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Abstract: Due to the limitations of the initial rapidly exploring random tree (RRT) algorithm, robotics faces
challenges in path planning. This study proposes the integration of the metaheuristic salp swarm algorithm
(SSA) to enhance the RRT algorithm, resulting in a new algorithm termed IRRT-SSA. The IRRT-SSA addresses
issues inherent in the original RRT, enhancing efficiency and path-finding capabilities. A detailed explanation
of IRRT-SSA is provided, emphasizing its distinctions from the core RRT. Comprehensive insights into para-
meterization and algorithmic processes contribute to a thorough understanding of its implementation.
Comparative analysis demonstrates the superior performance of IRRT-SSA over the basic RRT, showing
improvements of approximately 49, 54, and 54% in average path length, number of nodes, and number of
iterations, respectively. This signifies the enhanced effectiveness of the proposed method. Theoretical and
practical implications of IRRT-SSA are highlighted, particularly its influence on practical robotic applications,
serving as an exemplar of tangible benefits.

Keywords: path planning, rapidly exploring random tree, salp swarm algorithm, improved RRT-SSA

1 Introduction

With the development of artificial intelligence, robot applications are broadly implemented in numerous
areas, such as industry, agriculture, surveillance, search and rescue, environmental monitoring, and traffic
control [1,2]. Path planning is one of the most sufficient and challenging aspects in the robotic field, in which
the main objective is to find a moving sequence for an agent from the starting point to the target point in
accordance with particular constraints (such as obstacles or computation time) [3–5]. Many path planning
methods, including classical methods, exist, as classified in Figure 1. One of the famous algorithms is the
rapidly exploring random tree (RRT) or metaheuristic methods, such as ant colony algorithm, particle swarm
algorithm, and firefly algorithm [6–8]. Path planning comprises two types: one is global, which searches for the
optimal path and gives the best performance with the existing static environment known to the robot, and the
other is local path planning, which is best in dynamic or unknown environments [9–11].

Research on robotic path planning has persisted for quite some time, with the original RRT algorithm
serving as a rock-solid solution to relevant problems. However, constant development is required to circum-
vent inherent constraints to keep up with the dynamic nature of robotic applications. In light of the problems
with the original RRT and the demands of modern robotics, this work presents an iterative RRT with salp
swarm algorithm (IRRT-SSA). Autonomous vehicles and industrial automation are only two examples of the
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ever-changing field of robotics. Given this variety, fixing the shortcomings of current path planning algorithms
is a top priority. Despite its robustness, RRT encounters difficulties with computational efficiency and path
quality in complicated and uncertain contexts.

In particular, this study fixes the original RRT algorithm’s inefficiencies about computing iterations, path
length, and the number of nodes. Moreover, the SSA is integrated into the path planning framework, con-
sidering that improved flexibility in complicated terrain has prompted research into metaheuristic algorithms.
The contributions of this work are summarized as follows:
• This study proposes improving the RRT algorithm by using the metaheuristic SSA and calls it IRRT-SSA.
• Overcoming the limitation of the RRT algorithm in solving path planning problems in robotics, specifically
addressing its inability to generate the optimal path.

• The final results demonstrate that the newly proposed IRRT-SSA outperforms the essential RRT algorithm
regarding the average path length, number of nodes, and number of iterations by approximately 49, 54, and
54%, respectively.

• The results indicate improved path quality and the best shortest paths to targets at less cost compared with
the original RRT algorithm.

The rest of this work is structured such that the suggested IRRT-SSA can be deeply understood. Section 2
examines the relevant literature, drawing attention to the gaps in existing knowledge. Section 3 presents the
basic idea of the RRT algorithm and how it is used in path planning. Section 4 explains SSA, specifically its
architecture. The newly proposed IRRT-SSA is described in detail, including how to use it for enhancing
performance, in Section 5. Section 6 indicates the results and discussions. Section 7 discusses the performance
of IRRT-SSA, its influence on the practical deployment of robotics, and the limitations of the study. In Section 8,
conclusions and possible future study options are given.

2 Related works

The efficiency and flexibility of autonomous systems have been greatly enhanced by the many algorithms that
have contributed to path planning in robotics. We develop IRRT-SSA in response to specific research gaps in
the existing literature, which offers a rich tapestry of approaches. The original RRT technique is crucial for
solving path planning problems. It generates pathways that can adjust to complicated environments by
effectively exploring the configuration space. Though useful, it has restrictions regarding computing efficiency

Figure 1: Classification of path planning methods.
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and flexibility in real-time situations. Metaheuristic algorithm integration has been the subject of recent
research to improve the efficiency of path planning algorithms. Particularly impressive is the capacity of
swarm intelligence to imitate natural behavior. Metaheuristics, such as SSA, mimic salps’ foraging behavior.

Many studies have been conducted in the domain of path planning algorithm improvement, particularly
those considering the RRT algorithm. Some of such studies are indicated in this section.

In [12] (2016), the new development of the RRT algorithm by hybridization with ACO was presented to
improve its functioning. The benefit from this hybrid function was described as a trade-off between exploiting
the present solution and exploring the state space. The ACO-RRT* algorithm and the original RRT and RRT*
algorithms were compared in three challenging scenarios. A faster optimal solution was obtained. The experi-
ment results illustrated that the newly proposed algorithm surpassed the RRT and RRT* algorithms by asses-
sing the performance means of the cost and time to locate the first path and evaluating the path quality with
the number of iterations.

In [13] (2021), a new development in the RRT algorithm called Adapted-RRT was proposed. The developed
algorithm combines three familiar metaheuristic algorithms: gray wolf optimization (GWO), incremental
GWO, and expanded GWO. This combination of methods helps solve the problem of the sampled RRT method
in terms of not detecting the optimal path. They attempt to detect solutions near optimal without collision
while granting good execution time, decreased space complexities, and optimal path costs. Experiments were
conducted by simulating four dissimilar maps for three unmanned aerial vehicles and various sets of points at
the start and end. The simulation outcomes were compared with those of other metaheuristic algorithms, and
the proposed algorithm outperformed them.

In [14] (2021), a new development in the RRT algorithm through quack expanding a random tree toward
the target and avoiding obstacles by using an artificial potential field was introduced. The proposed algorithm
raises the number of nodes in a single growth and chooses nodes by integrating the target gravity of a point
and obstacle repulsion. The simulation results demonstrated that the proposed algorithm has more power
than the essential RRT algorithm regarding the search ability and computation time in various environments.

In [15] (2022), a new path planning algorithm named PSO-RRT, which merges the RRT algorithm and the
particle swarm optimization algorithm, was proposed. This algorithm solved the RRT algorithm’s significant
shortcoming; it can create a faster path, although this path is not optimal. PSO-RRT enhances convergence,
costs less, requires few iterations, and generates a near-optimal path superior to RRT* and informed RRT* in
clutter and square field environments.

Several research gaps were identified through a rigorous evaluation of the available literature, which
motivated the present investigation. First, improvements are necessary to address problems encountered in
real-world circumstances, such as changing terrain and dynamic barriers, even though the traditional RRT
algorithm works well. Second, research on the use of SSA as a metaheuristic in path planning algorithms,
especially in iterative RRT frameworks, is limited. To address these shortcomings, IRRT-SSA incorporates SSA
into the iterative RRT framework to improve the efficiency and adaptability. Considering that contemporary
robotic applications are inherently dynamic, this study seeks to address the need for a highly sophisticated
path planning method. With regard to the combination of metaheuristic algorithms, such as SSA, with tradi-
tional RRT frameworks, there is still much unexplored ground to cover, even though previous research has
established a basis for path planning approaches. Along with helping close these knowledge gaps, this study
thoroughly compares the suggested IRRT-SSA with the foundational RRT method, illuminating its strengths
and weaknesses in terms of practical application.

3 RRT algorithm

The RRT algorithm was introduced as a randomized data structure, which is one of the sample-based path
planning algorithms used for solving problems in path planning [16–18]. It is constructed and designed as a
quick and efficient method to explore high-dimensional spaces. Specifically, it deals with nonconvex spaces.
The basic advantage of RRT is that it has efficient computation and the capability of finding a possible solution
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in the case of configurations for complex obstacles [19]. The RRT algorithm is implemented to explore an
environment’s specificM × Nmatrix space by expanding a random branch from the root node in the tree as a
starting point to the goal point. RRT is often used in path planning for robots [20]. It randomly creates a sample
in the configuration space and selects one node close to this random sample to construct a tree. If the random
sample position is nearer than the step length, then the new node is generated and added to expand the tree
until the goal point is reached. The steps of RRT are shown in Alg. 1 in Figure 3 [21]. Figure 2 illustrates the tree

Figure 2: RRT working mechanism [22].

Alg. 1: RRT Algorithm

Input:

qstart starting point

qgoal   target point

l       step length

C   all frontier point locations in all obstacles (known) 

R     number of samples in random 

Output:

S    resulting path

Initialization:

T           Null tree<node, edge>

Begin

1 T            Add r node (root)<qstart> 

2 While r from 0 To R Do

3        Create r-th sample in random

4        qrand node position of the r-th sample in random 

5        qnear node              position of the closest node in T from qrand node

6        If not is within (qnear node, qrand node, l) Then

7            qnew node juncture point between line segment linking qrand node and qnear

n node, and circle which radius is l centered at qnear node

8        Else qnew node               qrand node

9       If not strapped (qnew node, qnear node, C) Then

10         T             Add node<qnew node> & edge<qnew node, qnear node> 

11     If is within (qnew node, qgoal, l) Then

12        T            Add node<qgoal> & edge<qnew node, qgoal> 

13        P           path from flast added node{qgoal} to root node{qstart} in T

14     If [ length of S ] > [length of P], Then S P

15 Rremove node<qgoal> & edge<qnew node, qgoal> from T

End

Figure 3: Pseudocode of RRT [21].

4  Dena Kadhim Muhsen et al.



expansion toward a q random configuration point. A point near this q random point, named q nearer, defined
as a vertex of the tree, is selected. Then, the tree continues in its expansion from the q nearer point to the q
random point stopping at a q new point, specified radius r from the q nearer point [22].

One common and well-liked technique for robotic motion planning is the RRT algorithm. The core
principle of RRT, which was developed to solve path planning difficulties, is to construct a tree incrementally
by randomly sampling a robot’s configuration space. The algorithm iteratively develops the tree by selecting
new configurations at random, exploring space in the direction of these configurations, and linking them to the
existing tree. The process begins with an initial configuration. The procedure terminates when a goal config-
uration is reached or until another preset termination condition is satisfied.

3.1 Key steps of the RRT algorithm

• The robot’s basic setup is the only node in the tree initially.
• Iteration is carried out through the robot’s configuration space, and a new, random configuration is gener-
ated each time.

• The current tree structure closest to the randomly selected one is identified.
• We can generate a new configuration by guiding the robot from its closest neighbor to the randomly
sampled configuration.

• Whether the updated setup does not conflict with the current tree is verified. The setup is disregarded and
another trial is performed if a collision happens.

• The new configuration is connected to its nearest neighbor and added to the tree if collision will not occur.
• The process keeps going until something triggers it to end, such as when we attain a certain configuration
objective or when the number of iterations is reached.

3.2 Limitations of the RRT algorithm

• The sampling approach greatly affects the efficiency of RRTs, and they may provide pathways that are not
optimal.

• Two factors that can impact the algorithm’s efficiency are how complex is the robot’s geometry and how
many dimensions there are in the configuration space.

• The performance of RRTs can change depending on the starting configuration and the objective’s location,
and they do not ensure that the optimal path will be found.

• Adapting RRTs to contexts where barriers are constantly shifting might be challenging.

4 SSA algorithm

SSA is one of the swarm-based metaheuristic algorithms inspired by the behavior of salps flocking in oceans
for foraging and navigating. The basic idea is dividing the salps into two kinds. One is considered a leader, and
the remaining are followers; they construct a chain with the leader at the front and the followers at the back,
as indicated in Figure 4 [23–25]. The fundamental concept of SSA is working in two stages, one for global
exploration and the other for local exploitation, as illustrated in Alg. 2 in Figure 5. At first, the search operation
initializes a random population to assist the algorithm in locating the optimal solution. Then, the exploitation
stage starts to search accurately in the specified region detected by the previous stage to enhance the precision
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of convergence. SSA is extremely competitive, but its limitations comprise unbalanced exploration and exploi-
tation processes and slow convergence [26,27].

The work of the salp chain is foraging for the target, which is the food source that directs the leader to
update its position by equation (1), representing the new node position in RRT.

(( ) ) ( )

(( ) ) ( )
= ⎧

⎨
⎩

+ + ≥
− − + <X

r r r

r r r

FPi 1⁎ ubi – lbi ⁎ 2 lbi , 3 0

FPi 1⁎ ubi lbi ⁎ 2 lbi , 3 0
.i

1 (1)

Xi

1 and FPi refer to the locations of the leaders and food sources in the jth dimension, respectively. Ubi and bi
represent the lower and upper boundaries for the jth dimension in the search area. The random variables r2
and c3 are in the interval [0, 1]. r1 is a significant parameter in SSA that determines the step size and is named
the distance control factor, while r2 is defined as the moving direction. The r1 parameter is described as

( ( ) )= × − ×r t t1 2 exp 4 / max ,2 (2)

Figure 4: Salp swarm chain [23].

Alg. 2: SSA Algorithm

1. Generate the population of salp xi (i = 1, 2, …, n) within lbi and ubi

2. Set the maximum number of iterations tmax

3. Set the current iteration t = 0

4. Calculate the fitness of each salp and set the best salp as FP

5. Set r1 = 2 * exp (-(4 * t / tmax) ^ 2)

6. For each salp xi:

7. If i = 1, update the position of the leader salp using the equation:

(FPi + r1 * ((ubi - lbi) * r2 + lbi) (r3 >= 0)

(FPi - r1 * ((ubi - lbi) * r2 + lbi)) (r3 < 0)

8. Else, update the position of the follower salp using the equation:

xi(j) = xi(j) + 0.5 * (xi(j-1) + xi(j))

9. Adjust the salps depending on the upper and lower bounds of variables

10. Compute the fitness of the food position FP

11. Update the position of food if a better salp is found

12. Increase t by 1 and check if t < tmax

13. Return the position of food FP and its best fitness

End

Figure 5: Pseudocode of SSA algorithm.
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where t is the recent iteration, and T refers to the maximum iterations. The followers are updated by

( ) ( ) ( ( ) ( ))= + × +xi j xi j xi j xi j0.5 – 1 , (3)

where j ≥ 2 and Xi (j) represents the location of the ith follower salp in the jth dimension search space [28,29].

5 IRRT-SSA algorithm

The new improvement of the RRT algorithm is to solve robot path planning using SSA and is called IRRT-SSA. It
combines the benefits of these two algorithms to find an optimal path from the start to the goal while avoiding
obstacles. The basic RRT algorithm is good at exploring large areas of the search space, but it can get stuck in

Alg. 3: IRRT-SSA Algorithm

Input:

qstart starting point

qgoal target point

l       step length

C   all frontier point locations in all obstacles (known)

R     number of samples in random

N    number of Salps

CT  convergence threshold 

Output:

S ← resulting path

Initialization:

T ← null tree<node, edge>

Begin

1. T ← Add r node(root) <qstart> 

2. While r from 0 To R Do

3. Generate r-th sample in random

4. qrand node ← position of r-th random sample

5. qnear node ← position of the closest node in T from qrand node

6. qnew ← new node by call SSA (Alg. 2) with the radius of circle l centered at qnear node

7. If there is a qrand node better then a qnew node

8. qnew node ← qrand node

9. If not is Trapped(qnew node, qnear node, C) Then

10. T ← Add node<qnew node> & edge<qnew node, qnear node> 

11. If is within (qnew node, qgoal, λ) Then

12. T ←Add node<qgoal> & edge<qnew node, qgoal> 

13. P ← path from last added node{qgoal} to root node{qstart} in T

14. If [length of S] > [length of P] Then

15. S ← P

16. Remove node<qgoal> & edge<qnew node, qgoal> from T

17. Return S

End

Figure 6: Pseudocode of IRRT-SSA algorithm.
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narrow passages or converge to suboptimal solutions. Meanwhile, salp swarm optimization is good at escaping
local optima and finding globally optimal solutions. The proposed IRRT-SSA can more effectively explore the
search space and converge to a globally optimal path. SSA also provides a mechanism to explore undiscovered
space areas efficiently. The contribution of SSA to the RRT algorithm is mainly improving the exploration and
coverage of the configuration space, which can result in faster convergence to a feasible path and better
avoidance of obstacles. If an obstacle exists in the path, no new nodes are created. Moreover, no line connects
two nodes and passes through any object. SSA’s role in IRRT-SSA is to generate new possible movement paths
and guide toward unexplored areas of the environment by selecting a new node in the tree as in Alg. 3 in
Figure 6. This algorithm helps find a good path to reach the goal faster and more efficiently.

By using SSA as a metaheuristic, IRRT-SSA aims to overcome the drawbacks of the conventional RRT
approach. A comprehensive review of the approach, including the steps of the algorithm, important para-
meters, and the reasoning for the integration, is given in this section.

5.1 Algorithmic steps

• The algorithm starts with the robotic system’s initial configuration by initializing the RRT tree.
• An assortment of SSA parameters are defined, including the salp count, convergence criterion, and explor-
ation–exploitation balance. IRRT-SSA employs an iterative expansion technique. On the basis of the con-
ventional RRT procedure, the RRT tree is expanded in each iteration by connecting nodes and randomly
sampling them.

• SSA guides the exploration procedure. The salps’ actions collectively drive the tree’s growth toward more
favorable areas in the configuration space.

• IRRT-SSA incorporates a step to enhance the path in each iteration, unlike the typical RRT. SSA is used for
refinement to improve the quality and flexibility of the generated pathways for dynamic situations.

• Convergence is evaluated using established criteria to guarantee that the algorithm exits after a good
solution is achieved. This step entails checking whether the RRT tree has converged and whether the
optimization is successful with SSA.

We explain the important parameters of IRRT-SSA to help with thorough understanding and reproducibility.
• The number of salps (N) controls the swarm’s size and impacts its exploration ability.
• A convergence threshold (CT) specifies the minimum value at which the RRT and SSA parts must converge.

A steady equilibrium is maintained in the iterative expansion’s exploration vs exploitation debate.
Two goals are achieved by including SSA in the RRT architecture. Exploration is improved by SSA’s

adaptations, modeled after the group behavior of salps. In line with the ever-changing nature of real-world
robotic applications, RRT’s iterative structure permits path improvement with each iteration.

IRRT-SSA deftly blends the benefits of SSA with those of the traditional RRT algorithm. With its iterative
nature and SSA-guided path refinement, IRRT-SSA shows promise as a solution to the problems of robotic path
planning in dynamic and complicated situations.

The RRT limitations include a lack of assurances about optimality, potentially inefficient path length and
computing resources, and inadequate path quality. Improving these areas and streamlining the path planning
process are IRRT-SSA’s primary goals.

5.2 Utilization of SSA for improvement

SSA is a metaheuristic that IRRT-SSA introduces to improve the optimization and exploration capabilities of
the classic RRT. It is an optimization technique that takes its cues from the way salps, a type of marine

8  Dena Kadhim Muhsen et al.



invertebrates, work together. The system simulates the behavior of ocean salps, which change their locations
depending on local and global data.

Several improvements are realized by integrating SSA into IRRT.
• SSA uses the swarm’s collective intelligence to facilitate a more effective exploration of the configuration
space. Two possible outcomes are a more complete picture and a more rapid convergence toward ideal
solutions.

• SSA balances discovery and exploitation by integrating global and local search tactics, finding good path-
ways in complicated and multimodal situations.

• A swarm-based approach such as SSA makes it easy to adjust to changing conditions. This algorithm out-
performs the conventional RRTs in terms of versatility given its ability to react to changes in the configura-
tion space.

• IRRT-SSA aims to solve the suboptimality problems with conventional RRTs by including SSA to enhance the
quality of generated pathways.

6 Results and discussions

To prove the efficiency of the proposed algorithm and to conduct a comparison with the RRT algorithm, we
implemented RRT and IRRT-SSA using the Python programming language. The implementation was performed
on a two-dimensional environment with two obstacles. The algorithms were run for many iterations, and the
performance was evaluated on the basis of the number of nodes generated and the path length. In accordance
with the randomness of the RRT algorithm, 20 repeated tests were achieved for the basic RRT algorithm and
the proposed RRT algorithm in a known environment. The first test was done by setting the starting point at
(1, 1) and the target point at (9, 9), as shown in Figure 7; the second test was done by setting the starting point at
(2, 1) and the target point at (2, 5), as depicted in Figure 8. The results showed that IRRT-SSA generated fewer
nodes than the original RRT. Specifically, RRT generated 1,065 and 854 nodes on average, whereas IRRT-SSA
generated only 458 and 229 nodes in the first and second tests, respectively. This finding indicates that IRRT-
SSA has a more efficient search strategy and explores the space more effectively. Furthermore, the path length
(red line) generated by IRRT-SSA was significantly shorter than that by RRT. In particular, the average path
length generated by RRT was 146 and 105 units, whereas those by IRRT-SSA was 73 and 45 units in the first and
second tests, respectively. Thus, IRRT-SSA is better at finding optimal smoothing paths and has a higher global
search ability. Both tests are demonstrated in Table 1.

Figure 7: Average path planning with starting point (1, 1) and target point (9, 9). (a) RRT. (b) IRRT-SSA.
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Finally, the proposed IRRT-SSA was tested on ten robots’ starting and target points, and five implementa-
tions were applied to each pair of points. The results are presented in Table 2, where the average path length,
number of nodes, and number of iterations are illustrated. The ratios of enhancement are represented by

( )
⎜ ⎟= − ⎛
⎝

- ⎞
⎠

×
Enhancement ratio

path length
1

Average path length by IRRT SSA

Average path length by RRT
100%, (4)

( )
⎜ ⎟= − ⎛
⎝

- ⎞
⎠

×
Enhancement ratio

No. of nodes
1

Average No. of nodes by IRRT SSA

Average No. of nodes by RRT
100%, (5)

( )
⎜ ⎟= − ⎛
⎝

- ⎞
⎠

×
Enhancement ratio

No. of iterations
1

Average No. of iterations by IRRT SSA

Average No. of iterations by RRT
100%. (6)

With the total average of 10 points for 50 implementations (5 for each pair of starting and goal points),
IRRT-SSA enhances the average path length, number of nodes, and number of iterations by approximately 49,
54, and 54%, respectively, compared with the original RRT algorithm. These results lead to the best paths and
less cost. The newly proposed IRRT-SSA enhances the efficiency of the original RRT algorithm by optimization.
This step represents the role of SSA in selecting a new node instead of that selected by the RRT algorithm.
When the new node is best selected, then it selects the best nearest random point. The idea of selecting a new
node by SSA is determining the leader that has the best fitness from the generated population, tracking by the
remaining salps as the followers, and updating the leader and followers’ positions to achieve convergence.
Several essential metrics are used to evaluate IRRT-SSA, and its efficacy and efficiency are shown by com-
paring it with the original RRT. These metrics demonstrate how far IRRT-SSA has enhanced the route planning
procedure. To measure efficiency, we use the following measures.

6.1 Improvement in average path length

Significant implications exist for real-world robotic applications of IRRT-SSA with 49% improvement in
average path length. The practical value of this enhancement in improving the overall efficiency and perfor-
mance of robotic systems in varied settings is substantial, going beyond its status as a purely statistical
parameter. To further explain the relevance, we consider the following points:
• A robotic system can navigate from the starting point to the destination with a significantly lower trip
distance, as shown by the 49% reduction in average path length. Robotic systems that are short on resources,
such as energy, or functioning in a time-sensitive environment must prioritize this optimization.

• Robotic mobility uses less energy when pathways are shorter. The capacity to accomplish the same task with
less energy increases operational endurance. It aligns with sustainable and cost-effective practices, espe-
cially in energy-intensive applications such as mobile robots or autonomous drones.

Figure 8: Average path planning with starting point (2, 1) and target point (2, 5). (a) RRT. (b) IRRT-SSA.
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• Faster traversal times are achieved with shorter average path lengths. Reaching destinations faster improves
a robot’s responsiveness and overall work efficiency in time-critical scenarios such as emergency response
or manufacturing processes.

• In confined areas, robots can move more efficiently along shorter routes. This characteristic is especially
helpful in settings where the robot must be accurate in its movements, such as hospitals, warehouses, or
locations hit by natural disasters, where it must navigate narrow passages to reach the objective.

• A robot’s capacity to detect and avoid risks and barriers is enhanced when it can identify shorter paths.
Autonomous vehicles and robotic systems operating in unpredictable and dynamic surroundings are two
examples of applications where this capacity is crucial for safety reasons.

Table 1: Comparison between RRT and IRRT-SSA

Starting and goal points RRT IRRT-SSA

Path length Number of nodes Iteration Path length Number of nodes Iteration

Starting = (1, 1), Goal = (9, 9) 136 1,059 1,260 72 561 670
148 920 1,105 72 355 480
140 929 1,160 73 328 431
154 956 1,183 76 366 411
159 1,005 1,147 70 434 545
137 1,103 1,336 73 328 444
151 1,073 1,290 69 320 377
148 1,663 1,906 73 322 390
156 1,273 1,494 70 416 484
142 845 1,033 74 405 476
148 902 1,115 75 822 952
144 1,015 1,181 76 453 592
147 1,200 1,508 74 900 1,043
148 1,082 1,315 73 394 509
143 807 1,021 75 410 461
144 923 1,167 75 430 524
146 1,552 1,776 76 638 806
142 978 1,182 76 462 549
139 894 1,152 72 442 535
148 1,128 1,348 69 374 486

Average 146 1,065 1315.45 73 458 558.25
Starting = (2, 1), Goal = (2, 5) 110 909 1,117 51 200 262

83 512 605 41 304 358
91 312 379 46 160 217
116 603 752 40 173 192
123 849 1,000 50 236 282
106 477 536 44 238 271
109 1,441 1,666 45 293 334
111 1,414 1,635 45 246 264
84 298 343 37 182 233
122 795 977 50 278 343
115 697 886 48 159 204
125 900 1,034 51 285 321
128 1,147 1,314 46 122 133
109 1,031 1,167 48 147 180
94 1,084 1,284 46 250 277
85 1,056 1,205 41 138 212
97 540 650 55 629 703
90 1,278 1,484 40 158 200
101 535 616 38 130 153
113 1,209 1,363 40 260 313

Average 105.6 854 1000.65 45.1 229 258.1
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• An indication of IRRT-SSA’s adaptation across varied contexts is the improvement in average path length.
The algorithm’s capacity to locate shorter paths efficiently increases its versatility and practicality in various
real-world circumstances, whether navigating through crowded locations or open areas.

The overall improvement in average path length of 49% is a real step forward that will have far-reaching
effects on robotic systems rather than only a numerical one. A significant advancement in robotics and
autonomous systems, IRRT-SSA enables robots to function more economically, efficiently, and safely in real-
world environments.

6.2 Impact of 54% reduction in the number of nodes

IRRT-SSA cuts the number of nodes by 54% compared with the original RRT, which has various important
consequences on the algorithm’s performance and efficiency. The number of nodes is the sum of all the points

Table 2: Average of measurements for enhancement by IRRT-SSA

Start
point

Goal
point

RRT IRRT-SSA Enhancement ratio

Average
path
length

Average
number
of nodes

Average
number of
iterations

Average
path
length

Average
number
of nodes

Average
number of
iterations

(2, 1) (2, 8) 119 471 568 60 226.8 267 Path length: 50%
No. of nodes: 52%
No. of iterations: 53%

(8, 6) (4, 1) 90 1,027 1,140 48 416 459 Path length: 47%
No. of nodes: 60%
No. of iterations: 60%

(1, 6) (7, 1) 106 732 814 59 369 408 Path length: 45%
No. of nodes: 50%
No. of iterations: 50%

(7, 6) (1, 1) 106 1,409 1,562 54 598 669 Path length: 50%
No. of nodes: 58%
No. of iterations: 58%

(1, 1) (4, 4) 78 135 228 32 51 92 Path length: 59%
No. of nodes: 63%
No. of iterations: 60%

(8, 8) (5, 5) 52 177 182 28 54 51 Path length: 48%
No. of nodes: 69%
No. of iterations: 70%

(3, 1) (8, 7) 105 409 474 53 242 263 Path length: 50%
No. of nodes: 41%
No. of iterations: 45%

(9, 1) (1, 5) 128 749 786 63 299 333 Path length: 51%
No. of nodes: 60%
No. of iterations: 58%

(1, 1) (6, 6) 92 171 266 48 100 147 Path length: 48%
No. of nodes: 42%
No. of iterations: 45%

(4, 5) (9, 1) 84 811 921 42 488 545 Path length: 40%
No. of nodes: 50%
No. of iterations: 41%

Total enhancement in the average path length: 49%. Total enhancement in the average no. of nodes: 54%. Total enhancement in the
average no. of iterations: 54%.
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along the built tree. This reduction indicates a search space that is more streamlined and efficient with
resources. As the number of nodes drops, the computational load also decreases. The algorithm’s memory
and processing requirements are reduced, improving the computational efficiency given the fewer nodes to
assess. For applications requiring instantaneous decisions, this improvement is of utmost importance. A
reduced number of nodes allows for a more targeted search of the configuration space, which speeds up
the discovery of good pathways. Faster path planning is the outcome of the algorithm’s improved navigation of
the search space. Situations requiring quick responses and decisions benefit from this acceleration.

One way to improve memory utilization is by reducing the number of nodes. This aspect is crucial for
robots that must function in settings with limited resources or applications where memory is an issue. Because
it can accomplish its goals with fewer nodes, the algorithm is more flexible and can be used in different
computational environments. The scalability of IRRT-SSA is improved by reducing the number of nodes.
Without experiencing an exponential rise in computing needs, it can efficiently handle search areas that
are larger and more complicated. Applications that require the algorithm to adapt to different robotic plat-
forms and environmental situations must have this scalability.

Reducing the number of nodes also allows the algorithm to zero down on areas of the configuration space
where optimum pathways are more probable. The algorithm’s ability to locate high-quality pathways effec-
tively, even in situations with limited computational resources, is enhanced by this targeted investigation. The
needs of real-time systems are met by reducing the number of nodes. The capacity to design pathways with
fewer nodes improves the system’s overall stability and guarantees quick responses in applications such as
autonomous vehicles or robotics in dynamic environments. IRRT- SSA’s 54% reduced node count demonstrates
computational efficiency and offers practical advantages, such as optimized memory utilization, faster path
planning, enhanced scalability, and compatibility with real-time applications. Because of these benefits, IRRT-
SSA is an attractive algorithm for many robotic applications prioritizing efficiency and resource utilization.

6.3 Implications of 54% decrease in iterations

The time and computational resources needed for path planning are significantly affected by the remarkable
54% reduction in iterations achieved by IRRT-SSA compared with the fundamental RRT. A decrease in itera-
tions indicates an improvement in efficiency and resource utilization. The following are important points
about its consequences:
• Convergence toward optimal pathways is accelerated with fewer iterations. The time it takes for the algo-
rithm to search for possible configurations and find ones that work is reduced. When making decisions and
responding quickly are of the utmost importance, time-sensitive applications greatly benefit from this
acceleration in path planning.

• The computational workload decreases directly proportional to the decrease in iterations. The algorithm’s
processing power and computational resource requirements are reduced with the decreased number of
iterations. This reduction is important in situations in which computing resources are limited or making the
most of what is available is of the utmost importance.

• Reduced iterations meet the needs of real-time systems. The algorithm’s capacity to accomplish its goals with
fewer iterations guarantees more responsive and prompt decision-making in applications such as autono-
mous vehicles and robotics that operate in dynamic situations, which contributes to the system’s overall
reliability.

• The scalability of IRRT-SSA is improved by reducing iterations. Without a corresponding rise in computing
needs, it can efficiently manage search areas that are larger and more complicated. Applications requiring
the algorithm to adapt to different environmental conditions and robotic platforms rely on scalability.

• Fewer iterations indicate a more targeted and resource-efficient planning approach. By focusing its com-
puting power on the most promising regions of the configuration space, the program can efficiently explore
and identify the best paths. In situations in which the processing capacity is limited, this optimization of
resources is highly valuable.
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• Fewer iterations mean less power usage, particularly for robotic systems that run on batteries. By reducing
the number of computation cycles needed to accomplish its path planning goals, the algorithm helps pre-
serve energy and prolongs the operating life of the robotic platform.

The time savings achieved by IRRT-SSA – a 54% reduction in iterations – are accompanied by practical
benefits, such as greater scalability, lower processing needs, improved real-time capabilities, effective resource
utilization, and energy conservation. For tasks in which optimizing path planning within a limited time and
computational resources is critical, IRRT-SSA stands out as an attractive approach given its many benefits.

6.4 Enhancements in path quality by IRRT-SSA

Compared with the original RRT, IRRT-SSA significantly improves path quality, promoting the construction of
efficient and optimal paths. Several important factors contribute to path quality enhancement.

The generated pathways are fine-tuned using IRRT-SSA, allowing the robotic system to move continuously
and smoothly. By directing the search toward more gradual configurations and less abrupt directional shifts,
SSA aids in path optimization. This optimization is crucial for robotic platforms for tasks requiring reliable and
controlled navigation. The trajectory will be more linear and uninterrupted because the algorithm can smooth
out bumps in the road. This characteristic becomes especially useful when dealing with robotic systems
navigating varied terrains or environments. Navigational stability and dependability are enhanced as a result
of reduced path disturbances.

By improving the exploration process, IRRT-SSA successfully reduces the travel distance. Finding shorter routes
that minimize unwanted deviations is the main emphasis of the algorithm. When saving energy or resources is
paramount, this enhancement is important. By prioritizing safety, the system finds routes with fewer obstructions.
With the help of SSA, IRRT-SSA can intelligently move around the configuration space, staying away from obstacles
and avoiding collisions. This feature is crucial for uses in settings where hazards are constantly changing or the
weather is erratic. IRRT-SSA can produce routes that are more resistant to environmental changes and distur-
bances. The algorithm’s improved exploration approach ensures consistent performance in real-world circum-
stances, which SSA drives. This strategy helps create pathways that adapt effectively to fluctuations.

By skillfully negotiating the trade space between finding new configurations and exploiting promising
paths, IRRT-SSA achieves a balanced exploration–exploitation trade-off. The technique is designed to converge
toward optimal solutions without getting stuck in local minima, which improves the overall quality of the
pathways generated. This balance is maintained throughout the process. As a result of these improvements, we
can realize the shortest pathways for less cost than those with the original RRT. The paths produced by IRRT-
SSA are of high quality due to a combination of factors, including the optimized trajectory smoothness,
minimized path discontinuities, reduced travel distance, improved obstacle clearance, consistent path robust-
ness, and balanced exploration–exploitation trade-off. This optimization guarantees a higher degree of
dependability, safety, and adaptability in real-world applications and produces shorter pathways. Finding
the optimal shortest pathways is of the utmost importance. IRRT-SSA is a great option because of the lowered
cost, which includes energy usage, computational resources, and overall system performance.

6.5 Comparison between RRT and IRRT-SSA within a highly complex environment

RRT and IRRT-SSA were implemented using a different known environment, which is highly complex,
including many obstacles and narrow passages. The algorithms were run for many iterations, and the per-
formance was evaluated on the basis of the number of nodes generated and the path length. In accordance
with the randomness of the RRT algorithm, 20 repeated tests were achieved. The first test was done by setting
the starting point at (1, 1) and the target point at (7, 5.5), as shown in Figure 9; the second test was done by
setting the starting point at (2, 8) and the target point at (7, 5.5), as presented in Figure 10. The results showed
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that IRRT-SSA generated fewer nodes than the original RRT. Specifically, RRT generated 1,578 and 1,027 nodes
on average, whereas IRRT-SSA generated only 608 and 511 nodes in the first and second tests, respectively. This
finding indicates that IRRT-SSA has a more efficient search strategy and explores the space more effectively.

Furthermore, the path length generated by IRRT-SSA was significantly shorter than that by RRT.
Particularly, the average path length generated by RRT was 148.65 and 93.25 units, whereas that by IRRT-
SSA was 57.6 and 47.25 units in the first and second tests, respectively. Therefore, IRRT-SSA is better at finding
optimal smoothing paths and has a more global search ability. Both tests are demonstrated in Table 3.

Several significant changes between RRT and its improved version, IRRT-SSA, are noted. As shown by the
outcomes, the variations in efficiency, path length, number of nodes, and iterations are apparent.

When exploring the configuration space, RRT-SSA outperforms the core RRT. With SSA, the exploration
method becomes smarter and more flexible, which speeds up the convergence to optimal solutions. The results
show that IRRT-SSA significantly optimizes path length. Paths produced by the method are, on average, shorter
than those produced by the fundamental RRT because it uses SSA’s global and local optimization capabilities. A
smaller number of nodes is needed to build the exploration tree using IRRT-SSA. Compared with the funda-
mental RRT, the simplified and less complicated tree structure is a product of SSA’s swarm intelligence, which
aids in the efficient selection of nodes. In IRRT-SSA, as opposed to the fundamental RRT, the number of
iterations required for path design is significantly reduced. A faster identification of optimal paths with fewer
repetitions is made possible by SSA’s better exploration capabilities, which is responsible for this reduction.

Compared with the essential RRT, IRRT-SSA is more adaptable to changing conditions. In situations in
which the environment changes, SSA’s swarm-based approach makes it more robust by allowing the algorithm
to alter its exploration technique constantly. SSA’s capacity to integrate global and local optimization techni-
ques allows IRRT-SSA to accomplish a more optimal exploration–exploitation balance. This equilibrium leads
to superior path planning with regard to robustness and quality in comparison with the fundamental RRT.

Figure 9: Average path planning with starting point (1, 1) and target point (7, 5.5). (a) RRT and (b) IRRT-SSA.

Figure 10: Average path planning with starting point (2, 8) and target point (7, 5.5). (a) RRT and (b) IRRT-SSA.
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These distinctions demonstrate how IRRT-SSA outperforms the core RRT algorithm and offers a better
alternative for robotic path planning by overcoming its inherent limits.

6.6 Comparison of IRRT-SSA with other current sample-based algorithms

A comparative analysis of IRRT-SSA with other sample-based techniques may provide insights into its potential
applications and enhanced performance in robotic path planning. The comparisons in Table 4 cover the
capabilities of IRRT-SSA in various configurations due to the use of numerous scenarios with diverse

Table 3: Comparison between RRT and IRRT-SSA within a highly complex environment

Starting and goal points RRT IRRT-SSA

Path length Number of nodes Iteration Path length Number of nodes Iteration

Starting = (1, 1), Goal = (7, 5.5) 132 1,844 2,471 52 456 586
127 932 1,270 62 266 447
127 674 1,192 54 951 1,347
125 1,277 1,647 59 169 285
128 1,388 1,895 66 762 1,080
135 2,023 2,605 61 247 570
137 1,647 2,157 58 706 948
134 1,041 1,594 66 554 734
144 1,283 1,967 55 704 1,003
112 1,795 2,279 55 825 1,365
132 2,016 2,739 56 769 1,018
109 2,557 3,408 58 1,156 1,641
116 1,753 2,584 53 295 436
127 1,357 1,895 64 629 846
129 1,427 2,151 59 831 1,134
111 1,598 2,161 54 125 235
128 903 1,351 56 791 1,121
192 2,836 3,815 56 755 972
143 1,677 2,733 54 187 302
117 1,531 2,094 54 988 1,299

Average 148.65 1,578 2200.4 57.6 608 868.45
Starting = (2, 8), Goal = (7, 5.5) 82 1,217 1,523 39 720 992

83 1,224 1,662 55 243 476
119 1,948 2,594 37 982 1,318
83 2,275 2,994 40 1,110 1,475
77 673 971 40 699 904
87 1,220 1,734 57 563 762
120 1,260 1,947 40 383 513
111 1,665 2,144 37 212 297
86 851 1,155 41 236 313
86 743 955 53 997 1,419
118 1,021 1,621 41 621 846
83 897 1,623 36 536 782
78 348 526 41 341 445
72 251 312 59 741 953
87 355 531 42 804 1,048
81 533 772 39 133 218
114 718 1,239 40 123 167
101 1,352 1,788 40 379 599
118 1,201 1,618 38 284 374
79 789 1,082 36 120 169

Average 93.25 1,027 1439.55 47.25 511 703.5
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beginnings and ends. The mean path length is a fundamental algorithmic metric for path planning. This value
denotes the target-chasing distance of the automaton. The IRRT-SSA method reduces path length more effec-
tively than alternative high-tech approaches in all cases. Real-world applications place significant emphasis on
energy and resource efficiency, which makes reducing path length indispensable.

The average number of nodes indicates the exploratory efficacy of an algorithm. IRRT-SSA expedites
research in comparison with alternative methodologies through the progressive reduction of nodes. IRRT-
SSA could transverse the search space and identify the optimal paths. Node exploration reduction improves
computational efficiency in real-time applications, where making fast decisions requires less data.

The computation efficacy of an algorithm can be indicative of the average number of iterations per-
formed. Its low number of iterations indicates that IRRT-SSA can converge to optimal solutions while conser-
ving computational resources. The IRRT-SSA method successfully identifies feasible solutions. The significance
of robot computer efficiency in real-time applications lies in the correlation between the pace at which
decisions are made and the robot’s ability to react and navigate.

The previously mentioned results illuminate the algorithm’s prospective practical implementations and
validate its efficacy compared with previous methodologies. The effective trajectory determination facilitated
by IRRT-SSA is critical for autonomous robotics and other utilizations [34,35].

7 IRRT-SSA performance

IRRT-SSA outperforms the original RRT in several ways.
When optimizing paths, RRT-SSA performs much better. On average, the pathways generated by SSA are

shorter than those generated by the fundamental RRT because it includes a sophisticated global and local
optimization mechanism. For robotic navigation to be efficient and resource-effective, this improvement is
vital.

Table 4: Comparison of IRRT-SSA with other current sample-based algorithms

Starting point
and goal point

Criteria Sample-based methods

IRRT-SSA RRT [17] RRT-
connect [30]

RRT* [31] Informed
RRT* [32]

Smart
RRT* [33]

(2, 1), (2, 8) Path length avg. 60 119 102 85 76 75
Node number avg. 226 471 262 314 1,012 947
Iteration avg. 267 568 617 447 1,354 5,365

(8, 6), (4, 1) Path length avg. 48 90 72 67 59 59
Node number avg. 416 1,027 158 698 1,552 1,202
Iteration avg. 459 1,140 168 782 1,676 1,270

(1, 1), (6, 6) Path length avg. 48 92 84 78 69 72
Node number avg. 100 171 216 214 471 394
Iteration avg. 147 266 633 459 835 6,672

(7, 6), (1, 1) Path length avg. 54 106 90 83 75 75
Node number avg. 598 1,409 192 1,275 4,567 3,397
Iteration avg. 669 1,562 512 1,483 5,344 4,389

(1, 1), (4, 4) Path length avg. 32 78 56 52 47 46
Node number avg. 51 135 205 77 240 243
Iteration avg. 92 228 611 197 756 7,637

IRRT-SSA performs better than established sample-based algorithms, including RRT, RRT-connect, RRT*, Informed RRT*, and Smart
RRT*, in numerous aspects, such as node exploration, computational efficiency, and path length. IRRT-SSA poses significant competition
for robotic path planning implementation given its adaptability and various successful achievements.
Bold values indicates to highlight the results of the proposed algorithm.
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Including SSA in IRRT-SSA significantly reduces the number of nodes needed to build the exploration tree.
By navigating the configuration space selectively, SSA’s swarm intelligence helps the algorithm avoid using
excessive nodes. Compared with that using the fundamental RRT, this reduction helps make the path planning
process more streamlined and computationally efficient.

The number of iterations required for path planning is significantly reduced using IRRT-SSA. The adaptive
exploration strategy made possible by SSA enables the algorithm to converge toward optimal solutions with
fewer iterations and higher efficiency compared with those with the fundamental RRT. The decrease in
iterations demonstrates the algorithm’s enhanced computational efficiency.

By incorporating SSA’s increased exploration strategy, RRT-SSA performs better than the essential RRT.
Using SSA’s swarm-based technique, IRRT-SSA can adapt to an environment’s features while intelligently
exploring configuration space. In complicated and ever-changing situations, this flexibility increases the
probability of finding optimal paths and improves the quality of those solutions.

In contrast to the fundamental RRT, IRRT-SSA demonstrates improved resilience in constantly changing
contexts. Even in situations in which the environment changes over time, the generated pathways will remain
relevant and ideal because of IRRT-SSA’s dynamic adaptability of SSA.

An important component of SSA’s role in the improved performance of IRRT-SSA is its adaptive explora-
tion method. The algorithm adapts its search strategy to changes in its surroundings. This adaptability is
helpful for path planning when traversing across settings with different levels of complexity, impediments, or
dynamic changes. Because SSA is adaptive, it can handle a wide variety of situations with ease.

Given that it is swarm-based, SSA can converge to optimal solutions efficiently. The salp algorithm con-
verges toward optimal paths more effectively than standard exploration methods because individuals colla-
borate to explore and utilize the search space. With its efficiency, IRRT-SSA can quickly converge to high-
quality solutions with fewer iterations than the fundamental RRT.

Improving IRRT-SSA’s resilience in dynamic settings is one of SSA’s most significant accomplishments. The
algorithm’s ability to adjust to new conditions, made possible by SSA’s swarm intelligence, guarantees that the
produced paths will remain optimal and relevant regardless of how the environment changes. This ability is a
key advantage in real-world scenarios because the environment might change over time.

When searching, SSA makes sure to balance exploiting and exploring. This balance is critical to ensure
that the algorithm explores the configuration space completely and prevents early convergence to inferior
solutions. An effective exploitation–exploration balance enhances the diversity of created paths, increasing
the possibility of locating the best-suited path for each given case.

To sum up, SSA adds sophisticated optimization and flexibility to IRRT-SSA, allowing it to surpass the
restrictions of the initial RRT. As a result of the salp swarm’s combined intelligence, IRRT-SSA is an effective
tool for robotic path planning in complex and varied situations, offering advantages in computational effi-
ciency, resilience, and path quality.

7.1 Influence on the practical deployment of robotics

In situations that need fast path planning and navigation, the improvements achieved by IRRT-SSA have far-
reaching consequences on the real-world application of robotics. The following examples show how these
enhancements can benefit practical uses:
• Real-time navigation is made more efficient with IRRT-SSA because of its optimized path creation. This
algorithm is perfect for situations that require quick decisions and responses because it can efficiently
explore and modify courses in dynamic settings, allowing robotic devices to travel efficiently.

• Robots’ ability to navigate complicated situations is strengthened by the enhanced path quality, defined by
less abrupt trajectories and fewer interruptions. IRRT-SSA is well suited for deployment in settings with
varied terrain, barriers, or uncertain conditions due to its ability to evaluate safety margins and adjust to
perturbations, guaranteeing reliable performance.
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• Resource-efficient path design is aided by RRT-SSA’s emphasis on minimizing path length and computational
overhead. For real-world applications, this aspect means less strain on robotic systems, better use of
computing resources, and optimized energy use. Applications dealing with limited resources must prioritize
these variables.

• Path length, number of nodes, and iterations are just a few of the metrics this algorithm can handle, making
it suitable for various robotics tasks. The advancements made to IRRT-SSA apply to a wide range of deploy-
ment scenarios, whether the objective is to optimize pathways for efficiency, preserve energy, or navigate
through crowded settings safely.

• The capacity of IRRT-SSA to create pathways with shorter travel distances and enhanced energy efficiency
results in lower operational and maintenance costs. By reducing mechanical stress and optimizing wear and
tear on robotic components, the optimized pathways save energy and contribute to a lengthened lifespan of
the system.

• The algorithm uses SSA to improve the precision and accuracy of navigation. With the help of SSA’s
intelligent exploration method, IRRT-SSA can move and position robotic devices precisely by navigating
complicated configuration spaces.

• The breakthroughs made by IRRT-SSA greatly aids autonomous robotic systems. Robots can now navigate
and plan their paths efficiently with this algorithm, allowing them to work autonomously in various settings
with minimal human oversight. This feature is of paramount importance for uses such as driverless cars,
drone surveillance, and robotic exploration.

Overall, the advancements made possible by IRRT-SSA should have a major impact on the actual imple-
mentation of robots. The algorithm’s versatility, efficiency, resilience, optimization of resources, and capacity
to handle complicated real-world scenarios make it a great tool for improving intelligent robotic systems and
autonomous navigation.

7.2 Limitations of the study

• IRRT-SSA would not construct pathways efficiently if the hyperparameters are not ideal. Finding the optimal
hyperparameters for diverse situations remains difficult.

• The proposed study may struggle with changing environmental dynamics. The algorithm’s versatility might
be tested in changing environments or dynamically imposed hurdles during path planning.

• The performance of IRRT-SSA, which assumes homogeneous terrain, may be affected by environments with
severely nonuniform surfaces, different friction characteristics, or intricate terrains.

• Initial configuration space data precision affects algorithm performance. Suboptimal route planning can
occur from erroneous or missing environmental data, highlighting the importance of high-quality input data.

8 Conclusion

The proposed IRRT-SSA solves the limitations of the RRT path planning algorithm in terms of the lack of global
search ability and the tendency to generate suboptimal paths by using the metaheuristic SSA. The new
algorithm outperforms the original RRT algorithm in generating paths for a robot from the starting point
position to the target point. Specifically, IRRT-SSA improves the original RRT in terms of average path length,
number of nodes, and number of iterations by approximately 49, 54, and 54%, respectively. These enhance-
ment ratios improve the path quality, realizing the best smoothness paths close to the optimal solution at less
cost. For robotic path planning to be more efficient and successful, IRRT-SSA’s practical benefits are crucial.
Compared with the baseline RRT, IRRT-SSA shows a significant improvement in average path length,
decreasing it by 49%, through its integration of SSA. This reduction in the number of paths that robots
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must travel has real-world relevance for maximizing efficiency and minimizing operational expenses. In real-
world situations in which computational resources and time restrictions are critical, the algorithm’s efficiency
is further shown by the large drop of approximately 54% in the number of nodes and iterations. Because of
these real-world benefits, IRRT-SSA is regarded as a potential answer for situations and sectors that need rapid
and accurate path planning for robotic system deployment. Several obstacles and ways exist to improve the
performance and applicability of IRRT-SSA, which offers remarkable advances in robotic path planning for
highly complicated applications. Further testing in real-world settings is required to verify the algorithm’s
performance in practical situations. Extensive field trials and validations across varied environments and
application domains could be the focus of future research efforts to evaluate the robustness, dependability,
and generalizability of IRRT-SSA. In conclusion, improving IRRT-SSA by tackling these issues and following the
mentioned improvement paths will help intelligent and adaptive robotic systems continue to evolve and be
more useful in complicated robotic applications.
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