce a more accurate and stable
prediction [25]. The gradient boosted decision trees (GBDT) construct a model progressively, focusing on
improving a specific loss function. Initially, it starts with a basic prediction model. Then, each step works
to reduce the loss by adjusting for the errors of the previous model. This is done by fitting a decision tree to
these errors and determining the best rate at which to incorporate this new tree into the model. With each
iteration, the model becomes more refined by adding the new tree’s output, adjusted by a learning rate that
controls the influence of each tree. This iterative process continues until the model reaches the desired level of
accuracy or completes a predefined number of steps [26,27]. XGBoost enhances GBDT by integrating regular-
ization terms into its objective function. This integration effectively controls model complexity, leading to
improved performance and generalization capabilities [28]. CatBoost enhances GBDT by introducing the

Figure 4: Feature importance for the 16 variables fitted using RF classifier. The feature Running time per day has the greatest influence on
the output and can be coined as the most important feature in the dataset.
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ordered target statistic method for categorical features, which sorts values based on their correlation with the
target, allowing for effective encoding and improved model understanding. In addition, CatBoost processes
textual features by converting them into uniform-length vectors through feature hashing, and then merging
these vectors to capture better feature correlations and interactions [29,30].

LightGBM stands out from XGBoost with innovative tree construction and data processing approaches,
focusing on histogram-based learning and leaf-wise tree growth [31]. Unlike XGBoost’s level-wise strategy,
LightGBM adopts a leaf-wise growth approach, strategically creating splits for the most significant loss reduc-
tion, resulting in more balanced trees. The histogram technique discretizes features into bins, enhancing
computational efficiency during tree building, which is particularly beneficial for extensive datasets. This
leaf-wise growth contribute to LightGBM’s efficiency and scalability. It excels at handling large datasets and
complex models, making it preferable for applications requiring swift model training and processing sub-
stantial data volumes. AdaBoost is based on GBDT, aiming to enhance the decision trees’ performance by
iteratively adjusting the weights of incorrectly classified instances. In AdaBoost, each instance in the dataset is
initially assigned an equal weight, ensuring an unbiased starting point for the selection process. The algorithm

Figure 5: Correlation matrix of all numerical features. The Running time per day and Daily consumption within a period have a strong
positive correlation, which is reasonable since the daily quantity of fuel consumed by a generator is a function of the running time.
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then proceeds through a series of iterations, each time training a weak tree classifier on the weighted instances
to minimize the error in classification [32,33].

3.3 The architecture of the proposed autoencoder, training, and testing phases

A label-assisted module is integrated into an autoencoder [34]. This process enhances the autoencoder’s
functionality by using labelled data for improved feature representation and learning efficiency.

The encoder takes high-dimensional input data, a fixed-size vector, and reaches the latent space by
mapping it to a low-dimensional representational vector. The decoder reconstructs the input data from the
reduced representation in the latent space. The final reconstruction error is used to set a threshold to detect
anomalies. An additional computation block is added to check from a set of labelled data if the threshold is
acceptable to satisfy the required precision. This kind of validation block uses the threshold to decide if the
threshold should be changed or if the autoencoder should be trained to minimize the reconstruction loss
further. The entire architecture of the proposed assisted autoencoder is depicted in Figure 6, and a detailed
description is provided as follows:

Figure 6: Overview of the proposed model. Each observation goes through the autoencoder for training, the reconstruction error is
measured, and then a threshold is used to decide whether the observation is an anomaly. The labelling assistance module then takes
over to check if each of the observations is labelled, and then the label is used to check the veracity of the corresponding anomaly
classification. A consensus is then reached on whether training should stop, whether the threshold should be updated, or the training
should continue with the search for hyperparameters.

Ensemble learning and deep learning-based defect detection  9



(1) The dataset, X, comprises observations and features, resulting in a two-dimensional array of size ×N M ,
where N and M represent the number of features and the number of observations, respectively. All
features of each observation are collected and received as input in the algorithm called nodes.

(2) The input data of size ×N M are collected and reduced to a latent form of size ×N Q, where <Q M , while
the ×N Q set is fed into the decoder to produce a predicted output of size ×N M . Appendix A shows the
parameters and the architecture of the deep neural networks trained in the encoder and decoder. The
encoding and decoding phases display the number of filters, size of filters, and layers.

(3) After decoding, a reconstruction error is produced for each data point. The reconstruction error refers to
the measure of how much the reconstructed input deviates from the original input. A threshold is set as a
decision point to decide the acceptable deviation amount, and the observation features that go beyond this
threshold are classified as an anomaly. The observation below this threshold is normal data without
anomaly.

(4) The label assisting module then takes over to verify if each of the observations is labelled, and then the
label is used to verify the veracity of the corresponding anomaly classification. The labelled observations
are then checked, and an agreement is reached if the threshold is satisfied to obtain the desired precision
to detect anomalies; if not, the threshold is updated, or the model is further trained to find the best
hyperparameters for the given threshold.

To illustrate the aforementioned steps, an example of a scenario is described as follows. Assume the input
data X i:, is an observation with N features, and their corresponding predictions are given as follows:

= −X X X X X X, , ,…, , ,i i i i N i N i:, 1, 2, 3, 1, , (1)

( )= 0.1, 0.2, 0.3, …,0.4, 0.5 , (2)

= −X X X X X Xˆ ˆ , ˆ , ˆ ,…, ˆ , ˆ ,i i i i N i N i:, 1, 2, 3, 1, , (3)

( )= 0.6, 0.21, 0.32, …,0.61, 0.53 . (4)

The value of each feature indicates the feature’s importance in the anomaly classification; e.g., the running
time of a generator is more important than the generator capacity. The reconstruction loss for each feature is
then calculated:

∣ ∣= −L X X̂ ,i i i:, :, :, (5)

( )= 0.5, 0.01, 0.02, 0.21, 0.03 . (6)

Assume the maximum reconstruction loss is set to 0.2, then the absolute error classifies the sample under the
normal category while if a priority is given to the important feature, say −XN i1, , then the sample would be
labelled as an anomaly since the reconstruction loss of −XN i1, is =−L 0.21N i1, , which is beyond 0.2. Figure 7
illustrates the reconstruction loss scenario adopted in this example. Both the training and testing phases are
equally important when it comes to the generalization of the model. The dataset is divided into training and
testing, depending on the proportion of choice; in our case, we used the ratio of 3:1 for training and testing,
respectively. The training phase is divided into two folds. First, minimizing the reconstruction error is the
focus of the training for the reconstructed outputs to converge to the input samples. Second, the reconstruction
error is calculated for each data point to find an optimal threshold for anomaly detection.

The training phase consists of normalizing the dataset, so that all the features are reduced to a common
scale without distorting the differences in the range of the values. In this work, the mathematical measure
used to normalize the data is given by:

=
−

−
X

X X

X X
,

i

:,iscaled

:, :,min

:,max :,min

(7)

where X:,min and X:,max represent the data point with the minimum and maximum entries, respectively. This is
followed by dividing and separating the anomalous samples from the training set so that the algorithm learns
to reconstruct the norms. Once the training is completed, a reconstruction loss between the input and output is
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calculated, and a backpropagation strategy is applied to adjust the weights and parameters of the model. The
testing phase checks the performance of the model on the unseen test data using the threshold obtained from
the training phase. The whole process is described in Figure 7.

3.4 Performance metrics

Performance metrics are essential for assessing the overall quality of a model. Since a single metric cannot
fully validate a model’s effectiveness, a combination of metrics, including accuracy, F1 score, recall, precision,
and specificity, are used to evaluate the models discussed in this article. The confusion matrix as shown in
Table 2 generates more meaningful measures to find the detection accuracy, precision, recall, and F1 score.
True normal (TN) represents the number of observations in the normal class that are predicted as normal by
the model (i.e., below the threshold). True anomaly (TA) is the number of observations in the anomaly class
that are predicted as an anomaly and are above the threshold. False normal (FN) is the number of anomalous
observations that are below the threshold (i.e., predicted as normal classes). False Anomaly (FA) is the number
of normal observations that are above the threshold (i.e. predicted as an anomaly).

The classification accuracy measures the general performance of the model by producing the ratio of true
prediction (true normal and true anomaly) out of the total number of predictions:

Figure 7: Computing reconstruction loss for ( )=X X X X X X, , , …, ,i i i i N i N i:, 1, 2, 3, 1, , using the predicted
output ( )=X X X X X Xˆ ˆ , ˆ , ˆ , …, ˆ , ˆ

i i i i N i N i:, 1, 2, 3, 1, , .

Table 2: Two class classification confusion matrix representation

Classification class distribution

Actual normal Actual anomaly

Predicted normal True normal False normal
Predicted anomaly False anomaly True anomaly
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=
+

+ + +
Accuracy

TN TA

TA TN FA FN
. (8)

The precision is the ratio of the true anomaly divided by the total number of observations above the threshold
(i.e., the number of anomalies predicted):

=
+

Precision
TA

TA FA
. (9)

The false positive rate (FPR) refers to the ratio of the normal samples above the threshold to the actual number
of normal samples:

=
+

FPR
FA

FA TN
. (10)

True positive rate (TPR), also known as sensitivity or recall, is the ratio of the number of anomalous samples
above the threshold to the actual number of samples in the anomaly class:

=
+

TPR
TA

TA FN
. (11)

Specificity is the ratio of true normal to the total negative class in the sample:

=
+

Specificity
TN

TN FA
. (12)

F1 score gives the harmonic mean between recall and precision of the classifier. A high F1 score indicates a
better performance of the classifier with no false alarm:

=
×
+

F score 2
Precision Recall

Precision Recall
.1

(13)

4 Experimental results and analysis

We present the results obtained from training and testing the discussed classifiers. Our analysis includes a
comparative study against existing works using the same datasets presented in the studies by Mulongo et al. [5]
and Atemkeng and Jimoh [8].

4.1 Training

The data are split into 75% training and 25% testing sets, respectively. To assess the performance of our model
during training, we set aside 10% of the training data to validate the model. The training and validation losses
trend down different epochs for all the classifiers. We noticed rapid learning for the ensemble learning
models, suggesting the potential for early stopping around epoch 10. These ensemble learning models’ training
losses and validation curves are asymptotic, indicating generalization capability. We observe that the label-
assisted autoencoder’s validation loss is below the training loss as shown in Figure 8. However, this can not
influence the predicted accuracy with further hyperparameter tuning since the difference between the two
errors is negligible. Finding the label-assisted autoencoder appropriate threshold requires testing the model
with the entire test dataset. The confusion matrix is used to determine the model’s accuracy and TPR. They are
plotted over a range of thresholds as shown in Figure 9 (top-panel) and the level at which they both attain an
average maximum point is the best threshold for the model. The Training Accuracy (depicted by the red line)
indicates the training accuracy, whereas the Predicted Anomaly (shown by the blue line) reflects the model’s
predicted performance on the training data. We note that, at a threshold of 0.0, the training accuracy is
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Figure 8: Training and validation loss as a function of the number of iterations. The mean absolute error is used to measure the loss.

Figure 9: Threshold detection (top panel) using the reconstruction error (bottom panel). The threshold is used to categorize anomalies
from mild to extreme using their reconstruction error. In the bottom panel, the legend with 0 means normal, and 1 means an anomaly.
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approximately 30%, and the Predicted Anomaly is 100%. Conversely, at a threshold of 1.0 or above, the training
accuracy increases to roughly 70%, while the Predicted Anomaly decreases to below 10%. The most effective
training threshold identified is 0.232, at which both the Training Accuracy and the Predicted Anomaly con-
verge to an approximate value of 96%. However, if the sensitivity (TPR) or predicted anomaly is a priority for
the organization without minding the cost they may secure while sorting out the False normal (predicted
anomalies that are actually), the threshold could then be reduced to 0.231. This is the point where all anomalies
are predicted (i.e., predicted anomalies are at 100%) with a higher false normal (FN), which has an effect on the
overall model accuracy. The threshold is also used to categorize these anomalies from mild to extreme using
their reconstruction error. Figure 9 (bottom panel) shows the reconstruction error. Here, 0 denotes normal
data, and the value 1 indicates an anomaly. This figure shows that the samples with extreme thresholds are
prioritized when one seeks to find the reasons for the presence of anomalies.

4.2 Model performance

The total number of test samples is 1,476, with 1,006 normal samples and the remaining 470 anomalous
samples.

Figure 10 illustrates the performance of the proposed label-assisted autoencoder model with a threshold of
0.232 (left panel) and 0.231 (right panel) based on the confusion matrix. The proposed model is able to detect a
total of 455 anomalous samples correctly out of the 470 samples with the anomaly label, and this accounts for
96.8% (TPR) of the total anomaly samples. The model also detected a total number of 979 normal samples
correctly out of 1,006. The model incorrectly classified 15 normal samples as anomalies (FN) and 27 anomalies
as normal samples (FA). These results show an accuracy of 97.15%, a precision of 94.40%, a recall of 96.81%, a
specificity of 97.31%, and an F1 score of 95.59%. Table 3 presents a summary of the performancemetrics. Figure 11
shows the confusion matrices for each ensemble learning model. All ensemble learning models demonstrated a
high true normal rate, effectively classifying the normal class. Similarly, they exhibited a high true anomaly rate,
accurately identifying anomalies. Conversely, these models showed a low false normal rate, indicating a reduced
likelihood of misclassifying anomalies as normal. A low false anomaly rate also suggests that normal instances
are rarely incorrectly labelled as anomalies. This performance indicates a robust ability of the ensemble models
to distinguish between normal and anomalous classes accurately. In terms of accuracy, F1 score, recall, precision,
and specificity, we observe the following:

Figure 10: Confusion matrices for the label-assisted autoencoder with a threshold of 0.232 (left panel) and 0.231 (right panel).
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– AdaBoost: Accuracy of 99.4%, F1 score of 99.1%, recall of 98.9%, precision of 99.3%, and specificity of 99.7%.
– CatBoost: Accuracy of 99.4%, F1 score of 99.1%, recall of 98.5%, precision of 99.7%, and specificity of 99.9%.
– RF: Accuracy of 99.4%, F1 score of 99.1%, recall of 98.7%, precision of 99.5%, and specificity of 99.8%.
– LightGBM: Accuracy of 99.6%, F1 score of 99.4%, recall of 99.1%, precision of 99.7%, and specificity of 99.9%.
– XGBoost: Accuracy of 99.7%, F1 score of 99.5%, recall of 99.1%, precision of 100%, and specificity of 100%.
– GBDT: Accuracy of 99.7%, F1 score of 99.6%, recall of 99.5%, precision of 99.7%, and specificity of 99.9%.

Table 4 shows the performance of the proposed models compared to that discussed in Mulongo et al. [5]
and Atemkeng and Jimoh [8]. We used the latter papers to compare our work because both are implemented
using the same Teneifera dataset for anomaly detection. The proposed label-assisted autoencoder has the best
performance with an accuracy of 97.2% and a recall of 96.8% compared to the MLP proposed in Mulongo et al.
[5], while the F1 score of the MLP shows the most competitive performance with a higher F1 score, specificity,
and precision. However, the label-assisted autoencoder is flexible since if we adjust the threshold, the recall
will increase at the cost of specificity and overall accuracy. Also, the GAN proposed in Atemkeng and Jimoh [8]
demonstrated superior performance compared to the label-assisted autoencoder. This can be attributed to the
data augmentation capability inherent in GANs.

While all ensemble learning models demonstrated superior performance compared to the label-assisted
autoencoder and the works by Mulongo et al. and Atemkeng and Jimoh [5,8], GBDT and XGBoost exhibited the
highest performances. Nevertheless, there remains significant value in using autoencoders. Autoencoders
offer the unique capability of assessing anomaly accuracy based on severity, a feature inaccessible to ensemble
learning models. This nuanced approach allows for a more granular understanding of anomaly detection,
enhancing the overall effectiveness of the detection process. Feature importance played an important role in
training the autoencoder. The feature Running time per day has the most significant importance of 100, and
Daily consumption within a period comes in the second place with an important measure of 16; from this, we
gave priority to the reconstruction error of the Running time per day. To further justify our choice, the
correlation matrix in Figure 5 shows a strong positive correlation of 0.74 between the two features. By using
the reconstruction error of the key variable, we were able to train and compare the proposed autoencoder
with the work by Mulongo et al. [5]. A recall score of 96.8% outperformed all the models proposed by Mulongo
et al. [5] in detecting anomalies. Also, as shown in Table 3, our model shows a recall score of approximately
100% with a decrease in the overall accuracy of 85% when the threshold is decreased to 0.231.

4.3 Autoencoder-based anomaly severity categorization

The reconstruction error for each data sample differs from one another (as shown in Figure 9, bottom panel)
and provides an opportunity to classify these predicted anomalies according to their reconstruction error. This
work considers four classes A, B, C, and D. Class A represents anomalies that are slightly above the threshold,
class B represents anomalies that are above twice the threshold, class C represents anomalies that are above
four times the threshold, and class D represents anomalies that are above eight times the threshold. This
implies that each class has twice a threshold compared to its predecessor. Table 5 shows the classes and their

Table 3: The performance evaluation for the label-assisted AE demonstrates how the performance metrics are a function of the
autoencoder threshold

Model performance

Threshold Accuracy F1 score Recall Precision Specificity

0.232 0.972 0.956 0.968 0.944 0.973
0.231 0.850 0.810 1.00 0.680 0.780
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Figure 11: Confusion matrices for each ensemble learning models: AdaBoost (top-left), CatBoost (top-right), RF (middle-left), LightGBM
(middle-right), XGBoost (bottom-left), and GBDT (bottom-right).
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corresponding thresholds, showing that 28.25% of the test dataset belongs to the anomaly category of class A,
2.03% belongs to class B, 0.20% belongs to class C, and 0.34% belongs to D.

5 Conclusion

The telecommunication industry is one of the dominant information communication technology industries
that rely on a huge amount of electric power supply for their operations, and thus, it is indispensable in their
daily dealings. However, its availability in underdeveloped countries, particularly in Africa, has been a con-
stant source of contention. Despite the industry’s rise through the creation of base stations, they have had to
turn to alternative energy sources, such as gasoline or diesel with generators and solar power, to name a few.

TeleInfra telecommunication company, established in Cameroon, is one of the companies that are hooked
on these challenges due to the state of power supply in the country. The telecommunication equipment that is
fixed in different parts of the rural and urban areas in Cameroon requires an uninterrupted supply of
electricity to achieve the goal of establishing strong and seamless communication channels in the country.
However, the country’s electrical generation is mostly based on hydropower (73%), with perpetual power
interruptions, particularly during the dry seasons when water levels are low [35]. The consequence of the
diversification to alternative sources of power, particularly the usage of generators, posed another challenge
of irregularities or anomalies in fuel consumption at the base stations due to the observed high consumption
rate in the power generation plants. TeleInfra telecommunication company is faced with the challenge of
unaccounted high fuel consumption for their operations at the base stations. Since they solely depend on
generating plants as their major source of power supply, they have to refill these generators continually, and

Table 4: Comparison of the autoencoder and ensemble learning models with models used in the literature and trained on the identical
dataset reveals notable insights into anomaly detection performance

Model performance

Paper Techniques Accuracy F1-Score Recall Precision Specificity

[5] LR 0.708 0.811 0.709 0.943 0.699
SVM 0.949 0.962 0.962 0962 0.925
KNN 0.851 0.888 0.887 0.890 0.783
MLP 0.961 0.971 0.954 0.988 0.976

[8] GANs 0.989 0.645 0.796 0.785 Not provided in [8]
Autoencoder (AE) Label-AE 0.972 0.956 0.968 0.944 0.973
Ensemble learning AdaBoost 0.994 0.991 0.989 0.993 0.997

CatBoost 0.994 0.991 0.985 0.997 0.999
RF 0.994 0.991 0.987 0.995 0.998
LightGBM 0.996 0.994 0.991 0.997 0.999
XGBoost 0.997 0.995 0.991 1.0 1.0
GBDT 0.997 0.996 0.995 0.997 0.999

Table 5: Categorizing anomalies with label-assisted autoencoder

Categorizing anomalies

Class Threshold Predicted number of samples Percentage of test data (%)

A 0.232 417 28.25
B 0.464 30 2.03
C 0.928 3 0.20
D 1.856 5 0.34
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these are done manually. Such activities are known to have emanated in possible cases of pilferage of fuel due
to the observed anomalies in fuel consumption. As a result, it is essential to investigate the likely factors
contributing to the anomalies by collecting data on fuel consumption at each base station to minimize the
operation costs.

This study explored the effectiveness of ensemble learning models for anomaly detection in power gen-
eration plants. To achieve this, we examined six different ensemble learning models and observed that all of
them proved effective in detecting anomalies. Furthermore, our results indicated that these ensemble learning
models outperformed both MLP and GANs, which were initially proposed in the literature for anomaly
detection using the same dataset employed in our study.

We also proposed a label-assisted autoencoder-based deep-learning technique for detecting anomalies in
the fuel consumption datasets of the base station management company, namely, TeleInfra. In the proposed
model, an autoencoder is used to generate an encoded representation of the input features and construct the
output from the encoded representation to look like the input features of the series of decoders. The maximum
reconstruction error from the trained model is obtained from the training set, and it is set as a threshold for
detecting anomalies on the test dataset. The anomaly detector identifies each data sample from the testing set
as an anomaly when it exceeds the threshold assigned. Results showed that the autoencoder is highly efficient
for reading anomalies with a detection accuracy of 97.20%

This work opens future research possibilities, which could involve using different variations of autoenco-
ders, such as LSTM autoencoders and memory-augmented autoencoders combined with our proposed label-
assisted unit. The latter does not require feature importance analysis to select the best reconstruction error. Also,
we believe that expanding our investigation to include models such as ResNet, AlexNet, MobileNet, EfficientNet,
and others could be a valuable avenue for future research, especially when dealing with larger datasets.
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Appendix

The architecture of deep neural networks trained in the encoder and decoder. The number of filters and the
size of the filters and layers are displayed in the encoding and decoding phases (Figure A1).

Figure A1: Architecture of the deep neural networks trained in the encoder and decoder.
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