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Abstract: Accurate early identification and treatment of cardiovascular diseases can prevent heart failure
problems and reduce mortality rates. This study aims to use quantum learning to predict heart problems to
increase the accuracy of traditional prediction and classification methods. Machine learning (ML) and deep
learning (DL) techniques need quantum learning to quickly and accurately analyze massive volumes of
complex data. With quantum computing, the suggested DL and ML algorithms can change their predictions
on the basis of changes in the dataset. This approach could help with the early and accurate detection of
chronic diseases. The Cleveland heart disease dataset is undergoing preliminary processing to validate missing
values to increase the precision rate and prevent incorrect forecasts. This study examined the feasibility of
employing and deploying a quantum ML (QML) framework via cloud computing to categorize cardiac condi-
tions. The research was divided into four sections. First, the principal component analysis was used to
preprocess the Cleveland dataset, recursive feature elimination was used to select features, and min–max
normalization was used to give the dataset a high-dimensional value. Second, we compared traditional
classifiers, such as support vector machine (SVM) and artificial neural network, with the quantum approach
to verify the quantum approach’s efficiency. Third, we examined two unique QML classification methods:
quantum neural networks (QNNs) and quantum SVM (QSVM). Fourth, bagging-QSVM was developed and
deployed as an ensemble learning model. Experimental results using the QNN show an accuracy of 77%, a
precision of 76%, a recall of 73%, and an F1 score of 75%. With an accuracy of 85%, a precision of 79%, a recall
of 90%, and an F1-score of 84%, the QSVM method demonstrated a much better performance than the QNN.
Particularly, the Bagging_QSVM model exhibited an outstanding performance, with a flawless score of 100%
across all critical performance measures. The study shows that the bagging method for ensemble learning is a
solid way of increasing the accuracy of quantum method predictions.

Keywords: heart disease, machine learning, quantum machine learning, quantum support vector machines,
bagging_QSVM

1 Introduction

Diseases of the heart and blood vessels, sometimes known as cardiovascular diseases (CVDs), are a leading
cause of death in the United States [1]. Approximately 17.9 million fatalities are recorded per year, or 32% of all
deaths are attributed to CVDs each year, as reported by the World Health Organization (WHO) [2]. High blood

Huda Ghazi Enad: Computer Science Department, College of Computer Science and Information Technology, University of Anbar, Anbar,
31001, Iraq, e-mail: hod21c1001@uoanbar.edu.iq



* Corresponding author: Mazin Abed Mohammed, Department of Artificial Intelligence, College of Computer Science and Information
Technology, University of Anbar, Anbar, 31001, Iraq, e-mail: mazinalshujeary@uoanbar.edu.iq

Journal of Intelligent Systems 2024; 33: 20230261

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/jisys-2023-0261
mailto:hod21c1001@uoanbar.edu.iq
mailto:mazinalshujeary@uoanbar.edu.iq


lipid levels, obesity, high blood glucose levels, and high blood pressure are all risk factors for these diseases [3].
Heart disease (HD) is among the biggest threats to global community health. The widespread occurrence of HD
and the accompanying rise in the mortality rate threaten human safety. Thus, the early diagnosis of cardiac
disease by identifiable physical markers is essential for impeding disease’s progression and mitigating its long-
term repercussions. Preventative approaches for HD have been a study focus for quite some time [4]. Further-
more, several studies have used machine learning (ML) methods in the attempt to forecast the chances of
developing HD. Studies have embraced ML methodologies in several medical domains to improve and opti-
mize medical decision-making. ML techniques are typically employed to automatically find patterns in a
dataset without any further human input. However, traditional ML methods may be improved for better
outcomes and increased reliability [5–7]. Models utilize a wide range of ML methods, including ensemble
learning, which has been found to boost model performance for predicting cardiovascular illnesses [8–10]. As
an alternative to traditional ML methods, quantum computing may offer a more effective framework.
Quantum ML (QML) is a young but rapidly developing topic of research. This research aimed to design a
model based on an existing QMLmodel to determine whether ensemble learning and QML can help predict the
risk of CVDs. Given that ML techniques can provide reliable answers for predicting the existence of cardiac
disease, the study used both conventional and cutting-edge QML techniques.

Early identification helps substantially reduce the mortality from HD, which is regarded as one of the
major causes of death. Traditional prediction methods are complex because of the complexity of data and the
correlations that arise during the process. Conventional ML and deep learning (DL) methods [11] have used
medical records from the past to make predictions about the condition of patients. A study by Gupta et al. [12]
shows how support vector machine (SVM), Naive–Bayes, and decision tree (DT) are three types of supervised
learning algorithms that are used on HD data to make highly accurate predictions. Another method used the
African HD dataset, which has 462 cases, and utilized intelligent systems to perform a 10-fold cross-validation
[13]. Using smart devices to monitor patients in real time can slow disease progression. However, the need for
good data streaming and analysis capabilities with massive volumes of real-time data hampers proper and
prompt diagnosis. The method suggested in another study [14] demonstrates that electrocardiogram (ECG) data
can be accessed through a monitoring method that works over 5G using the Flink-based streaming of informa-
tion extraction framework [15]. Long short-term memory and convolutional neural networks (CNNs) have also
been helpful in automatic patient health prediction [16].

To improve the precision and effectiveness of HD classification, this study aims to create a system that
employs QML inside a cloud computing setting. This approach intends to increase the accuracy and speed with
which various cardiac problems or risk factors may be identified by incorporating quantum computing ideas
into ML algorithms. The framework intends to manage lengthy computations and massive datasets, ultimately
enhancing HD prediction models using cloud infrastructure’s scalability and processing power. The ultimate
aim is to improve healthcare diagnostics and mitigation in cardiac health monitoring by achieving precise
diagnoses, providing highly trustworthy risk evaluations, and maybe enabling real-time or near-real-time
classification of instances. The proposed technique is appropriate for data classification and prediction and
has broad applications in quantum computing. The present study aims to effectively predict CVDs while
addressing the issues encountered in previous research. The current study has the following contributions:
• To develop a cloud-based system for classifying HDs that can monitor health data from remote users and
identify HD classifications.

• Several preprocessing methods, comprising feature selection, feature extraction, and normalization, are
used to prepare the data for analysis.

• To investigate the potential of QML models by comparing their performance to that of conventional ML
classifiers like artificial neural network (ANN) and SVM. Then, we use quantum neural network (QNN) and
quantum SVM (QSVM), two different quantum ML classifiers. This stage aims to determine the most efficient
QML approach for the provided dataset.

• To develop, implement, and evaluate a brand-new ML model (bagging-QSVM-based bagging ensemble
learning method). The SVM-recursive feature elimination (RFE) method is used to calculate and demonstrate
each feature’s relevance and personal involvement in predictions made by the model, which sets this
research apart from others.
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• To compare the precision, accuracy, recall, and f-score of several effective classification methods to demon-
strate the efficacy of the proposed approach.

The structure of this study incorporates several perspectives. Section 2 presents a comprehensive assess-
ment of approaches to classifying HD. Section 3 proposes QML for HD, analyzes the bagging-QSVM model, and
discusses the mathematical foundations of QML and its particular relevance to the HD classification. In Section
4, the results from using the bagging-QSVM model are presented, discussed, and compared with those of
current approaches. Finally, the study’s contributions, significant consequences, and implications are sum-
marized in Section 5.

2 Related works

Classification algorithms based on ML have several uses and are a valuable tool for solving complex problems.
Healthcare is widely acknowledged to be a field where ML applications abound, providing possibilities for
improving a wide range of clinical judgments. Researchers have prioritized HD research over other healthcare
problems using revolutionary ML approaches. Ensemble learning plays a pivotal role in significantly enhancing
the overall performance of MLmodels. Ensemble learning has been used successfully in several previous studies
with a wide range of approaches for improved diagnostic skills to increase the precision of HD prediction.

The quantum particle swarm optimization (QPSO)-SVM model exhibits the highest degree of accuracy in
the prognosis of cardiac ailments, achieving 96.31% on the Cleveland Heart Dataset. Moreover, an investigation
revealed that the QPSO-SVM model outperforms other modern prognostic models in terms of precision
(94.23%), sensitivity (96.13%), F1 score (0.95%), and specificity (93.56%). The QPSO-SVM model, which is an
example of ML, utilizes QPSO to adapt the optimal SVM parameter for the precise anticipation of HD [17].
Future implementations for the prognosis of cardiac diseases should integrate various strategies to improve
the speed and accuracy of detection for real-time application. A study posits that the proposed approach,
which employs instance-based QML and DL methods, surpasses existing classification methods in terms of
accurate prediction and cost-effective computational time. The accuracy of instance-based quantum DL is 98%,
and that of instance-based quantumML is 83.6%. In addition, the study revealed that the use of quantum-based
DL and ML enhances system performance by reducing the computational time [18].

The utilization of the quantum paradigm exhibits a potential to expedite the process of K-means clus-
tering. In the conducted study, the quantum K-means clustering technique was employed to identify instances
of HD by applying a quantum circuit approach to the HD dataset. The research findings indicate that the quantum
mechanical K-means clustering algorithm operates at a time complexity of O(LNK), which is notably faster than the
traditional K-means clustering technique with a time complexity of O(LNpK). Furthermore, a comparative analysis
was performed between quantum and classical processing to assess their performance metrics [19]. Quantum
methodologies, such as QNN and hybrid random forest QNN, are highly suitable for the early prediction of cardiac
diseases. In the aforementioned study, these quantum ML methods were employed for classification purposes on
the Cleveland and Statlog datasets, resulting in reported areas under the curve values of 96.43 and 97.78%,
respectively [20]. The limitations imposed by the study’s resources affected the full utilization of the entire dataset.
As per the study findings, the implementation of quantitative structure-activity relationship machine learning
(QML) techniques yielded a predictive accuracy of 84.64% for HD.

The study also posits that QML approaches demonstrate competence in analyzing medical signal data. For
classification purposes, QNN, quantum means (Q-means), and quantum K-nearest neighbors (Q-KNN) were
used. Consequently, the implementation of quantum ML classifiers may enhance early diagnosis and risk
prediction in healthcare, particularly in HD. Various classifiers, such as the variational quantum classifier
(VQC), QSVM, and QNN, and traditional ML techniques, including ANN, SVM, and the Shapley additive expla-
nations (SHAP) framework, were employed. These classifiers were utilized in the classification of the Cleveland
HD dataset. The study underscores the potential of QML in the healthcare sector; however, it also acknowl-
edges the challenges associated with its application, primarily due to the lack of discourse surrounding
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computing requirements and limitations in research, which may impede its widespread adoption in health-
care environments. Further research endeavors are necessary to address these challenges and develop highly
precise and efficient QML models for healthcare applications. The main limitation of the study stems from the
utilization of small data samples in relation to a limited number of bits. The study used the quantum version of
a fully CNN (FCQ-CNN) and SVM with RFE for dimension reduction to reach an excellent testing accuracy of
84.6% across all instances for heart datasets [21]. The summary of related works on HD diagnosis using QML is
presented in Table 1.

Previous research reviews have used many intelligent prediction approaches with artificial intelligence (AI)-
based classifiers to diagnose HD accurately using health-related data frommedical databases. After reviewing the
current literature, we compiled the following list of themost often encountered problems with prediction validation.
Predictions of cardiac issues have been made using practical feature selection algorithms like the SVM and gradient
boosting trees. These algorithms may be used with classifiers to increase prediction accuracy and gain resilience.
Therefore, research on other aspects of nutrition and clinical predictor factors can aid in precise diagnosis.
Predictability improvements may be achieved by employing quantum-based learning to rectify the imbalance
observed between the positive and negative classifications in comparable medical datasets. The proposed approach
has several potential uses in quantum computing and is well suited for data prediction and categorization. In light of
the problems with earlier studies, the current investigation seeks to improve CVD prediction.

3 Proposed QML for HD diagnosis

To anticipate cardiac disease in patients, the proposed classification approach combines quantum-based
learning with ML to identify shifts in health data from a dataset. To slow the disease’s spread and ensure
that the right therapy is administered, the afflicted patient must be identified and placed in a specific category.
The mortality rate is the primary target of the suggested strategy, which aims to reduce it through early
diagnosis. Prediction accuracy has been an issue in previous research; the proposed model is being developed
to improve performance by applying instance-based quantum ML methods. Figure 1 is a schematic of the
model’s architecture. The figure provides an overview of the proposed prediction mechanism operation,
which is broken down into the preprocessing and classification stages. The Cleveland HD dataset is used as
the input for the proposed analysis. Patient health-related test results containing various predictive variables
serve as the database’s input data. The data collected is preprocessed by eliminating any gaps in the informa-
tion by filling in missing values and simplifying the data structure through dimensionality reduction. The next
step is a two-stage classification procedure, after which the input data are separated into the training and test
sets. In the first step, disease prediction is carried out independently using three different classifiers: a QNN, a
QSVM, and a bagging-QSVM. The suggested instance-based quantum ML method for evaluating input data is
used to execute the second step of the computation. By using the relationship between features, the method
accurately determines patterns. Compared with conventional categorization methods, the suggested quantum
model shows considerable improvements in precision and efficiency.

This research aims to examine the feasibility of using quantum ML algorithms for HD diagnosis. The study is
divided into four parts. First, the Cleveland dataset is preprocessed using several techniques, such as RFE to choose
which features to use, principal component analysis (PCA) to extract these features, and min–max normalization.
Second, quantum classifiers are compared with their conventional counterparts such as ANN and SVM. Third, QNN
and quantum support vector machine (QSVM), which are two types of quantum ML classifiers, are examined.
Finally, a QSVM-based bagging ensemble learning approach (i.e., bagging-QSVM) is developed and applied.

3.1 Cloud-based HD classification model

The present study suggests the development of a cloud-based system for classifying HDs and that can monitor
health data from remote users and identify their HD category. The technology is sufficiently adaptable to
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Figure 1: Proposed quantum ML for enhancing HD diagnosis.
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support the diagnosis and classification of a wide range of disorders when applied to the consumer health data
stored on cloud servers. Nonetheless, we primarily focused on a single instance of application, which included
classifying the illness as either “normal” or “abnormal.” Figure 1 displays the general layout of the proposed
architecture. In the architecture, patients visit a rural healthcare facility, where a practitioner collects data via
wearable devices, performs imaging tests and medical history assessments, conducts surveys, obtains elec-
tronic records of health, and then transmits all information to a doctor, who then uploads it to a cloud platform
for analysis.

3.2 Dataset collected

The HD dataset sourced from Kaggle is as a comprehensive compilation of HD-related data. The dataset merges
information from five distinct datasets into a unified dataset. This merger extends across 12 common features,
making it the most extensive HD dataset available for research purposes [23]. The five constituent datasets
utilized for this are the Cleveland, Hungarian, Switzerland, Long Beach VA, and Statlog (Heart) datasets [24].
These datasets include male and female patients, resulting in a total of 1,190 records. Among these records are
11 distinctive features and a single target variable. The dataset accounts for 629 instances of HD and 561
instances of normal cardiac health. The age range of the patients included in the dataset is 57–60 years.
Importantly, this dataset does not have any missing values. This dataset comprises a diverse set of features,
incorporating six nominal and five numeric variables. For a comprehensive understanding of the dataset’s
attributes, their description and that of the features included in the dataset on HD are presented in Table 2.

3.3 Data preprocessing

In the preparation of the HD classification dataset, denoted as “Cleveland_statlog_Hungary,” several critical
data preprocessing steps were employed to ensure data quality and enhance its suitability for classification
tasks. The following primary processes were included.

Table 2: Description of the features included in the dataset on HD [23,24]

Feature name Data type Description

Sex Nominal Male (−1), female (−0), or unsure ()
Age Numerical Years of age of patients
Cholesterol Numerical Mean milligrams per deciliter of serum cholesterol
Fasting blood sugar Nominal If the fasting blood sugar is over 120 mg/dl, that is 1, and if it is below that, it is 0
Chest pain type Nominal The patient’s chest discomfort is classified as either (1) typical, (2) typical angina, (3) nonanginal

pain, or (4) asymptomatic
Resting bp s Numerical Resting blood pressure measured in millimeters of mercury
Resting ECG Numerical Three values are used to indicate the results of a resting ECG. 0: normal ST-T wave abnormality;

1: left ventricular hypertrophy
Exercise angina Nominal Exercise-related angina with 0 for NO and 1 for YES
Max heart rate Numerical Determined heart rate accomplished
ST slope Nominal Slope of the ST segment during maximal exercise 0 = typical sloping up (1), level (2), or sloping

down (3)
Old peak Numerical Reduced mood after exercise compared to being at rest
Target Normal The goal variable is whether the patient has HD, where 1 indicates high risk and 0 indicates

low risk

Heart disease classification using quantum machine learning approach  7



3.3.1 Data cleaning

Data cleaning is a fundamental step that involves a meticulous examination of the dataset for any anomalies, such
as missing values, outliers, or errors. When identified, outliers and errors are either rectified or removed, while
missing values are imputed or excluded from the dataset. Notably, the comprehensive dataset from the merged
Cleveland, Statlog, Hungary, Switzerland, and Long Beach datasets has no missing variables. Consequently, the
focus of data pretreatment for classification shifted toward techniques such as feature engineering, dimensionality
reduction, and data transformation for enhancing the performance of classificationmodels. However, the statistical
importance of the model analysis findings may be diminished due to missing values. For accurate and reliable
analysis, missing values should be properly mitigated during data preparation. One duplicate row from 303 in the
Cleveland dataset was modified and eliminated. Consequently, 302 distinct cases were obtained: 164 matched
patients with HD and 138 matched patients without HD. We found all the values in Statlog. In addition, 272 identical
occurrences were identified, leading to the removal of duplicate instances. Of these, 508 instances correspond to
individuals with HD, while 410 instances represent those without HD.

3.3.2 Data integration

Integrating data that have been cleansed from many sources.

3.3.3 Data transformation

The data are transformed using the appropriate techniques. When specific data attributes have huge input
values that are incompatible with other features, the learning performance might be poor. Thus, record
research was carried out to visually study and select links to suit various features. This approach is achieved
through one-warm encoding. One-hot encoding is possible with the available datasets when capabilities are
combined with cp, thal, and slope. Before they are integrated with the original data sets, these three capabil-
ities are subdivided into cp_0 to cp_3, thal_0 to thal_3, and slope_0 to slope_2. Before further processing, the
data are scaled based on the statistical analysis results.

3.3.4 Data normalization

“Standardization” and “normalization” are two crucial methods of the feature scaling process. We normalized
the data by taking the range of distributional changes and removing the mean and dividing it by the standard
deviation. Centering is the process of eliminating the mean from data values, while scaling is the practice of
dividing each data point by the standard deviation. The existence of outliers is preserved by standardization,
making the final algorithm more resistant to outside effects than one that has not been standardized.
Equations (1)–(3) can be used to standardize a given value.

′ =
−

x

x μ

σ

. (1)

Here, x is the original value, μ is the mean of the dataset, σ is the standard deviation, and x′ is the
standardized value.

=
∑ =

μ

N

XN .

i

N

1 (2)

In this equation, the summation (∑) is taken over the range of N, and the mean (μ) is calculated by dividing
the sum of all the values in the dataset (XN) by the total number of values (N). Mean is a measure of central
tendency that represents the average value of a dataset, and it is used in various statistical analyses to compare
the distribution of values in different datasets.
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Standard deviation (σ) is a statistical measure used in various analyses, such as hypothesis testing and
confidence interval estimation. This measure is calculated by dividing the squared differences between each
value in the dataset and the mean by the total number of values. Normalization ensures that all characteristics
have an equivalent magnitude, which is beneficial for data distributions that deviate from the Gaussian model.
Normalization equation (4) is essential in preparing the data for min–max scaling.

′ =
−

−
X X

X X

x .

min

max min

(4)

Here, the values of X
min

and X
max

represent the respective least and greatest values of the aforementioned
feature within the collection of data. The provided equation standardizes all features within the range of [0,1].
Subsequent to this normalization process, the data are further processed by dividing it into two distinct
portions: the training and testing data. These preprocessing procedures are crucial in upholding the integrity
of the dataset and optimizing it for subsequent classification analysis.

3.4 Feature extraction

Feature extraction is a significant stage in HD classification because it helps identify the most relevant features
that can be utilized to train ML methods. Some feature extraction methods are used in HD classification such
as the PCA technique, and it is a powerful tool utilized in ML to identify the most influential factors con-
tributing to HD prediction. By reducing the dataset complexity, PCA enhances the overall performance of ML
techniques. Essentially, PCA is a feature extraction technique that identifies the primary components within
the data and uses them to transform its underlying structure.

PCA relies on a series of X-unit vectors, each of which represents the orientation of the line that provides
the best match. After the first X1 components, all the others are perpendicular to each other. The first PC
represents the axis along which data’s anticipated variance is maximized. By contrast, the data projections’
variance reaches the maximum in a path perpendicular to the initial X1 main components. PCA is a well-liked
method for simplifying data by identifying its key drivers of variance. This method may be used for predictive
modeling and exploratory data analysis. A lower-dimensional data collection can be constructed while keeping
as much variance as possible by mapping every information point to only the first few major components.
With PCA, a long list of variables can be shortened to a manageable subset that still accounts for the bulk of the
original set. Overall, PCA is a potent technique that is extensively utilized because of its ability to improve the
efficiency of ML algorithms. Based on the findings, PCA is computed as follows:
1. Standardizations: The continuous beginning variables are spread out such that they all have an equal impact

on the study. The average and standard deviation for each factor are determined, and standardized data may
be expressed as equation (5) by subtracting the mean from every parameter of the standard deviation.

=
−

Z

x μ

σ

. (5)

Here, µ = {µ1, µ2, … µm} represents the mean of the independent features, while σ = {σ1, σ2, … σm}
represents the standard deviation of the independent features. Z denotes the z-score, x denotes the original
value, μ denotes the mean of the dataset, and σ denotes the standard deviation of the dataset. The z-score
serves as a measure of the number of standard deviations of a value from the mean. A positive z-score
indicates that the value exceeds the mean, and a negative z-score suggests that the value falls below the
mean. The z-score proves valuable in statistical analyses, such as hypothesis testing and confidence interval
estimation, because it enables the comparison of values from disparate datasets that may possess different
means and standard deviations.
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2. Covariance matrix calculation: The covariance matrix is calculated to identify the correlations between
variables. The covariance matrix is calculated as follows:

= ⎛
⎝

⎞
⎠C

n

X X

1

* * ,

T (6)

where C is the covariance matrix, n is the number of observations, and X is the standardized data matrix. The
eigenvalues and the eigenvectors are calculated. The equation used to calculate the covariance matrix of a
dataset is a measure of the relationship between variables in a dataset. The equation measures how much the
variables in the dataset are related to each other and helps in identifying the direction of the highest variance,
which can be useful in PCA and other dimensionality reduction techniques to calculate the eigenvalues and
eigenvectors of the covariance matrix following these steps:
• The covariance matrix (C) is calculated using equation (6).
• The eigenvalues (λ) and eigenvectors (v) of the covariance matrix (C) are determined using appropriate
numerical methods such as QR decomposition or singular value decomposition.

3. The most minor and most significant values of that feature in the collection data are determined. The
covariance matrix’s eigenvectors and eigenvalues are determined. Each eigenvector is a direction in which
the data change remarkably, and its corresponding eigenvalue is the magnitude of that eigenvector’s
fluctuation. The eigenvectors and the eigenvalues can be calculated using the following equation:

× = ×C V λ V , (7)

where v is the eigenvector, λ is the eigenvalue, and C is the covariance matrix. The relationship between the
eigenvector and eigenvalue of the covariance matrix is a pivotal concept in the examination of multivariate
data and linear transformations.

4. The primary components and the eigenvectors with the largest eigenvalues are selected. The original data
are transformed into a lower-dimensional space using PCA, where the immediate members stand in for the
directions along which the data fluctuate the most.

5. Visualization of results: The results are visualized using a scatter plot. A scatter plot of the data along the
first and second main components of interest (x-axis and y-axis, respectively) is generated. Figure 2 shows
that each point’s hue reflects a different dependent variable.

Figure 2: Visualization of results.
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A 3D scatter plot of statistics inside the predominant thing space is generated. This form of plot is
beneficial for visualizing records with three dimensions. The x-axis in Figure 3 represents the most essential
aspect, the y-axis represents the second most important, and the z-axis is the 0.33 most important. The
identification of patterns or connections in the statistics may be facilitated by the correspondence of each
factor’s color to the variable of interest.

3.5 Feature selection

Selecting the most important input variables or features from a huge dataset is an essential part of ML.
Reducing the data’s dimensionality in this manner can improve the performance of prediction models.
With only the most pertinent details included, the model can zero in on what is essential in determining
the outcome. Overfitting, which occurs when a model is extremely complicated and catches noise rather than
underlying patterns, may also be avoided in this way. Different approaches are used for selecting features; the
approach is dependent on the dataset and the current situation. A strong technique utilized in feature selection
is the SVM-RFE approach, which employs SVM for evaluating features based on nonlinear kernels and for
survival analysis. Figure 4 indicates that this approach aids in improving a classifier’s performance by
selecting the most important features and discarding the rest.

The SVM-RFE technique is often used in disciplines such as ML and data mining. Users can boost the
precision of their models for classification and hence the quality of their findings by employing this approach.
To maximize a predictive model’s efficacy, the role that feature selection plays in ML must be appreciated. The
following equation describes the SVM-RFE algorithm:

( ( ))∑+ − +
=

w w C y w x bmin

1

2

Max 0, 1 .w b

T

i

n

i

T

i,

1

(8)

In this equation, w represents the weight vector, b is the bias term, C is the regularization parameter, and
y_i is the dependent variable. The SVM-RFE method is an iterative algorithm that works backward from an
initial set of features. In each round, the method fits a simple linear SVM and ranks the features based on their
importance. The process is repeated until a feature-sorted list is obtained. Through SVM training using the
feature subsets of the sorted list and evaluating the subsets using cross-validation, the optimal feature subsets
can be identified. The SVM-RFE method consists of the steps presented in Figure 4.

Figure 3: 3D data visualization.
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3.5.1 Feature scaling

To standardize and scale the data, we use Standard Scaler and Min-MaxScaler. When the input variables have
different scales or units, the Standard Scaler function normalizes the data by subtracting the mean and scaling
to the unit variance. For each feature, Standard Scaler sets the mean to 0 and the standard deviation to 1. The
“ca,” “cp,” “old peak,” “thal,” “exang,” and “slope” characteristics are scaled using this method.

3.5.2 Min-MaxScaler

Data may be scaled to a range between 0 and 1 using Min-MaxScaler. It shines when the input variables do not
follow a Gaussian distribution and have varying ranges. Using Min-MaxScaler ensures the uniformity of
features in size. To adjust the size of the features that have already been normalized, we use Min-MaxScaler.

The dataset is divided into the training and testing groups, with the training dataset as the basis for
training ML techniques, while the testing dataset is designated for model performance assessment. The major
focus of this section is the testing of the model’s performance on new information. A training set and a testing
set (80 and 20% of the dataset, respectively) are created to begin the process.

3.6 Data splitting

Data splitting is a fundamental strategy in assessing ML algorithms. Overfitting may be avoided by splitting the
dataset into training and testing sets, generating an accurate testing set, simulating the model’s behavior on
simulated data, and assessing the results. Typically, 80% of the data is used for training, while 20% is used for
testing. By using this proportion, the dataset would generate a training set with 952 records and a testing set
with 238 records [2]. Figure 5 illustrates how the separation of training and testing datasets facilitates the
training and assessment of different ML classifiers.

step1
• Reducing  the number of features with low-weight squares iteratively.
• Training a classifier to determine a weight vector and then determining how each feature should be ranked

step2
• Finding the weight vector using classifier training Here, we'll use a training dataset to train the SVM.
• To predict the class of a new sample, the trained SVM algorithm creates a model.

step 3

• Calculating ranking criteria for all features
• The weight vector components of the SVM calculate the ranking score. In backward feature deletion, the 
features included in the iteration are removed.

step4
• Features ought to be eliminated if they have the lowest ranking criteria value. The traits that score lowest are 
considered insignificant. Consequently, they are not taken into account.

step5
• Procedure iterates until the target feature count is attained. Enhancing the accuracy of the classifier and 
streamlining the training process may be achieved by minimizing the amount of features.

Figure 4: SVM-RFE steps.
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3.7 Classification stage

The study demonstrates the contribution of ML classification algorithms, including the ANN, SVM, QNN, QSVM,
and bagging applied to QSVM, to the overall findings of the research. Following the dataset preparation
process described in the previous two sections, ML techniques and quantum ML were used to implement
categorization algorithms. The Scikit-Learn package must be utilized in the development of ML algorithms,
and the Qiskit package uses QML. Regression, classification, and clustering are just a few of the ML algorithms
included in the library, which is quite important in this field. The proposed system is implemented using a few
of the functions offered by this library. The proposed system uses many Python libraries, including Google, in
its implementation.
• Colab: This library is used for the free Jupyter Notebook environment on Google Cloud servers known as
Colab Notebooks.

• NumPy library: This library is used for computing numerical data.
• Pandas is a library for analyzing and manipulating data.
• Matplotlib: This library is for making graphs, plots, and charts.
• Seaborn: This is a matplotlib-based data visualization package.
• Cv2: OpenCV is a well-known library for programming in real-time computer vision.
• The Python library file system is the OS.

3.7.1 SVMs

SVM is a discriminative model because it fits a hyperplane that divides two classes. It is an approach to
supervised ML that may be applied to issues related to regression and classification. It depicts a hyperplane,
that is, a line that divides a plane in two, keeping and separating the multiple categories of data on either side
for each class in a 2D environment. The SVM produces the hyperplane in the test data, which was built using
the training data. The coordinates of each data point serve as the basis for the support vectors. This approach is
mainly used to address classification issues. The method seeks out the hyperplane that minimizes the classi-
fication error while maximizing the margin. The efficiency relies on the specifications of the selected kernel
and the soft margin setting. A quadratic problem of optimization may be used to describe the SVM method.
Among the many kernelized learning algorithms, SVM is among the most widely applied radial basis function
(RBF) kernel. The RBF kernel may be perceived as a distance-based measure of similarity that compares two

Figure 5: Split the dataset.
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feature vectors, with values ranging from zero (in the limit) to one (when x = x′). The gamma and C hyperpara-
meters must be tuned to use SVM with the RBF kernel. The optimal set of hyperparameters can be obtained by
performing a grid search with cross-validation. The SVM algorithm steps are represented in Algorithm 1.

Algorithm 1: SVM Algorithm steps

Input: Training data
Output: A class label for feature vector
Begin
Step 1: Define the independent variables and the system.
Step 2: Define the error function (cost function)
Step 3: Reducing the error function to identify the ideal hyperplane.
Step 4: Evaluate the system with fresh data.
Step 5: To enhance performance, change the system parameters as necessary.
Step 6: Based on accuracy, determine the final findings.
End

The SVM formula is used to determine the best hyperplane that divides various classes in the input data.
The hyperplane’s architecture improves the algorithm’s capacity to correctly generalize and categorize new
data, maximizing the margin between classes. For all training data (( ))x_i, y_i , the objective function of the SVM
is defined as minimizing ++ ++|||| |||| (( (( (( ))))))w 2 C* 0, 1 y_i* wT*x_i bmax0.5* , subject to ++ ≥≥(( ))y_i* wT*x_i b 1.

3.7.2 ANN

ANNs are mathematical representations that draw inspiration from biological systems. A neural network is
made up of a collection of artificial neurons that are connected and whose connections have weights. ANN has
three distinct parts: the input, the processing, and the output. This neural network processes information using
a connectionist algorithm. This technique is a powerful analytical method for characterizing very intricate
nonlinear functions. One popular kind of ANN architecture is the multilayer perceptron (MLP). MLP has an
input layer, an output layer, and a concealed layer. This architecture receives data from the layer below and
transfers it to the one above it, the input layer. This allows the addition of as many secret levels to the model as
desired, significantly increasing the complexity. The MLP is often used for function approximation for pre-
diction and classification issues. The model’s capacity to learn arbitrarily complicated nonlinear functions to
arbitrary degrees of accuracy is contingent upon the availability of the requisite size and structure. A feedfor-
ward multilayer network only has an interconnected set of nonlinear neurons (perceptions). Each neuron in
an MLP network performs computations according to a group of equations known as the MLP network
formula. The MLP has input, hidden, and output layers and is a feedforward neural network. The computation
performed by a neuron in the MLP is based on the sum of its inputs and then subjected to an activation
function. The activation function is typically a nonlinear function that reduces the linearity of the network. A
neuron in an MLP may be described by the following formula:

= + + + +z w x w x wn xn b1* 1 2* 2 ... * , (9)

where z is the input weighted sum; w w wn1, 2, ..., are the input weights; x x xn1, 2, ..., are the input values; and b
is the bias. Multiplying the weighted sum of the neuron’s inputs by an activation function yields the neuron’s
output.

( )=a f z , (10)

where f is the activation function. The output of the neuron is then passed on to the next layer of the MLP. The
formula for the output of an MLP can be expressed as follows:
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( ( ) )= + +y f w f w x b b2* 1* 1 2 , (11)

where x is the input vector; w w b1, 2, 1, and b2 are weight and bias matrices; and f is the activation function.
The output of the MLP is calculated by multiplying each neuron’s weighted sum of inputs by the activation
function. To reduce the deviation between the anticipated and target outputs, an optimization approach, such
as backpropagation, is used to fine-tune the MLP’s weights and biases. The corresponding algorithmic repre-
sentation is provided in Algorithm 2.

Algorithm 2: ANN algorithm steps

Input: Training data
Output: A class label for feature vector
Begin
Step 1: Initialize the network: Input, hidden, and output nodes can all have their counts adjusted. Randomly
initialize the weights and biases for each neuron in the network.
Step 2: Forward propagation: calculate the output of all neurons in each layer using the activation function to
the weighted sum of inputs. The procedure begins at the input layer and proceeds via the hidden levels until
it reaches the output layer.
Step 3: Calculating the error: Compare the predicted output of the network with the actual output (target) for
the current training example. This is done using a suitable error or loss function, such as mean-square error
or cross-entropy loss.
Step 4: Backpropagation: Updating the weights and biases of the neurons in the network by propagating the
error backward through the network. This is done by computing the gradient of the error concerning the
weights and biases and adjusting them using an optimization algorithm-like gradient descent.
Step 5: Repeating steps 2–4: Iterate through the training examples multiple times, adjusting the weights and
biases after each iteration, until the network converges, and the error is minimized.
Step 6: Testing and classification: Once the network is trained, use it to make predictions on unseen data by
performing forward propagation with the learned weights and biases.
End

3.7.3 QNN

QNNs are a type of quantum algorithm that may be taught variation ally with classical optimizers; they are
based on specified quantum circuits [25]. A feature map (with input parameters) and an ansatz (with trainable
weights) are components of these circuits. Like their classical analogs, QNNs are employed in ML to uncover
previously unseen patterns in data. Once the data are placed in the quantum state, it is processed by quantum
gates whose weights can be changed and learned again. Backpropagation may be used to train the weights
using the measured value of this state as input to a loss function. Numerous research studies have imple-
mented QNNs for cardiovascular risk prediction, machine translation, and function approximation. The QNN
algorithm is structured as follows:
• Through the use of cross-validation, the dataset is partitioned into a training dataset and a testing dataset.
• Before analysis, the data are preprocessed using RFE, PCA, and min–max normalization.
• A feature map of two qubit maps conventional feature vectors will use to quantum spaces.
• In a QNN network, a parametrized quantum circuit obtains the input data and weights as parameters.
• A string of binary results is produced in a bulk form.

The QNN model is trained on the data, and cross-validation iterators are used to evaluate the model’s
efficacy. QNNs may be regarded through the lens of both quantum computing and classical ML, and they can
be used for various ML tasks, such as classification, regression, and optimization, as shown in Figure 6. The
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quantum data are decoded back into a standard value of 0 or 1 by the binary measurements. The QNN
algorithm is presented as Algorithm 3.

Algorithm 3: QNN Algorithm steps

Input: Training data
Output: A class label for feature vector
Begin
Step 1: Initialize the weights and biases for the input layer, hidden layer(s), and output layer.
Step 2: Set the learning rate and the number of epochs.
Step 3: Load classical data into a quantum state using quantum feature maps.
Step 4: Process the quantum state with quantum gates parametrized by trainable weights.
Step 5: Calculate the error between the predicted output and the actual output.
Step 6: Backpropagate the error through the network to update the weights and biases.
Step 7: Repeat steps 3–6 until the error is minimized or a maximum number of epochs is reached.
Step 8: Use the trained QNN to classify the output for new input data.
End

Figure 6 depicts the QNN’s input, output, and hidden units. One occlusion layer is employed in this case.
Each hidden-layer node represents three states, where r is the quantum level. For simplicity, we assume that ni
means the input to the input layer, Oj represents the output of the hidden layer, and Ok represents the output
of the output layer, representing the learning rate, which is a small random value.

As an illustration, ni represents the input layer, while Oj and Ok describe the hidden and output layers’
output, respectively. Wij represents a weight on the input layer, while Wkj represents a weight on the hidden
layer, and Figure 7 displays these relationships.

3.7.4 Quantum support vector machine (QSVM)

The SVM technique has a quantum counterpart in the QSVM approach. The Pegasos method, a fundamentally
predicted subgradient solver for SVM, is used to train the classifier in the QSVM method. When applied to the
SVM method, the quantum kernel technique accelerates the learning process, as seen in the QSVM algorithm.
For processing on a quantum computer, the quantum kernel method uses quantum map features to convert
standard data to quantum states. After training the QSVM classifier on a data set, its efficacy may be evaluated
on a separate test data set. The classical-quantum (CQ) approach encodes classical data so that a quantum
computer can handle it, enabling the mapping of conventional vectors of features to quantum spaces. The CQ

Figure 6: Architecture of quantum neural network.
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method converts classical information into quantum states using a 5-qubit feature map. Figure 8 depicts the
QSVM algorithm’s structure; the dataset is split between the training and testing datasets (in 80:20 proportion)
after being preprocessed with RFE and min–max normalization. Computing the inner outcome of the quantum
map features is how the quantum kernel transforms the quantum state of the collected information points into
a space of higher dimension. To develop a QSVM for classification, a ZFeatureMap and a quantum kernel with
a state vector simulator backend are used. The random seed of the algorithm is set to 12345. The CQ technique
can be used to train the QSVM algorithm by encoding classical data to be processed by a quantum computer.
The CQ technique employs a 5-qubit feature map to map classical feature vectors to quantum spaces. The
quantum kernel changes the data points of the quantum state into a space with more dimensions by deter-
mining the inner outcome of the quantummap’s features. The model’s accuracy is determined by applying the
QSVM classifier trained on the data to the test data and then analyzing the results. The QSVM algorithm is
presented in Algorithm 4.

Algorithm 4: The QSVM steps

Input: Training data
Output: A class label for feature vector
Begin
Step 1: Prepare the input, hidden layer(s), and output layers by setting their initial weights and biases.
Step 2: The epochs number and the learning rate may be adjusted.
Step3: Dividing a test dataset and a training dataset with an 80:20 split
Step 4: Preprocessing the dataset with RFE and min–max normalization.
Step 5: Applying a 5-qubit feature map to translate conventional feature vectors into quantum spaces.
Step 6: We take the inner result of the quantum map features to project the state of quantum data points into
a higher dimensional space.
Step 7: The training data were used to fine-tune the QSVM classifier.
Step 8: Use the test data to determine how well the model performs.
Step 9: Decode the quantum information into its equivalent binary measurement (a standard value of 0 or 1)
for each classical input.
End

The QSVM quantum kernel uses a quantum map of features to convert conventional vectors of features to
quantum spaces. The traditional feature vector (x) is transformed into a quantum state ( )( )| |x x utilizing a
quantum feature map. The quantum kernel then uses the internal result of the quantum map’s characteristics

Figure 7: QNN classifier outline.
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to project the quantum state’s data points into a space with extra dimensions, where xi and xj are n-dimen-
sional inputs, ( )x is the quantum feature map, and kernel matrix K is defined as ( ) ( )= | | |Kij xi xj 2. Quantum
kernels may be used with standard classical kernel learning methods, like SVM and clustering. The QSVM
training algorithm is an optional algorithm offered by the qiskit-machine-learning package. This algorithm is
like SVM but has a quantum kernel. The outline of the QSVM is presented in Figure 8.

3.8 Proposed bagging QSVM method for HD diagnosis

HD classification is a crucial task in medical research, and ML methods have been extensively employed to
improve classification models. Ensemble learning approaches, such as bagging, can be used to enhance the
performance of HDmodel classification. To aggregate the classifications of manymodels trained on various parts
of the same dataset, a technique called “bagging” is used. A newmodel relies on a bagging ensemble process built
on top of the QSVM to efficiently classify HDs. The method utilizes a random method of splitting the dataset into
smaller pieces. If the classification algorithm is not performing well in identifying the HD risk, using an ensemble
strategy like boosting or bagging can help. Combining the best features of bagging and the QSVM algorithm,
bagging-QSVM is an ensemble learning method that can make models work better. For this method, 100 separate
QSVM models are trained on different parts of the dataset. The final output of the ensemble model is then
generated by averaging the predictions of these models. After training the models, the ensemble model provides
the final result by averaging the forecasts and assigning themajority vote to the class with the most votes. In each
bootstrap sample utilized in the bagging model, some occurrences from the original dataset are duplicated or
disregarded. Each bootstrap sample in a bagging model replicates the original dataset or skips part of the
occurrences. This approach generates many subsamples of a dataset for use in model training. The bagging
ensemble approach averages the predictions of several models, which is very useful when working with high-
variance models because it helps reduce the model’s variance. When used in statistical learning or model fitting,
the bagging ensemble method is an example of ensemble learning that integrates many models to enhance
prediction performance. The bagging-QSVM algorithm is presented in Algorithm 5.

Algorithm 5: Bagging-QSVM

Input: Training data
Output: A class label for feature vector
Begin
Step 1: Datasets are often divided into test and training sets.

Figure 8: Outline of the QSVM.
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Algorithm 5: Bagging-QSVM

Step2: For each bootstrap sample:
a. The training data should be sampled at random.
b. Training a QSVM algorithm on the specified subset.
c. Save the model after training.

Step 3: For each instance in the testing set:
a. Using all of the saved QSVM models to make predictions.
b. Considering a weighted majority vote, combine the forecasts.

Step 4: The Bagging-QSVM model is tested, and its results are analyzed.
Step 5: Returning the final output of the Bagging-QSVM model.
End

Figure 9 presents a schematic description of the bagging-QSVM model:
• The first step in converting conventional data into a quantum state is to define the quantum feature map.
• In step two, the quantum feature map is used as an input parameter in constructing a new instance of the
QSVM class.

• Third, the QSVM instance is used as the basis estimator to create a new instance of the bagging classification
class.

• Fourth, the fit technique is used to adjust the bagging classification instance to the input data.
• The classification approach is employed to make predictions on newly collected information.

Figure 9: Bagging-QSVM model.
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The bagging method keeps the QSVM algorithm from overfitting the data. The bagging approach produces
several subsets of the original dataset by randomly picking data with replacement. A QSVM model is trained
independently on each subgroup, and then, the models’ combined predictions are utilized to create a final
classification.

4 Results and discussion

4.1 SVM results

When the models were trained on the comprehensive HD dataset, the achieved outcomes were are follows:
accuracy of 73.1%, precision of 68% to abnormal and 79% to class normal, recall of 77% to class abnormal and
70% to class normal, F1 score of 72% to class abnormal and 74% to class normal, sensitivity of 80%, macro
average of 73%, and average weight of 74%. All the results are summarized in Table 3.

The classifier achieved a success rate of 73% in accurately categorizing the cases, as evidenced by its
overall accuracy of 0.73. Nonetheless, accuracy alone may not provide a comprehensive understanding of the
classifier’s performance. In terms of predicting the absence of HD, the classifier displayed a precision of 0.68
and exhibited a precision of 0.79 in predicting the presence of HD. Precision, which refers to the percentage of
correctly anticipated occurrences for a given class, was appropriately exemplified. A high level of accuracy is
indicated by a low occurrence of false positives. Specifically, the recall for identifying the presence of HD was
0.70, while the recall for determining its absence was 0.77. Recall is also referred to as sensitivity or true
positive rate and measures the percentage of correctly predicted occurrences of actual positivity. A strong
recall is indicated by a low rate of false negatives. On the one hand, in the case of forecasting the absence of
cardiac disease, the F1 score, which is the harmonic mean of accuracy and recall, was reported to be 0.72. On
the other hand, for predicting the presence of cardiac disease, the F1 score was reported to be 0.74. The F1 score
provides a balanced metric that combines precision and recall. This metric is particularly useful in situations
where the dataset is unbalanced. From the analysis of the performance metrics, we can infer that the classifier
categorizes cases of HD. This is evident from the high accuracy, recall, and F1 score for both the absence and
presence of cardiac disease, indicating a good balance between true positives and negatives. However, these
metrics have different applications and are inversely related to each other. By examining these indicators, the
effectiveness of the SVM model can be assessed, and areas that may require improvement can be identified.

The evaluation of the SVM classification algorithm for disease prediction pertaining to the heart involves
the examination of a confusion matrix and the receiver operating characteristic (ROC) graph. The actual and
predicted values are represented in Figure 10. The parity between the number of actual predictions from the
normal and abnormal classes demonstrates the accuracy of the system. The ROC for the SVM is presented in
Figure 11. This evaluation reveals the capability of the SVM in diagnosing patients with and without HD based
on the classification analysis.

The precision of the model for the normal class surpasses that of the abnormal class, suggesting that the
likelihood of correct classification is greater when predicting a normal class than when predicting an

Table 3: Results obtained to evaluate the performance of the SVM model

Model Precision Recall F1 score Iteration Accuracy

SVM Abnormal 0.68 0.77 0.72 107 0.73
Normal 0.79 0.70 0.74 131
Macro/weighted average 0.74 0.73 0.73 283
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abnormal class. Meanwhile, the recall of the model for the abnormal class outperforms that for the normal
class, indicating that the model exhibits superior identification capabilities for abnormal cases compared with
normal cases. Moreover, the F1 score of the model for the abnormal class exceeds that of the normal class,
signifying that the model’s predictive capabilities are more accurate for the abnormal class than for the
normal class. In terms of iteration, the model underwent more iterations for the normal class than for the
abnormal class. This particular observation implies that the model received more training in the normal class,
possibly contributing to the higher precision observed for the normal class than that for the abnormal class.
The model’s accuracy is 0.73, indicating that it has accurately predicted 73% of the data. The SVM model
demonstrated a satisfactory accuracy level of 0.73. However, when considering the precision, the recall, and
the F1 score, the model’s performance varied between the abnormal and normal classes. The analysis of the
results suggests that the model is more adept at identifying abnormal cases than normal cases, indicating a
bias toward the normal class during training. Consequently, adjustments to the hyperparameters and fine-
tuning of the model may be necessary to enhance the model’s performance.

Figure 10: Confusion matrix the SVM model.

Figure 11: ROC curve of the SVM model.
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4.2 ANN results

The following findings were obtained after training the models on the comprehensive HD dataset: accuracy of
83.61%, precision of 82% to abnormal and 0.85% to normal, recall of 81% to abnormal and 85% to normal, F1
score of 82% to abnormal and 85% to normal, and sensitivity of 80% in the ANN model. All the results are
summarized in Table 4.

The ANN classifier attained an accuracy of 0.84, indicating that it accurately classified 84% of the instances
in the dataset. For abnormal cases, the precision is 0.82, denoting that 82% of the instances was predicted as
not having HD were true negatives. For normal cases, the precision was 0.85, indicating that 85% of the
instances predicted as having HD were true positives. In the case of abnormalities, the recall stood at 0.81,
meaning that 81% of the instances without HD were correctly identified. For normal cases, the recall was 0.85,
indicating that 85% of the instances with HD were correctly identified. The F1 score, a harmonic mean of
precision and recall, was presumably calculated for both classes. The analysis of the performance metrics
suggests that the ANN classifier exhibits commendable performance in the field of HD classification research,
characterized by high precision, recall, and accuracy for both classes. The classifier’s balanced performance is
further evidenced by its consistent macro average precision, recall, and F1 score. The confusion matrix can
offer additional insights into the classifier’s performance by illustrating the number of true positives, true
negatives, false positives, and false negatives for each class. The problem consists of abnormal and normal
cases, and the model generated predictions for 238 cases.

The performance of the ANN classification algorithm shown in Figure 12 was assessed using a confusion
matrix and an ROC graph. In terms of performance metrics analysis, several insights can be drawn. First, the
confusion matrix displays the combination of the actual and predicted values. This matrix reveals that
the number of actual predictions was equal for the positive and negative classes, indicating the accuracy of
the system. Second, the ROC curve is a graphical depiction of the performance of a binary classifier system as

Table 4: Important performance metrics used to evaluate the performance of the ANN model

Model Precision Recall F1 score Iteration Accuracy

ANN Normal 0.82 0.81 0.82 107 0.84
Abnormal 0.85 0.85 0.85 131
Macro/weighted avg 0.83 0.83 0.83 283

Figure 12: Confusion matrix of the ANN model.

22  Huda Ghazi Enad et al.



its recognition threshold is varied. Figure 13 presents the ROC curve for the ANN classifier, demonstrating the
classifier’s high sensitivity and specificity in diagnosing patients with and without HD on the basis of the
classification evaluation.

The precision score for the normal category was 0.82, while the precision score for the abnormal category
was 0.85. These scores indicate that the model’s false positive predictions decreased, thus showcasing its
proficiency in predicting positive cases. Furthermore, the recall score for the normal category was 0.81, and
that for the abnormal category was 0.85. These scores suggest that the model’s false negative predictions were
minimized, demonstrating its capability to identify positive cases. In addition, the F1 score for the normal
category was 0.82, and that for the abnormal category was 0.85. These scores imply that the model’s false
positive and false negative predictions decreased, thereby highlighting its aptitude for predicting and identi-
fying positive cases. Precision, recall, and F1-score are significant metrics employed to evaluate the perfor-
mance of a classification model. The iteration number pertains to the frequency with which a model is trained
on the dataset. Depending on the nature of the problem and the available data, a certain measure or collection
of metrics may be more suitable.

4.3 QNN results

The outcomes were as follows: accuracy of 77%, precision of 76% to class 0 and 77% to class 1, recall of 73% to
class 0 and 79% to class 1, F1 score of 75% to class 0 and 78% to class 1, macro average of 0.77%, and average
weight of 77% in the QSVM model. All the results are summarized in Table 5.

Figure 13: ROC curve of the ANN model.

Table 5: Results obtained to evaluate the performance of the QNN model

Model Precision Recall F1 score Iteration Accuracy

QNN Normal 0.76 0.73 0.76 107 0.77
Abnormal 0.77 0.77 0.78 131
Macro/weighted avg 0.77 0.76 0.76 283
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For predicting cardiac issues, the QNN classifier achieved a total accuracy rating of 0.77. This result proves
that the classifier accurately classified HD patients. However, to fully grasp the classifier’s capabilities, the
accuracy and recall for both the negative and positive categories must be examined. The respective precision
and recall were 0.76 and 0.73 for the negative class, which represents those who do not have HD. Based on
these measures, the classifier accurately identified healthy individuals. The respective accuracy and recall
were 0.77 and 0.79 for the positive class, which represents those with HD. Based on these measurements, the
classifier is also reasonably reliable in identifying people with HD. For the negative class, the F1 score was 0.75,
and for the positive class, the F1 score was 0.78. F1 is a value that combines precision and recall. The results
demonstrate that the ratio of accuracy to recall is satisfactory for both groups. The iteration value for the
abnormal was determined to be 107. These metrics were derived by evaluating the confusion matrix and ROC
graph of the QNN classifier in predicting HD. Thus, the QNN classifier achieved an overall performance of 0.77
in the prediction of HD, accompanied by reasonably reliable precision and recall for both the positive and
negative classes. The F1 score level for both classes was commendable, thereby signifying a favorable balance
between precision and recall. These metrics were obtained by assessing the confusion matrix and ROC graph
of the QNN classifier for HD prediction, as illustrated in Figures 14 and 15.

Figure 14: Confusion matrix of the QNN model.

Figure 15: ROC curve of the QNN model.
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Cross-validation constitutes a methodology employed for assessing the efficacy of a model by subjecting it
to the examination of a portion of the data that were not employed during the training process. In the context
of a QNN, the outcomes of cross-validation can be used to determine the optimal collection of parameter
values. This implies that the parameters of the network can be modified to enhance its performance based on
the outcomes of cross-validation, as depicted in Figure 16.

The analysis of these metrics indicates that the model exhibits a reduced number of false positive and false
negative predictions for the normal category compared with the abnormal category. The F1 score serves as a
means to strike a balance between precision and recall. Moreover, it signifies that the model manifests a lower
occurrence of false positive and false negative predictions for the normal category than for the abnormal
category. The accuracy of the model stands at 0.76, indicating that it accurately predicts the class of 76% of the
data points. Precision, recall, F1 score, and accuracy are pivotal metrics employed to assess the performance of
a classification model. These metrics offer valuable insights into the accuracy and quantity of the model’s
positive predictions and the equilibrium between precision and recall. The selection of appropriate metric(s) is
contingent on the problem domain and the dataset at hand.

4.4 Quantum support vector classifier results

The following results were obtained: accuracy of 85%, precision of 79% to class 0 and 91% to normal, recall of
90% to class 0 and 81% to class 1, F1 score of 84% to class 0 and 85% to class 1, macro average of 0.85, and
average weight of 86% in the QSVM model. All the results are summarized in Table 6.

Figure 16: Cross-validation QNN model.

Table 6: Results achieved to evaluate the performance of the QSVM model

Model Precision Recall F1 score Iteration Accuracy

QSVM Normal 0.79 0.90 0.84 107 0.85
Abnormal 0.91 0.81 0.85 131
Macro/weighted avg 0.85 0.85 0.85 283
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The measure known as recall, sensitivity, or true positive rate provides a quantitative assessment of the
proportion of true positive predictions among all positive cases in the dataset. In an abnormal setting, the
model correctly classified 90% of people as having no cardiac illness (recall = 0.90). The recall for normality
was 0.81, indicating that the algorithm correctly identified 81% of people with HD. These recall values demon-
strate the classifier’s ability to catch negative and positive examples accurately. The F1 score must be con-
sidered for a thorough investigation. The F1 score is the harmonic average of accuracy and recall and is a
balanced statistic for assessing classifier performance. With an F1 score of 0.84, anomalies were classified with
a good mix of accuracy and recall. Table 5 shows the accuracy and recall of the QSVM method, which lets us
test how well it works in real life and find any problems. The total accuracy of the QSVM classifier on the
dataset was 84%. The classifier achieved a precision of 0.79 for abnormality (no HD) and 0.91 for normalcy
(HD). The recall for abnormal cases was 0.90, and that for normal cases was 0.81. Specifically, the F1 score for
class 0 was 0.84, showing an excellent equilibrium between accuracy and recall. A more thorough investiga-
tion of a classifier’s efficacy may be conducted if its performance is measured across various parameters.
Precision is the proportion of genuine positive predictions relative to all positive predictions made by the
model, whereas accuracy describes how well the classifier can predict class labels. In contrast, recall quantifies
the proportion of correct positive predictions relative to the total number of positive cases in a dataset. Finally,
the F1 score is a balanced indication of classifier performance because it takes the harmonic mean of accuracy
and recall.

Using a quantum kernel, the QSVM method accelerates the SVM’s learning process, making it a QML
algorithm. The Qiskit ML library includes a score function for determining the QSVM model’s precision. Both
accuracy and recall must be considered while analyzing the QSVM model’s results. Comparatively, recall
measures the percentage of correct responses among all recorded positives, while precision measures the
rate of correct answers among all projected positives. The F1 score is a harmonic average of accuracy and
recall and offers a balanced evaluation of the algorithm’s performance. The model performed well in normal
and atypical situations, as indicated by a comparable F1 score. With incredible accuracy and F1 scores in both
normal and abnormal cases, the QSVM model seems a viable strategy for predicting HD. However, the model’s
accuracy might shift depending on the characteristics utilized for categorization and the data set. Common
and valid approaches can be used to check how well binary classification methods, like QSVM, work for
predicting HD. These approaches include confusion matrices and ROC curves, which show how well other
models work. These methods can potentially enhance the HD prediction model’s accuracy and generalizability,
which in turn will aid in halting the disease progression. ROC curves and confusion matrices test how well the
QSVM algorithm works for classifying HD cases. These resources help determine whether a binary classifica-
tion method performs as expected. The results of the confusion matrix and ROC curves are presented in
Figures 17 and 18.

Figure 17: Confusion matrix of the QSVM model.
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4.5 Experimental results of the proposed bagging model for HD diagnosis

The accuracy, precision, recall, F1 score, and average weight using bagging-QSVM were all determined to be
optimal when the proposed method was implemented in the dataset and tested. Table 7 summarizes the
results.

The proposed approach achieved an accuracy of 100% when applied to the dataset, indicating that all data
points were correctly classified. The precision for both the abnormal and normal classes was 100%, indicating
that all predicted positive instances for both classes were positive. The recall for both abnormal and normal
classes was 100%, indicating that the actual positive instances for both classes were correctly identified. The F1
score for both abnormal and normal classes was 100%, which is a harmonic mean of precision and recall,
indicating a perfect balance between the two metrics. The macro average for precision, recall, and F1 score
was 100%, indicating that the performance across both classes was excellent. The average weighted precision,
recall, and F1 score in bagging-QSVM were also 100%, indicating a high level of performance across all classes.

The provided data appear to represent the evaluation measures of a model that has undergone training
using the bagging technique along with QSVM. This specific model achieved a precision, recall, and F1 score of
1.00 for both the regular and abnormal categories. The accuracy of the model was also 1.00, indicating that the
model did not made any incorrect predictions. For the regular and abnormal categories, the number of
iterations was 107 and 131, respectively. In addition, the macro and weighted average for this model was
1.00. Bagging, a meta-algorithm within the domain of ML, was developed to improve the stability and accuracy
of statistical classification and regression algorithms. This technique involves training multiple models on
different subsets of the training data and then merging their predictions to generate a final prediction. While
bagging enhances prediction accuracy, it does so at the expense of interpretability. Considering the afore-
mentioned information, the model trained using bagging in conjunction with QSVM performs exceptionally

Figure 18: ROC curve of the QSVM model.

Table 7: Results for evaluating the performance of the Bagging_QSVM model

Model Precision Recall F1 score Iteration Accuracy

Bagging-QSVM Normal 1.00 1.00 1.00 107 1.00
Abnormal 1.00 1.00 1.00 131
Macro/weighted avg 1.00 1.00 1.00 283
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well on the given task. The outcomes indicate that the bagging-QSVM model performed better than other ML
methods, with precision, recall, and F1 scores of 1.00 as shown in Figures 19 and 20.

According to the findings of the experiment, the accuracy achieved by QSVM was recorded as 84.8%,
whereas traditional SVM achieved an accuracy of 73.1%. Likewise, QNN demonstrated an accuracy of 76.5% in
contrast to the 83.6% achieved by ANN. Therefore, QSVM and QNN exhibited the highest levels of performance
among the quantum classifiers, with accuracies of 84.8 and 76.5%, respectively. On the one hand, this observa-
tion underscores the superior outcomes that quantum classifiers can generate compared with their classical
classifier counterparts. On the other hand, the proposed model, known as bagging-QSVM, uses ensemble
learning to show considerable improvements over previous quantum and classical classifiers. The bagging-
QSVM surpasses all other methods, attaining an accuracy rate of 100%. Ensemble learning contributes to the
optimization of quantum classifiers, as shown in Table 8.

Figure 19: Confusion matrix of the bagging-QSVM model.

Figure 20: ROC curve of the bagging-QSVM model.
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4.6 Comparison of the state of the arts

The results of the proposed method, which utilizes ensemble learning bagging-QSVM, were discussed and
compared with the findings of related works. According to the data presented in Table 8, the proposed
approach achieved a remarkable accuracy rate of 100%, surpassing the results of the study by Asif et al.
[26], who achieved an accuracy of 98.15%. Furthermore, the precision, recall, F1 score, and Cohen’s kappa
values for the proposed approach were 96.27, 98.72, 97.48, and 95.07%, respectively. Meanwhile, Kumari and
Muthulakshmi [27] secured a position with an accuracy of 95.33%, precision of 99.18%, recall of 97.90%, and F1
score of 98.53% [9], with an accuracy of 90.16%, precision of 0.90%, recall of 0.90%, and F1 score of 0.90%. With
their stacked classifier, [27] attained an accuracy of 86.49%, precision of 87.32%, recall of 86.02%, and F1 score
of 86.01%. The ROC-area under the curve (AUC) for their model was 99. The ML ensemble method also
performed admirably, with an F1 score of 88.70%, a precision and recall of 88.02%, and an accuracy of
88.70%. This model obtained a ROC-AUC of 93. In the study by [18], instance-based quantum DL and ML
were used to obtain 98 and 83.6% accuracy rates, respectively. The bagging-QSVM model outperformed all
other classifiers with 100% accuracy, precision, recall, and F1 score. Both binary and regression classification
modeling objectives were used to evaluate the outcomes. The results show that better predictions may be
obtained using bagging, which employs many models with high variation but low bias. Overall, the bagging-
QSVM model demonstrated superior performance over other ensemble learning models when applied to HD
prediction. Bagging, as a powerful ensemble learning method, effectively reduces variance and enhances
model accuracy. In addition, QSVM, a quantum classifier with proven superiority over other quantum classi-
fiers, can be effectively incorporated into the bagging model to achieve high-performance outcomes. Table 9
compares the results of the proposed approach with those of related works for HD prediction and shows that
the proposed method achieved the highest accuracy and performance measures. The bagging-QSVM model
used in the proposed method outperforms other classifiers and can be used to achieve high performance.

AI-based approaches have many uses, including detecting several diseases [29,30]. The proposed approach
is to improve the accuracy and efficiency of HD classification by using cloud computing and quantum com-
puting. While the cloud computing based on the framework that uses QML to classify heart diseases has great
promise, it does have some significant limitations. First, there are not a lot of practical, scalable quantum
processors available, and the science behind quantum computing is still in its early stages. This is a problem

Table 8: Performance results of the classification models

Classifier Accuracy Precision Recall F1 score

SVM 73.1 69 75 73
ANN 83.6 84 83 84
QNN 76.5 77 76 77
QSVM 84.8 85 86 85
Bagging-QSVM 100 100 100 100

Table 9: Comparison the proposed method’s outcomes with those of state-of-the-art methods

The study/year Accuracy (%) Precision (%) Recall (%) F1 score (%)

Asif et al. (2023) [26] 98.15 96.27 98.72 97.48
Kumari and Muthulakshmi (2023) [27] 95.33 99.18 97.90 98.53
Abdulsalam et al. (2023) [9] 90.16 90 90 90
Alqahtani et al. (2022) [28] 86.49 87.32 86.02 86.01
Our study 100 100 100 100
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when trying to use large-scale QML algorithms to classify all forms of cardiac disease. Second, there may be
compatibility problems with the current conventional infrastructure when integrating quantum techniques
into cloud platforms, which might make deployment and interoperability more complicated. Last but not least,
protecting private medical information in the cloud requires a comprehensive solution to the security issues
surrounding quantum computing, including the possibility that quantum algorithms are susceptible to specific
kinds of assaults. To overcome these constraints and properly utilize this unique method of heart disease
categorization, there has to be continuous progress in quantum computing, improvements in integration
strategies, and stronger security measures.

5 Conclusion

Early identification is crucial in slowing the progression of HD, which a significant cause of death. Therefore,
this research aimed to investigate the utility of quantum ML in CVD risk prediction by developing a quantum-
based ensemble learning model. As part of this research, we developed the bagging-QSVM model, which
involves bagging the dataset into smaller groups and modeling each subset separately with QSVM. These
groups are then joined using a majority vote system to form an ensemble. The classification accuracy of the
proposed ensemble model on the Cleveland dataset was 90.16%, which is considerably higher than the
accuracies of QSVM (88.52%), QNN (86.84%), VQC (85.25%), and SVC (85.24%). A wide range of performance
indicators and ROC curves highlighted the suggested model’s superior performance over competing ML
models. This research shows that quantum classifiers perform better than classical classifiers. The results
also show the potential of ensemble learning methods for improving the efficiency of quantum classifiers. The
methodology developed in this study shows promise in detecting early risk for HD, which might prevent
catastrophic repercussions, and predicting and diagnosing other cardiovascular conditions.
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