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Abstract: In 2019, lung disease severely affected human health and was later renamed coronavirus disease
2019 (COVID-2019). Since then, several research methods have been proposed, such as reverse transcription
polymerase chain reaction (RT-PCR), and disease identification through chest X-rays and computed tomo-
graphy (CT) scans, to help the healthcare sector. RT-PCR was time-consuming when more patients were
present, and a CT scan was costly. Several deep-learning (DL) methods were used to identify diseases using
computer-aided tools. Among those convolutional neural networks (CNNs), the state of the art was adopted in
the machinery to predict cancer. However, there is a lack of explainability (XAI) in how CNN predicts the
disease. In this article, we construct XAI ensembles with Local Interpretation Model Agnostic Explanation
(LIME), Grad CAM, and a Saliency map. It provides a visual explanation for a DL prognostic model that predicts
COVID-19 respiratory infection in patients. Our quantitative experimental results have shown that ensemble
XAI with an accuracy of 98.85%, although individual LIME has scored an accuracy of 99.62% on test data, is
more reliable since it is the combination of models.

Keywords: XAI, convolutional neural networks, ensembles, lung disease, transfer learning

1 Introduction

Any condition that prevents lung function is called “lung disease.” Lung diseases are divided into three
categories": airway diseases, lung tissue diseases, and lung circulation disorders. Asthma, pneumothorax,
lung cancer, lung infection, and pulmonary edema are prevalent lung illnesses. In all these cases, patients
have breathing problems such as shortness of breath, cannot breathe deeply, and have difficulty exhaling. In
the same vein, in late 2002, a pneumonia-related disease known as “severe acute respiratory syndrome” (SARS)
was reported from Guangdong Province, China, and was officially called SARS in 2003 [1]. In 2019, another
severe respiratory disease known as coronavirus disease 2019 (COVID-19) was identified in Wuhan, Hubei
Province, China [2]. COVID-19 was initially identified through a reverse transcription polymerase chain

1 https://medlineplus.gov/ency/article/000066.html.
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reaction test, which usually takes at least 24 h to report the results and was time-consuming and limited in Kits.
Due to this, alternative methods such as chest radiography, and computed tomography (CT) scans were
suggested. Chest X-ray (CXR) imaging and CT scans are the standard diagnostic tests for lung diseases. Among
these, the CXR method is the cheapest and most accessible to everyone when compared to a CT scan.

CXR images can convey a great deal about a patient’s condition; hence, the standard chest radiograph
should be reconsidered [3]. Early detection of lung disease is very important to treat patients early and
improve the quality of the healthcare system. However, because the availability of radiologists is limited,
there is a need to detect lung disease automatically in the absence of experts when immediate treatment is
required. Automated medical image analysis began when the first medical image was digitized. It has com-
bined low-level pixel processing (edge and line detector filters, extracting regions) and computational analysis
(fitting lines, circles, and ellipses) to develop compound rule-based systems that perform complex operations
during the 1970s to the 1990s [4].

Thereafter, designing a computer-aided diagnostic (CAD) system has become essential in supporting
medical practitioners in establishing an accurate diagnosis of pneumonia on time [5,6]. With the increasing
population and technological advances, it is important to use artificial intelligence (AI) to automate the
detection of diseases. Deep convolutional neural networks (DCNNs) became the state-of-the-art tool [7-16]
to extract features and detect lung diseases. These help the experts extract complex features, which are very
challenging to identify. However, DCNNs are black-box in nature, suffering from the problem of how to explain
the model. To mitigate the problem of explainability, another state-of-the-art technology explainable artificial
intelligence (XAI) is in use. XAI methods highlight the important patterns in the images. Al has advanced
significantly across many industrial areas, particularly since the introduction of deep learning (DL). XAl is the
key to unlocking AI and the DL black-box [17]. CXR images have emerged as a helpful tool for the clinical
diagnosis and therapy management of COVID-19-related lung illnesses. DL and XAI have gained momentum as
DL approaches COVID-19 detection and classification. The goal of this research is to propose and develop an
ensemble of XAI techniques for COVID-19 classification models through comparison. Ensembles had great
success [18-22] in identifying lung diseases, including COVID-19.

Main contributions of this article can be summarized as follows:

* The proposed method is an ensemble of XAI methods to predict lung diseases through the fusion of global
and local features.

* Developing local indicator features through XAI methods such as GradCAM, local interpretation model
agnostic explanation (LIME) and Saliency maps.

* A comparison of seven state-of-the-art transfer learning (TL), models was carried out in each XAI method
and fusion dataset (FDS).

* Addressing the problem of class imbalance (CI) through a unique multi-stage approach.

This article is designed in the following way: Section 2 describes the review of XAI methods in the field of
medical diagnosis, and Section 3 describes the methodology and how ensembles are built. Section 4 describes
the experiments and results, and Section 5 is the discussion and way forward.

2 Related work

Researchers have used CXRs and CT scans with DL models for the diagnosis of COVID-19 disease. Many studies
are focused on the automation of detecting lung diseases from CXR images since these are less costly. Some of
the works developed a framework to identify lung disease and tried to reveal the black-box nature of the DL
model. For example, Vidhi [23] has created a system for lung disease identification (COVID-19 vs Normal) from
CXR images using layer-wise relevance propagation-based method. They came up with a new metric based on
pixel-flipping in order to evaluate the XAI method. The adaptive histogram equalization method was applied
during pre-processing on segmented lung images. XAI was used to explain the predictions using different
methods. However, no model was built locally on annotated images during the study. Similarly, Naz et al. [24]
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has provided an explanation of the classification results of various lung disorders, so that medical practi-
tioners can grasp what causes these ailments. Resnet50 was used to develop a disease classifier, and LIME [25]
was used to explain the results. To forecast COVID-19, Gong et al. [26] collected 32 important blood test
variables from 1,374 people. During the process, four ensemble learning algorithms were trained, and LIME
was used to illustrate the results. In contrast, local features such as SIFT, SURF, BRISK, and KAZE [27] were fed
to VGG16 individually to measure the importance while classifying mammographic image.

An ensemble of CNN architectures with three different models of varying kernel sizes (3*3 ,5*5, 7*7) [28]
was used to predict pneumonia from CXR images. A sine cosine optimization with DL-based method [29] was
developed to identify COVID-19 disease. In similar lines, an ensemble of DL models gave promising results [30].
The EfficientNet model was used as a feature extractor. The Convolutional Block Attention Module and the
Wide DenseNet [31] architectures were used to predict tuberculosis (TB). Attention mechanisms are used to
allow the network to focus on certain parts of the input data and ignore the others, based on certain criteria.
OView-AI system (computer-aided application) [32] used a model trained on Efficient-B7 as the backbone,
classifying four diseases: pneumonia, pneumothorax, TB, and lung cancer. Using the dense net as a backbone
[33], a network is trained to classify lung disease from a CT scan through a novel loss function. Similarly,
ensemble of DL models was applied to classify the lesions in fundus images [34].

Groen et al. [35], using end-to-end DL in their experiments, intend to expand research on the explainability
of CAD applications in radiology. From their study, they have identified that 36% of studies have used XAI for
visualization. Class activation mapping is the most common technique used. The use of XAI methods has
increased [36] in recent years.

To systematically examine the effectiveness of XAI approaches on DL models for pneumonia medical
imaging, Zou et al. [37] built a comprehensive XAI evaluation methodology encompassing quantitative and
qualitative measures. Ensemble XAI was developed with the supervision of experts and obtained an accuracy
of 70%. DL models in AI have been extensively used in a variety of fields, including healthcare and medical
imaging. AI must replicate human judgment and interpretation abilities in order to use it as state-of-the-art
technology. A thorough examination was conducted by Chaddad et al. [38], and the goal of XAl is to specifically
describe the data underlying the black-box model of DL that discloses how judgments are formed. A detailed
literature review on the techniques to identify lung diseases is presented by Litjens et al. [4] and Shen
et al. [39].

DL with XAl is also used in identifying plant disease [40]. These techniques have achieved great progress in
developing a system for detecting plant diseases, and more crucially, GradCAM++ and XAI technique are used
to find the disease and emphasize the leaf regions that are most crucial for categorization. Several DL models
were applied and tested [41] thoroughly in identifying healthy leaves, including an ensemble of models.
Several ensemble models and how XAI methods are used to reveal the black-box nature have been discussed
so far with respect to various lung diseases.

Self-attention-based Generator discriminator [42] is designed to extract local features to identify lung
cancer using a sunflower optimization algorithm. A multi-stage network was proposed by Vats et al. [43] to
detect TB where one stage focuses on localization as well. They also presented a detailed discussion of the
activation functions and how these act on data when data are passed through them. Interestingly, Saliency
maps were used to segment CXR images [44] and these worked better in reducing the background noise, so
they could also be used as a pre-processing step.

The existing research focuses on the entire image to extract the features and classify the disease. In
general, a radiologist focuses on the part of the image (say, for example, left/right, lower/upper lobes
of CXR image contain blobs) to determine the nature of the disease based on the type of its nature. Very
few researchers focused on CXR image localization to predict lung disease. The aforementioned gaps can be
addressed with XAI methods. Although some of the works have used XAI for visualization, they have not been
used for localization. Inspired by the work of XAI methods, we are proposing a method, which is an integration
of LIME, Saliency map, and Grad-CAM methods to identify discriminate regions from CXR images that help to
classify lung disease. This will be discussed along with the data and approach in the next section.
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3 Dataset and methodology

In this section, we describe the dataset used and the proposed methodology for detecting COVID-19 lung
disease. Before delving into the suggested method, we discussed the CNNs and other XAI approaches employed
in this method.

3.1 Dataset

Lung disease classification (COVID-19 vs Normal) is achieved by analyzing CXR images. In phase 1, we used
3,500 CXR images (class distribution is shown in Table 1) from the COVID-19 radiography database? to train a
base classifier, which was adapted from our previous study. Annotated images are generated using the cutting-
edge XAI approach LIME in our earlier work [45], where we demonstrated how customized CNN recognized
diseases in the region of interest. Furthermore, in this study, we generated annotations for further analysis
using the GradCAM and Saliency approaches, and these were archived in the form of numpy arrays for further
usage. The dataset will be shared as per the request and based on its use.

Table 1: Number of images used for training and testing in phase 1

S. no. Data COVID-19 Normal
1 Traindata 2,396 1,041

2 Testdata 500 300
3.2 CNNs

Instead of computing statistical characteristics from images, a CNN is used to collect feature vectors from
images. The first successful CNN [46] was constructed by Lecun for handwritten recognition; however,
Fukushima introduced the concept as neocognitron in the 1980s [47]. Convolutional, max pooling, and dense
layers make up deep CNNs. Convolution is a two-dimensional weight matrix calculated during training that
retains spatial information. Since CNN computes more such weight matrices to extract feature maps from the
image, max pooling is used to reduce dimensions and lower the cost of computing weights. Like an artificial
neural network, the number of layers in the architecture, and the loss function to optimize the weights,
number of epochs, and learning rate are the hyperparameters. A CNN architecture extracting the features
from the image is a state-of-the-art technique that has changed the direction of research in image processing;
later, it has moved to TL methods such as VGG16 [48], ResidualNet [49], InceptionNet [50], and Densely
connected net [51], which are showing remarkable results.

3.3 XAI techniques

Gradient-weighted Class Activation Mapping produces a coarse localization map highlighting the essential
regions in the image for predicting the target class using gradients of the target class flowing into the final
convolutional layer [52]. The concept originated from the fact that fully connected layers lose spatial informa-
tion, while convolutional layers retain it. When gradients go into the final convolutional layer, the information

2 https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database.
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is used to assign importance to each neuron. To obtain the localization map, it first computes the gradient of
the class score with respect to feature map activations of the convolutional layer and flows back with every
layer of convolution. The same process is repeated at each other layer. Gradients are global averages pooled as
an aggregation process as they flow back. These techniques are more trustworthy, and they were one of the
successful techniques to describe visuals from CNN output.

Saliency map [53] is a ranking-based technique that ranks pixels based on their influence on the class
score. Because the class score function is highly nonlinear, identifying the significance of a pixel is difficult.
However, the importance of a pixel can be computed using a linear function using the first-order Taylor

expansion. Sc(I) = ||w||"I + b, where w is the derivative of S with respect to the image I at the point (image) I.
dse

a I

LIME [25] is another innovative explanation method that learns an interpretable model locally around the

predictions in order to explain the predictions of any classifier in an understandable and accurate manner.
Interpretable explanations must use a representation that is understandable to humans, regardless of the
model’s real attributes. The output is a binary vector showing the presence or absence of a contiguous patch of
pixels, via which the model can best predict the class.

There are other XAI methods such as Partial Dependency Plots (PDP), Accumulated Local Effects (ALE),
Individual conditional expectation (ICE), SHAP, and ELI5. PDPs [54] illustrate the incremental impact of one or
two features on the anticipated outcome of a machine-learning model. ALEs are more similar to PDP with a
change in the way of computing the feature importance. It is based on differences in predictions rather than
averages [55]. On the other hand, ICE plots [56] are used to assess the impact of a variable on a trained
machine-learning model, assuming that all other variables remain constant. The objective of SHAP is to
elucidate the prediction of an instance x by calculating the contribution of each feature to the prediction.
The SHAP explanation technique [57] calculates the Shapley values using coalitional game theory. The feature
values of a data instance function as participants in a coalition. Shapley values provide a method for equitably
allocating the “payout” (i.e., the prediction) across the different attributes. It is inspired by a local surrogate
model. ELI5 [58] is primarily designed for text data to explain the answers in a simple way.

Among all these methods, LIME, GradCAM, and Saliency mappings are visualization methods that explain
images. Methods such as PDP, ALE, and ICE work on lower dimensions and structured data, for example,
predicting a customer churn from customer demographical, potential to buy, and job-related features. SHAP
has not been applied to any medical images so far. So we employ LIME, GradCAM, and Saliency maps to obtain
the region of interest feature that is explained in the next section.

w =

3.4 Proposed method

A collection of XAI models is created and trained to address the problem of binary classification that detects
the presence or absence of an individual who has COVID-19. GradCAM, LIME, and Saliency maps are some of
the XAI approaches used in this work. To produce ROIs, various XAI approaches are applied, and a CNN model
is trained on each output before the final predictions are selected by a majority vote. Decisions made by a
group of experts are almost always more trustworthy than decisions made by a single expert. As a result, the
predictions are accurate.

The following is the summary of the process: (i) train a CNN model on given input images, (ii) share the
stored model and images with XAI method to generate annotations, (iii) fusion of input images and XAI output
(generated annotations) and training another custom DCNN on data generated from phase (ii), and (iv) get the
predictions from the previous phase for all XAI techniques and finalize the prediction using majority voting.
The entire flow is shown in Figure 1.

The process is well explained in phases in Algorithm 1 to train the model, testing is in Algorithm 2, and the
schematic is shown in Figure 2. Here, a DCNN with five CNN layers is designed to extract features from CXR
images by optimizing the weights with an Adam optimizer and a learning rate of 0.0001. A drop-out layer is
introduced to reduce overfitting at the same time.
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Figure 1: Flowchart that denotes the entire process flow.
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Figure 2: Block diagram for proposed method: Ensemble XAI; DCNN: Deep convolutional neural net; F-DCNN: Fusion DCNN.

Algorithm 1: Ensemble of XAI models: Training

1:  Read CXR images of 224*224 resolution.
2:  Load customized trained model(base model) from h5 object.
Phase 1 - Generating ROIs-Local features from CXR images
3:  while All images exhausted do
4 Input model and image to the XAI model to generate ROI mask.
5 i < XAImethod
6: if i = GradCAM or i = Saliencymap then
7 Send the image to the XAI method to get the ROI mask
8 Apply Otsu’s method on ROI to get the right segments
9

: else
10: Send the image to the XAI method to get the ROI mask
11: end if
12: Write the roi generated image to disk.(named as local dataset (LD)
13:  end while

Phase 2 - Training CNN model on local features- Local models
14:  while On each dataset produced in the previous step do
15: Train a CNN model.
16: Store the model as an h5 object.
17:  end while

Phase 3 - Fusion of original images with extracted local regions
18: while On each LD(s) do
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19: read images from LD and original dataset

20: while All images exhausted do

21 Point wise pixel addition local feature and original image
22: prepare a numpy array

23: end while

24: Store numpy array for each - FDs

25:  end while

Phase 4 - Training a CNN model on combined dataset
26: while On each FD(s) do
27: Train a CNN model
28: Store it as h5 object (Fusion model-FM)

29: Get the predictions
30: Take the mode of predictions as the final output
31: end while

DCNN feature extractor is a binary classifier with a fully connected layer plus a sigmoid activation
function that outputs the probability. The trained model, along with images given as input to the XAI method,
produces the described region. These discriminated regions can be given more weight while combining image
features with Fusion DCNN, which has a similar architecture. Since various models produce different prob-
abilities, stacking is performed on the output with a mode of voting.

Algorithm 2: Ensemble of XAI models Testing

Read test CXR images of 224*224 resolution.
Load customized trained model(base model) from h5 object.
Load three local models from the h5 object.
while All images exhausted do
while each of three XAI method(s) do
produces Local features using the XAI model.
Fusion with original data
Apply fusion model to get the prediction.
end while
10: Take the mode of all as the final prediction
11: end while

The time complexity for the proposed approach is estimated in a model-specific way [59] as per the
architecture in a total of three parts. One is training the base model before applying XAI methods. Second
is generating rois from model and XAI methods. Third is training on FDs. The first and third used the same
architecture with the goal of capturing the features whatever is not captured before fusion. It can be defined
[60] in the following way:

d
2 f(my, ny, £, s0), (4]
i=1

where “m” and “n” denote the size of features, “f” is the number of kernels, “s” is the size of the kernel, and “d”
denotes the depth of the network. The second part again consists of three parts since the XAI methods are
different. For simplification ki, k;, and k; denote the time taken by three XAI methods, respectively, to produce
a region of interest. “k” is defined as:

k = f(XAI method, Model), ()
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and then, the summation is defined as follows:
X
2 f(k). 3)
i=1

In the aforementioned notation (2), the “Model” is one of the components, because the image and model will be
passed to the XAI method. XAI method time depends on the architecture of the model as well. “x” is the number
of XAI methods: in this case, it is three. The total time is the sum of (1) and (3). We have also measured the time
for an epoch in each of these XAI methods. It excludes read/write intermediate results.

4 Experiments and results

The problem is formulated as a binary classification problem since it is classifying lung diseases COVID-19
vs Normal. Combined with original data, XAl-generated data is the input for the models, which consists of
224*224 resolution images. Any classification problem is always measured with a confusion matrix as shown in
Figure 3 metrics such as accuracy, recall, precision, and F1 score. Accuracy is defined as the number of correct
predictions over all samples. The recall is a true-positive ratio, which is nothing but how many correct
positives out of all actual positives. Precision is the predicted positive ratio which is nothing but how many
true positives out of all predicted positives. Specificity is a true negative ratio, which is defined as the number
of true-negatives out of all actual negative images. The F1 score is the geometric mean of precision and recall.
Along with accuracy, either recall or specificity will be used in the evaluation, depending on the importance
given to the positive class or negative class. The recall will be given priority to penalize false negatives,
whereas specificity to penalize false positives.

Predicted .
Actuals Positive Negative
Disease +ve True Positive (TP) Fa'se(";‘;?a“"e RecallR) ——> TP/TP+FN)
Disease -ve False Positive True Negative e
(FP) (TN) Specificity(S) | TN/(TN+FP)
Precision(P) Accuracy
|
TP/(TP+FP) (TP+TN)/

(TP+TN+FP+FN)

Figure 3: Confusion matrix.

4.1 Ensemble of XAI methods

In the proposed method, COVID-19 and Normal CXR images of 224*224 size have been taken as input.
Experiments were conducted on google collab®. In all the experiments, DCNN architecture as shown in
Figure 4 was used, where the input layer has a dimension of 224*224.

3 https://colab.reasearch.google.com.
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Layer (type) Output Shape Param #
=Z:nv2d_9 (Co;;zo) N (No;;:_;;;:_zzz, 3;;=== 896
conv2d_10 (Conv2D) (None, 220, 220, 64) 18496
max_pooling2d 5 (MaxPooling (None, 110, 110, 64) 0

2D)

dropout_4 (Dropout) (None, 110, 110, 64) 0
conv2d_11 (Conv2D) (None, 108, 108, 64) 36928
max_pooling2d 6 (MaxPooling (None, 54, 54, 64) 0

2D)

dropout_5 (Dropout) (None, 54, 54, 64) 0
conv2d_12 (Conv2D) (None, 52, 52, 128) 73856
max_pooling2d 7 (MaxPooling (None, 26, 26, 128) 0

2D)

dropout_6 (Dropout) (None, 26, 26, 128) 0
conv2d_13 (Conv2D) (None, 24, 24, 128) 147584
max_pooling2d 8 (MaxPooling (None, 12, 12, 128) 0

2D)

dropout_7 (Dropout) (None, 12, 12, 128) 0
flatten (Flatten) (None, 18432) 0
dense_5 (Dense) (None, 64) 1179712
dropout_8 (Dropout) (None, 64) 0
dense_6 (Dense) (None, 1) 65

Total params: 1,457,537
Trainable params: 1,457,537
Non-trainable params: ©

Figure 4: Layer-wise detail of the DCNN model.

Once the DCNN model is trained on COVID-19 and Normal classes, images and model were fed to the XAI
technique, for example, GradCAM, through which annotated images were generated. The annotated images
generated using GradCAM and Saliency maps are preprocessed further with Otsu’s thresholding method to get
the segments. Otsu is a segmentation algorithm that generates lower and upper thresholds to segment the
image based on the continuity of pixels.* Similarly, LIME is another XAI model applied to this problem [45].
When we use LIME, the feature weights will vary between 0.0001 and 0.00000001. Fusion is a simple process of
the addition of pixels, which intuitively gives more weight to the important regions though it does not show
much interpretation when we plot the fusion image. Of course, it can be done through normalization but it

4 https://learnopencv.com/otsu-thresholding-with-opencv/.
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does not convey anything to the human eye. Three XAI techniques (GradCAM, LIME, and Saliency maps) were
used during experimentation to generate critical regions. Each generates local discriminate regions that are
nothing but masked images and were used further to train a model along with original data. Error curves for
these are shown in Figure 5.

(a) (b) (c)

Figure 5: Error curves: a-c are generated while training on the GradCAM, Saliency, and LIME FDSs.

The results reported in Table 2 for an ensemble of XAI are predicting all positive cases correctly without missing
anything although the proposed method is on par with individual models in other metrics. The number of XAI
methods in ensembles can be 3, 5, 7, etc. any odd number that avoids a tie between the models.

Table 2: Metrics captured from the models built on XAI generated annotations when combined with original data; in train column, one
indicates the train data and zero indicates the test data, Ensemble are preferred over the other models, metrics such as Accuracy, Recall
and Precision are indicated in bold

S. no. XAI method Train Accuracy Recall Precision F1 score
1 99.44 99.45 99.8 1.00
1 GradCAM 0 98.79 99.23 99.1 0.99
1 99.24 99.47 99.1 0.99
2 Saliency 0 98.05 98.22 98.2 0.98
1 99.96 100.00 100.0 1.00
3 LIME 0 99.62 100.00 99.4 1.00
Ensembles 0 98.85 97.88 100.0 0.99

The experiments were conducted on Google Colab with default setting (12.7 GB RAM,107.7GB disk space),
and it took an average of 12.56, 7.59, and 12.68 s for GradCAM, Saliency, and LIME per each epoch, respectively,
whereas the base model took 3.86 s. The average time period here is for the number of times the experiment
(10 runs) was conducted.

4.2 Correlation analysis with TL techniques

TL [61] has been applied to many real-world problems to address the following: (i) insufficient labeled data, (ii)
incompatible computational power, and (iii) distribution mismatch. TL methods are DCNNs trained on a huge
database for a classification problem. Since it is deep, the network can be used to extract features from any
given image instead of images from the same distribution. This has hinged on the researchers training another
network by taking the output feature vectors from DCNN, which we say it as TL method. Here, we are using the
weights of the pre-trained network to generate the feature vectors. Various pre-trained networks such as



12 =—— Shiva Prasad Koyyada and Thipendra P. Singh DE GRUYTER

VGG16 [48], ResNet [49], MobileNet [62], Xception [63], EfficientNet [64], DenseNet [51], Inception [50], and
ConvNext [65] are available with different architectures and can be reused with imagenet pre-trained weights.
These architectures had a difference in their design of architecture. For example, ResNet uses residual blocks,
XceptionNet uses depth-wise separable convolutions, and DenseNet has dense blocks. A common concept
among these is that they are built on top of convolutional layers but with different filter sizes. The recent
ConvNext architecture is trained on Resnet based on the vision transformers concept. In this work, the authors
have used some of the TL methods by restricting themselves to one version from every family of TL methods.
The experiments were conducted on the FDs. A TL method is trained on FDs with binary cross-entropy loss,
Adam optimizer for 50 epochs on every XAl-generated output.

TL methods have also been applied to the original dataset and recorded as base results to compare with
the results in Table 3. The metrics are reported in Table 4. One can compare these results with the average
metric computed across all the TL methods built on FDs, which is slightly higher than the individual models on
the original data. It will be efficient if we compare it at the individual model level. However, the panel of the TL
model’s decisions is much more reliable than the base one. This analysis can be done by comparing with the
results from Table 2 and claim that the ensemble of customized model results is consistent.

Some of the assumptions were made while training all the networks for standardization purposes. Every
network is trained for 50 epochs only with a learning rate of 0.001, an optimizer of Adam, and a patience of two
after several trials. No other parameter tuning was done to improve the results or avoid overfitting. With the
approach adopted, we can claim that some of the networks are weak classifiers that may tend to do well on a
few data points when compared to others, which is actually the concept of ensembles. Some of the error curves
are shown in Figure 6.

4.3 Handling CI

One of the major problems in machine learning is CI. CI is defined as there will be fewer samples (<10%) of the
total when compared to the opposed class. There are a number of methods available to address CI on
structured data such as under-sampling, over-sampling, and generation of additional data. However, there
is no method to deal with images. A method that we have implemented on structure data [66] experimented on
images is able to obtain significant results. The detailed architecture is shown in Figure 7.

The images are sampled to create CI data with 100 images from COVID-19 and 900 from Normal class with
the intention of creating a 90:10 ratio. Here, the minority class samples are from the COVID-19 class; in general,
positive samples are rare for any disease. The experiments are conducted in the following way: (i) trained a
customized model on the sample dataset with the parameters stated earlier, (ii) created mutual disjoint
datasets (MDS) with repeated sampling from the majority class while combining with minority class samples,
(iii) trained individual models on each MDS and saved the predictions, (iv) consolidated the predictions from
all MDS with two-stage voting for minority class samples, and (v) comparison of the results before and after
applying the method. The experiments have a choice of choosing models between customized models and TL
methods. However, TL method is a good choice as there are fewer images. The results were recorded during
the training original dataset, and MDS is given in Table 5.

This dataset has less than 10% of samples in the COVID-19 class. When creating MDS, it has been brought to
40% of the total with the undersampling method. The experiments were conducted on the original dataset
before creating MDS and can be compared with the results generated from MDS. We can observe that all
methods gave results on par with the based metric. Among TL methods, VGG16 has received low scores.
However, it has performed well on test data using the proposed method.
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Table 3: Metrics recorded after applying various TL methods on different XAI-generated FDs: in train column, one indicates the train
data and zero indicates the test data, Different models (TL method) are performing well on test data when different XAI methods are
used with respect to Accuracy, Precision and F1 score and these are mentioned in bold

S. no. XAI method TL Train Accuracy Recall Precision F1 score
1 GradCAM Resnet50v2 1 99.52 99.72 99.61 1.00
2 GradCAM Resnet50v2 0 97.74 98.23 98.67 0.98
3 GradCAM MobileNetv3small 1 99.20 99.56 99.34 0.99
4 GradCAM MobileNetv3small 0 99.44 99.45 99.78 1.00
5 GradCAM Xception 1 99.48 99.56 99.72 1.00
6 GradCAM Xception 0 96.37 96.49 98.54 0.98
7 GradCAM ConvNextTiny 1 99.68 99.73 99.84 1.00
8 GradCAM ConvNextTiny 0 97.66 98.73 97.95 0.98
9 GradCAM EfficientNetV2S 1 99.68 99.78 99.78 1.00
10 GradCAM EfficientNetV2S 0 99.19 99.33 99.55 0.99
" GradCAM DeseNet121 1 99.08 98.96 99.78 0.99
12 GradCAM DeseNet121 0 99.68 99.77 99.77 1.00
13 GradCAM VGG16 1 99.68 99.78 99.78 1.00
14 GradCAM VGG16 0 98.87 99.31 99.08 0.99
15 LIME Resnet50V2 1 99.76 99.89 99.78 1.00
16 LIME Resnet50V2 0 99.60 99.67 99.78 1.00
17 LIME MobileNetv3small 1 84.10 96.47 84.13 0.90
18 LIME MobileNetv3small 0 82.10 96.22 81.65 0.88
19 LIME Xception 1 99.96 99.95 100.00 1.00
20 LIME Xception 0 99.84 99.77 100.00 1.00
21 LIME ConvNextTiny 1 94.46 94.82 97.48 0.96
22 LIME ConvNextTiny 0 94.92 95.63 97.26 0.96
23 LIME EfficientNetV2S 1 96.66 97.03 98.33 0.98
24 LIME EfficientNetV2S 0 95.73 97.21 96.89 0.97
25 LIME DeseNet121 1 99.88 99.89 99.94 1.00
26 LIME DeseNet121 0 99.92 100.00 99.89 1.00
27 LIME VGG16 1 98.77 99.28 99.01 0.99
28 LIME VGG16 0 99.59 99.89 99.55 1.00
29 Saliency Resnet50V2 1 92.35 99.34 87.94 0.93
30 Saliency Resnet50V2 0 91.77 99.23 87.39 0.93
31 Saliency MobileNetv3small 1 97.66 97.44 98.19 0.98
32 Saliency MobileNetv3small 0 96.93 96.79 97.31 0.97
33 Saliency Xception 1 98.28 97.86 98.78 0.98
34 Saliency Xception 0 95.40 93.63 98.20 0.96
35 Saliency ConvNextTiny 1 98.42 97.53 99.47 0.98
36 Saliency ConvNextTiny 0 99.16 98.96 99.48 0.99
37 Saliency EfficientNetV2S 1 93.04 96.80 93.90 0.95
38 Saliency EfficientNetV2S 0 93.23 97.47 93.19 0.95
39 Saliency DeseNet121 1 95.81 92.15 99.86 0.96
40 Saliency DeseNet121 0 95.96 92.56 100.00 0.96
iy Saliency VGG16 1 98.77 99.28 99.01 0.99
42 Saliency VGG16 0 99.59 99.89 99.55 1.00

5 Discussion and analysis

The annotations produced by XAI methods such as GradCAM, LIME, and Saliency maps are subject to the base
model built on the data, so it is critical to produce trustworthy interpretations based on a fixed model.
Especially in contrast to individual models, ensemble XAI has the benefit of stable interpretation. It is because
each model might be focusing on different roi while providing the final outcome. Additionally, due to the
presence of text, catheters, or lines in the X-ray image, the base heat maps produced by GradCAM and LIME
rarely highlight the regions outside the lungs. Even though this distinct and interrupting area may be a sign of
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Table 4: Metrics generated from TL methods- on original images of 224*224 resolution: in train column, one indicates the train data and
zero indicates the test data

S. no. TL method Train Accuracy Recall Precision F1 score
1 Resnet50v2 1 99.96 100.00 99.94 1.00
2 Resnet50v2 0 99.68 99.67 99.89 1.00
3 MobileNetv3small 1 86.88 97.48 86.25 0.92
4 MobileNetv3small 0 87.02 96.84 86.59 0.91
5 Xception 1 99.92 99.89 100.00 1.00
6 Xception 0 99.44 99.55 99.66 1.00
7 ConvNextTiny 1 93.04 96.80 93.90 0.95
8 ConvNextTiny 0 93.23 97.47 93.19 0.95
9 EfficientNetV2S 1 98.21 98.83 98.67 0.99
10 EfficientNetV2S 0 98.15 99.01 98.47 0.99
1 DenseNet121 1 99.92 99.95 99.95 1.00
12 DenseNet121 0 99.84 99.78 100.00 1.00
13 VGG16 1 99.01 99.12 99.50 0.99
14 VGG16 0 98.47 98.55 99.32 0.99
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Figure 6: Error curves: a-c are generated while training on the GradCAM FD; d-f are generated while training on the Saliency FD. (a)
GradCAM-VGG16, (b) GradCAM-Resnet, (c) GradCAM-MobileNet, (d) Saliency-VGG16, (e) Saliency-ResNet, and (f) Saliency-Mobilenet.

a serious lung condition, it is not useful for making decisions. XAI models have produced an average accuracy
of 99.55%, 98.83% recall of 99.64%, 99.15% precision of 99.60%, 98.91% and F1 score of 1, 0.99 on train and test
data, respectively. While we are addressing an ensemble of XAI methods, our experimentation went on to TL
methods as these are state-of-the-art techniques. ResNet50v2, MobileNetv3small, Xception, ConvNextTiny,
EfficientNetV2S, DenseNet121, and VGG16 are the seven different techniques. The criteria behind the selection
of these models, each from a different family of models, are different at their architectural level. Each TL
method performed differently for each FD, for example, MobileNetv3small has a score of 99.44% for GradCAM,
and ResNet50v2 has produced a better result of 99.60% in the case of LIME as VGG16 with 99.59% accuracy for
Saliency maps. The topic of whether it is wise to rely on the TL approaches or the customized method has been
raised, and the solution may lie in a combination of the two. It requires a great deal of experimentation and
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Table 5: Metrics generated from TL methods- on original images of 224*224 resolution: in train column, one indicates the train data and
zero indicates the test data and metrics recorded on test data with proposed method are mentioned in the bold

S. no. Model Data Train Accuracy Recall Precision F1

1 Customized Original data (90:10) 1 98.17 99.88 98.10 0.99
2 Customized Original data (90:10) 0 99.04 98.91 100.00 0.99
3 Customized MDS1 1 97.86 94.44 100.00 0.97
4 Customized MDS1 0 96.15 90.00 100.00 0.95
5 Customized MDS2 1 99.15 100.00 98.59 0.99
6 Customized MDS2 0 96.15 100.00 94.44 0.97
7 Customized MDS3 1 99.15 100.00 98.62 0.99
8 Customized MDS3 0 96.15 100.00 93.33 0.97
9 Customized Testdata-proposed method 0 97.61 98.13 98.50 0.98
10 Customized Original test data 0 98.14 98.88 98.51 0.99
1 DenseNet Original data (90:10) 1 99.68 99.84 99.84 1.00
12 DenseNet Original data (90:10) 0 99.71 99.67 100.00 1.00
13 DenseNet MDS1 1 99.43 98.99 100.00 0.99
14 DenseNet MDS1 0 100.00 100.00 100.00 1.00
15 DenseNet MDS2 1 97.70 96.36 100.00 0.98
16 DenseNet MDS2 0 97.67 96.43 100.00 0.98
17 DenseNet MDS3 1 99.43 99.12 100.00 1.00
18 DenseNet MDS3 0 95.35 93.88 97.87 0.96
19 DenseNet Testdata-proposed method 0 96.28 89.83 98.15 0.94
20 DenseNet Original test data 0 96.54 89.26 100.00 0.94
21 Resnet Original data (90:10) 1 100.00 100.00 100.00 1.00
22 Resnet Original data (90:10) 0 99.71 99.67 100.00 1.00
23 Resnet MDS1 1 100.00 100.00 100.00 1.00
24 Resnet MDS1 0 100.00 100.00 100.00 1.00
25 Resnet MDS2 1 99.42 99.07 100.00 1.00
26 Resnet MDS2 0 100.00 100.00 100.00 1.00
27 Resnet MDS3 0 99.43 99.05 100.00 1.00
28 Resnet MDS3 0 97.67 96.55 100.00 0.98
29 Resnet Testdata-proposed method 0 97.91 93.86 99.07 0.96
30 Resnet Original test data 0 94.72 85.71 100.00 0.92
31 VGG16 Original data (90:10) 1 94.30 94.62 100.00 0.97
32 VGG16 Original data (90:10) 0 92.96 92.59 100.00 0.96
33 VGG16 MDS1 1 85.63 81.62 100.00 0.90
34 VGG16 MDS1 0 83.72 77.78 100.00 0.88
35 VGG16 MDS2 1 87.93 83.33 100.00 0.91
36 VGG16 MDS2 0 86.05 82.09 100.00 0.90
37 VGG16 MDS3 1 84.48 80.58 100.00 0.89
38 VGG16 MDS3 0 76.74 70.59 100.00 0.83
39 VGG16 Testdata-proposed method 0 73.94 52.43 100.00 0.69
40 VGG16 Original test data 0 59.31 41.38 100.00 0.59

takes quite a while to make predictions based on actual facts. A lot of experiments were conducted to handle CI
and some of them showed better results; however, it is to be seen in depth.

There are limitations of the study, and experiments were conducted on around 3,500 images. It raises the
question of generalizing the solution. However, it provides base metrics for future studies. Interpretation of X-
ray images for nonmedical experts is a tedious task, while expert radiologists can interpret the XAI output
from X-rays. Manual inspection of each image is a tedious and time-consuming task. This showcases the need
for XAI methods to generate annotations. A major roadblock for an individual researcher for experimentation
is computing power. The proposed method could be extended by including more and more images having
computing power to overcome the impediment. Some of the XAI-generated images are shown in Figure 8 for
the respective methods (Saliency, LIME, and Grad-CAM).
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Figure 8: XAl-generated images: a-c are original images; d-f are Saliency maps; g-i are the LIME-generated masks; and j-I are the
GradCAM output: (a) COVID-1745, (b) COVID-2635, (c) COVID-2865, (d) COVID-1745, (e) COVID-2635, (f) COVID-2865, (g) COVID-1745, (h)
COVID-2635, (i) COVID-2865, (j) COVID-1745, (k) COVID-2635, and () COVID-2865.
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6 Conclusion and the way future work

The authors have proposed a versatile approach to computing local features through XAI methods and shown
better accuracy of 98.85% and 99.62% for ensemble XAI and LIME, respectively. With the TL approaches, XAI-
Xception net gave the best test result of 99.84% and while handling CI custom network gave 97.61% on test data.
As the number of options is increasing as technology progresses, one can opt for heterogeneous approaches to
build systems to predict lung disease in the near future. As the research grows, these XAI method-generated
images to be inspected by radiologists and come up with the right annotations may increase the trust in the
patients and healthcare community to make use of the automation process. The proposed approach may be
extended to other disease images and in other modalities such as CT scans and magnetic resonance imaging
(MRD). There is a possibility of building a segmentation model on each XAI method-generated output. Further
ensemble of segmentation may provide the right annotations instead of depending on XAI methods once there
is a well-trained segmentation model similar to the study by Ronneberger et al. [67]. Unet architecture is a
network and a training strategy that has a contracting path to capture context and a symmetric expanding
path that enables precise localization. Training such a network requires image masks along with images that
need to be verified by experts. Here, an attempt is made to build Ensemble XAI methods to predict lung disease
(COVID-19 vs Normal), and it has produced sustainable results.
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