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Abstract: To address the challenges of secure and reliable communication and system quality of service (QoS)
prediction in intelligent production lines (IPL) in the Industrial Intelligent Internet of Things (II-I0T) environ-
ment, a redundant collaborative security model-based communication architecture is designed. First, the
redundant collaborative security communication model is introduced to construct the network communica-
tion architecture of IPL, including the industrial-site mechanical floor, data awareness layer, and gateway and
application layer. Then, to leverage the advantages of the empirical-mode decomposition (EMD) method and
the bidirectional long short-term memory (BiLSTM) model in time-series data analysis and processing, an
EMD-BiLSTM-based QoS prediction model is proposed that can synchronously achieve one-step and multi-step
prediction of QoS attributes. The proposed model exhibits a prediction accuracy of up to 94.01% on the
SourceForge dataset, with prediction, recall, and F1 values as high as 91.37, 90.60, and 90.99%, respectively.
The proposed EMD-BIiLSTM model can achieve better performance than the state-of-the-art QoS prediction
models, indicating that the proposed model can be more effectively used to improve the reliable communica-
tion level of II-IoT.
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1 Introduction

Internet of Things (IoT) has attracted widespread attention and has been applied in many fields, such as
military, logistics, industrial production, agriculture and forestry, and fire monitoring [1-3]. The rapid devel-
opment of IoT has also promoted technological innovation in these fields. At the same time, the Industrial
Intelligent Internet of Things (II-IoT) has gradually become a research hotspot [4-6]. The II-IoT combines
technologies such as IoT and machine-to-machine automated communication to accurately control industrial
processes, leading to efficient, stable, and sustainable industrial production.

Compared with the original IoT, the II-IoT has the following four characteristics: (1) the II-[oT is required to
have low-latency characteristics due to the timeliness of industrial control instructions. When the delay
control is at the millisecond level, the communication reliability can reach over 99.99%. Otherwise, the
operation of the industrial control system (ICS) may be significantly affected [7-9]. (2) II-IoT mostly uses
lightweight sensors and actuators, and its hardware computing and storage resources are relatively limited.
(3) The data volume in II-IoT is relatively small, but it requires higher communication reliability. (4) The II-IoT
systems must also be secure to resist malicious attacks and ensure the safety of industrial equipment and
workers [10,11].
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With the deepening of IT/operational technology integration, network intrusion behaviors are becoming
more complex and diverse, putting all the field devices, control systems, and network devices of the ICSs at risk
[12-14]. To deal with such threats, the traditional ICS must be upgraded to an intelligent control system for
intelligent manufacturing. However, II-IoT typically faces challenges such as complex protocol types, incom-
patibility between protocols, difficulty in effective integration of industrial devices, and low communication
efficiency [15-17]. Therefore, designing a practical and feasible secure communication system architecture for
II-I0T is essential to ensure the safe operation of intelligent manufacturing systems [18-20]. Moreover, intel-
ligent production line (IPL) networks in II-IoT typically face a severe problem. Specifically, the network is
dynamic and variable, and the dynamic quality of service (QoS) attributes of servers exhibit strong instability
due to time and space factors. This will make it difficult for users to select services that meet their needs in the
candidate service set, and it will also increase the latency of communication node task processing.

To address the challenges of network security and reliable QoS in IPLs, a new II-IoT-secure communication
architecture and an EMD-BiLSTM-based QoS prediction model for II-IoT communication systems are proposed
in this study. Specifically, the main contributions are as follows:

1. For the secure communication of II-IoT, a redundant collaborative security communication model is intro-
duced. The model ensures secure communication between device data by establishing multiple commu-
nication transmission paths between II-IoT communication-aware aggregation nodes.

2. An EMD-BILSTM-based QoS prediction model is proposed that can address the dynamic and variable
characteristics of networks in II-IoT communication systems. The empirical-mode decomposition (EMD)
method is combined with the bidirectional long short-term memory (BiLSTM) model EMD to establish a
multivariate data input pattern that can mine the potential information of QoS temporal data at a finer
granularity level. This allows for accurate monitoring of the service status of network nodes, reduction of
task processing delay, and real-time and reliable communication for system devices.

2 Related work

The two important security services of the communication security of industrial scenarios are the authenticity
and integrity of messages. Security authentication is an effective security mechanism that can meet the
aforementioned requirements. The security authentications of traditional systems are carried out on the
physical layer, and the authentication algorithms used usually bring large delays. Therefore, under the II-
IoT environment, it is of great practical significance to research on secure communication technology.

2.1 Secure communication schemes of II-IoT

Yoshino et al. [20] aimed to address the current problem of security concerns among managers in different
industries about using the Internet to operate machines and the inapplicability of traditional methods to
network devices. Choudhary et al. [21] proposed a powerful exchange protocol to solve the vulnerabilities of
existing solutions using a variety of different encryption operations. However, this method cannot meet the
high real-time and high-stability requirements of II-IoT. Ullah et al. [22] proposed a signcryption scheme to
address the problems of key escrow and private key distribution in traditional identity-based or certificateless
signcryption schemes. However, the algorithm lacks the proof of encryption effect, can only encrypt a specific
number of characters, and cannot carry out bitstream data. Ji et al. [23] analyzed the probability of successful
attacks on a random pilot-based key and derived its closed-form mathematical expression. Using this analysis,
a solution for safe low-latency communication and active interference in network control systems for II-IoT
applications was proposed. However, it cannot solve the problem of asymmetric key management in the
resource-constrained environment. Aimed at the external risks and threats faced by II-IoT network perfor-
mance and node transmission security, Zhu et al. [24] proposed a data transmission method by authorizing
access control and increasing users’ network access rights. However, the security of this scheme needs to be
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improved, and it may cause network congestion. To address the network physical vulnerabilities in II-IoT,
Ullah et al. [25] proposed a signature scheme that enhanced the security of data transmission to a certain
extent and reduced the amount of computation in the process of data communication and security assurance.
However, this method has not significantly improved in terms of time consumption and resource usage,
making it difficult to apply directly in resource-constrained network environment. To address the high com-
putational requirements of traditional II-IoT authentication protocols, which make them unsuitable for
resource-constrained devices, a hash function-based authentication protocol has been proposed by Lara
et al. [26]. This protocol reduces the communication cost to a certain extent, but its key update and storage
methods are not sufficiently robust, which reduces the security of key management. Aiming at the problem
that most existing authentication schemes used for II-IoT are vulnerable to privileged user attacks and
terminal device tracking attacks, an II-IoT authentication scheme using SGX was proposed by Xin et al. [27],
it was based on the characteristics of SGX storage master key and SGX storage confidentiality. However, this
method needs to run on specific hardware and cannot be applied to II-IoT defined by software. Chen et al. [28]
proposed a multi-factor authentication protocol that effectively alleviates security attacks on IoT devices through
physical non-cloning capabilities. However, the running cost of this scheme is relatively high. Parai and Islam
[29] proposed a data-monitoring architecture using elliptic curve cryptography for the IoT to improve data
security and reduce the execution cost of the scheme. However, this scheme requires a trusted third-party
centralized identity authentication mechanism to ensure the normal operation of the system. If it is applied
to the II-IoT environment, the flexibility of the system is difficult to be guaranteed. To solve this problem, Zhong
et al. [30] designed a cross-domain II-[oT security authentication system for joint production of multiple man-
ufacturers. This approach not only ensures the flexibility of the system but also reduces the overall commu-
nication overhead. However, the single-channel communication model adopted in this scheme will easily lead to
data transmission failure if the communication node fails, making it unsuitable for ILP in II-IoT.

Several studies have been conducted on QoS security assurance and QoS prediction. Sham and Vidyarthi
[31] designed an adaptive communication security scheme for cloud and mist computing collaborative sys-
tems. This scheme improves security and synchronization performance but has high requirements for appli-
cation scenarios. Chen et al. [32] proposed a QoS prediction model based on wide-range perception matrix
factorization (WRAMF), improving the prediction accuracy to a certain extent and achieving high commu-
nication efficiency. However, the performance is degraded when the model is oriented toward location-based
data. Shi et al. [33] proposed a hybrid QoS prediction model based on web semantic information recommenda-
tion (WSIR) and effectively improved the service quality of mobile social network users in 5G communication
scenarios. Barmpounakis et al. [34] proposed a QoS prediction model using geospatial discretization to solve
the vehicle management problem in a 5G communication environment. However, such methods are unable to
solve the sparsity problem of data. Chen et al. [35] combined factor decomposition machine with deep cross
network (FDM-DCN) and developed a context-aware QoS prediction model for the IoT, considering both low-
order and high-order features of user data. However, the performance of this model needs to be improved in
dynamic and ever-changing network scenarios.

Numerous existing secure communication architectures use a single channel, which makes it difficult to
adapt to ILP scenarios of II-IoT. Therefore, a redundant collaborative security communication model is
introduced that establishes multiple communication transmission paths between II-IoT communication-aware
aggregation nodes to ensure secure communication of device data. However, most of the above-mentioned
methods have been used for QoS prediction and recommendation of Web services on the Internet and 5G
scenarios, making it difficult to meet the requirements of service quality analysis and prediction of ILP
communication networks and II-IoT service recommendation in the II-IoT environment. If the QoS of the
ILP network is poor, the server task processing delay will be significantly increased, and the real-time reliable
communication level of the II-IoT equipment in the production line network will be reduced.

This study proposes an EMD-BiLSTM-based QoS prediction model for II-IoT communication systems. The
proposed model simultaneously realizes one-step and multi-step prediction of the dynamic QoS attributes of
the II-IoT, significantly improving the accuracy of QoS prediction in complex networks. This meets the user’s
demand for selecting appropriate services from the candidate service set, effectively reduces the node task
processing delay, and ensures the best QoS of network nodes within a fixed time range.
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3 Proposed model for II-IoT

3.1 II-IoT overall structure

To address the complex and incompatible protocol types of IPL network communication, and the difficulty of
integrating industrial equipment, this study proposes an IPL communication architecture that integrates the
OPC unified architecture (OPC UA). The architecture maps all kinds of communication equipment in the IPL to
the OPC UA address space, realizing the interconnection between the industrial equipment and the upper
application, and meeting the flattening requirements of the industrial network [36]. The overall structure of
the network communication system for IPL is shown in Figure 1.
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Figure 1: Network communication architecture for IPL.
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The network communication architecture for IPLs is divided into the following four parts from bottom
to top:

(1) Industrial-site equipment layer. This layer is composed of multiple types of IPL communication equipment
and industrial sensors for fault diagnosis. In complex industrial field environments, the IPL system uses
programmable logic controller (PLC), radio frequency identification (RFID), industrial instruments, servo
motors, mechanical arms, and other equipment to collaborate on the product processing process,
improving production efficiency. At the same time, wireless sensors are deployed on the site of the entire
IPL to predict and respond to equipment failures in time. This reduces the risk of equipment failures in
the IPL.

(2) Data awareness layer. This layer includes an OPC UA communication module, data classifier, actuator,
wireless transceiver, and other modules integrated into the IPL equipment, providing data acquisition and
signal transmission functions for the system. At the same time, the address space is established to realize
the connection and communication between Internet applications and underlying wireless sensor net-
works. During the data collection phase, the data classifier can be used to assist the IPL system in further
setting the type of data to be transmitted.

(3) Communication gateway layer. The UA client accesses the address space to collect and receive data from
sensing layer devices. As the data scheduling module in the system, the scheduler performs classified
transmission through the predefined data. This module realizes preemptive transmission of high-priority
services, and it is an important part of the multi-priority dynamic resource scheduling model.

(4) Application management layer. This layer is composed of various application-level systems that manage
IPL equipment. These systems use the OPC UA-based wireless communication environment to collect data,
which enables unified system management and provides the functions of sensing equipment operation
status, predicting failure probability, and initially diagnosing failure causes.

3.2 Redundant cooperative secure communication model

To address the vulnerability of the traditional II-IoT unitary transmission method and the lack of secure
transmission standards for the IPL information data in the II-IoT environment, a basic framework of II-IoT
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Figure 2: Multipath redundancy cooperative secure network model for II-IoT.
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using redundancy communication and auxiliary path redundant security is constructed. The multipath redun-
dancy cooperative secure network model for II-IoT is shown in Figure 2.

In Figure 2, D-N, D-M, and H-N are the initial, relay, and sink nodes, respectively; D is the primary path; E is
the primary secondary path; and D represents the secondary path. The multi-path data redundancy commu-
nication mechanism has advantages over the II-IoT traditional single-path communication strategy. To ensure
secure equipment data transmission in II-JoT environments, multiple communication transmission paths
between the II-IoT communication sensing and sink node are established. The path that meets security
conditions is selected based on redundant transmission requirements and the status of the communication
node and other factors. Based on the redundant communication mechanism, the II-[oT multi-path redundant
cooperative secure communication model first splits and encrypts the initial sensing communication data of
the II-IoT based on the sensing data splitting encryption method in the II-IoT communication data multi-
communication identity authentication mechanism.

The II-IoT communication data threshold secret sharing mechanism splits the data into j data packets that
will be sent to the network node. If the aggregation node successfully receives the transmitted packet informa-
tion, the original data can be restored. Otherwise, the original data cannot be obtained. Next, the multipath
redundancy cooperative secure network model uses the II-IoT auxiliary path redundant secure transmission
method to establish the multiple redundant auxiliary secure communication paths from the source initial
sensing communication node to the sink node to encrypt the split encrypted data point pairs. Finally, the sink
node in the multi-path redundant cooperative secure communication model reconstructs the received split
encrypted packets based on the encryption-aware QoS data method in the II-IoT communication data multi-
communication identity authentication mechanism to restore the true value of the II-IoT initial awareness
communication data.

3.3 Optimized QoS prediction model based on EMD-BiLSTM

The key to II-IoT communication is to select the one with the best QoS from a set of candidate nodes. To
accurately grasp the service status of network nodes, this study proposes an optimized QoS prediction model
based on EMD-BIiLSTM, which integrates the advantages of EMD and BiLSTM in the analysis and processing of
time-series data. The proposed model will ensure that the calling object obtains the best quality of service,
reduce the network node task processing delay, and provide a solution to deduce the QoS attribute trend over
a longer service time and judge the communication service quality of each server in the network.

The optimized QoS prediction model based on EMD-BILSTM realizes the single-step and multi-step pre-
diction of QoS attributes, enabling the model to capture the characteristics of QoS dynamic transformation.
The model mainly includes QoS data preprocessing, hybrid model construction, and single/multi-step predic-
tion execution. The overall architecture of the proposed EMD-BiLSTM-based QoS prediction model is shown in
Figure 3.

3.4 EMD

EMD is an adaptive data processing method that can decompose signals according to the time-scale character-
istics of the data without any prior system. Therefore, EMD is suitable for signal analysis [37]. EMD decomposes
the non-stationary time-series signal into several groups of intrinsic mode functions (IMFs) and residuals (Res)
of different frequencies. Each group of IMFs represents the local characteristics of the original signal on a
certain time scale, and the sum of these IMFs is equal to the original signal [38]. At the same time, these IMFs
have two constraints:

(1) Over the entire time domain, the number of extrema and zero-crossing points of each IMF is the same or

differs by at most 1.
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Figure 3: Overall architecture of the optimized QoS prediction model based on EMD-BiLSTM.

(2) The average value of the upper envelope of the local maximum and the lower envelope of the local
minimum must be 0.

EMD algorithm superimposes all IMFs to obtain raw data without any loss, which has excellent reconfi-
gurability. QoS time-series data have nonlinear and non-stationary characteristics, and it is affected by many
factors. The specific workflow of EMD is shown in Figure 4.

Assuming that the input original time-series signal is expressed as x(t), the local maximum and minimum
of x(t) are determined. Then, the upper envelope and the lower envelope are fitted and fused to obtain the
average calculation result:

_x[t] + x[t]

m; = 2 (4]

Subtracting the time-series signal from the average value yields
he = x(t) - my. )

Determine whether h; meets the generated conditions of IMF. If these conditions are not met, continue to
decompose the decomposed signal. Otherwise, save the generated components of IMF and calculate the
corresponding residuals r(t). Determine whether r(t) is a monotonic function. If it is not, continue to decom-
pose the decomposed signal until all IMFsare obtained. Then, calculate the final residual value and the
algorithm converges. Use equation (3) to represent the relationship between the initial input signal and the
obtained decomposition. In the equation, x(¢)represents the original input signal, IMF(t)represents the i-th
IMF value obtained after multiple decompositions, and r,represents the residual.
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Q)

Equation (3) indicates that all overlays can obtain the original input signal without any loss, reflecting the
strong reconfigurability of this algorithm. The temporal characteristics of QoS have nonlinear and non-sta-
tionary characteristics and are simultaneously influenced by many external factors. It can be seen that using

EMD to decompose QoS temporal features is reasonable.

Figure 5: Structure of BiLSTM.
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3.5 BiLSTM

BiLSTM is composed of two LSTMs with opposite directions that produce the final output result [39]. The model
structure of BiLSTM is shown in Figure 5.

Assuming that the input signal at a time ¢ is x;, the output signal obtained by extracting temporal features
using BiLSTM is as follows:

he = LSTM(X;, 1), @
h[ LSTM(X{, ht 1) (5)
hy = Wlht + W2ht + by, (6)

where h; is the output result of BiLSTM at t, ht and ht are d1v1ded into forward output and Teverse output of
LSTM at ¢, respectively. ht is calculated from the mput ht at ¢t and the forward output h, patt- 1, ht is
calculated from the input x; at t and the reverse output ht qatt -1, and h; is calculated from ht and ht

4 Experiment and analysis

4.1 Experimental environment

Table 1: Experimental environment configuration

Items Configuration

System environment Windows 10, CentOS, Colab cloud computing environment
Software JDK1.8, Python3.7

Database MySQL 5.7.13, MongoDB 4.0.13, Redis 3.2.12

Deploy software Maven, Tomcat, Flask

Test tools MQTTBox, Postman

Table 1 shows the experimental environment. The system test environment consisted of Windows 10, CentOS,
and Colab cloud computing. The system was compiled and packaged using Maven and ran on Tomcat in the
Windows 10 environment. MongoDB, MySQL, and Redis were deployed on the CentOS server. Chrome browser
was used to test the interaction with the front end of the system.

4.2 Dataset

The experiment used the open-source Web service dataset to evaluate and verify the results of the QoS
prediction model using EMD-BiLSTM. The open-source Web service dataset from SourceForge was collected
daily from 8:00 AM to 5:00 PM in 15-min intervals. It contains response time and throughput data for multiple
consecutive days, divided into four sub-datasets of 2,000 continuous data points each. For this experiment, the
response time data from “Web Service 4” were used.
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4.3 Evaluating indicator

Five evaluation indicators were selected, namely, accuracy (A), precision (P), recall rate (R), and FL.
The A refers to the proportion of data classified as correct in all data. The calculation is shown in the

following formula:
h+1y

= (7
h+Ty+F+ Iy

where P is the proportion of normal data correctly classified in the actual normal data, and the calculation is
shown in the following formula:
I

pP= , 8
T+ F @®)

where R is the proportion of correctly classified normal data among all data classified as normal, and the
calculation is shown in the following formula:

T

R = m (9)
F1is calculated by the following equation:
F1= 2R (10)
D+R

where T (true positive) represents the data in the forecast result that are actually positive and predicted to be
positive, Ty (true negative) indicates that the data are actually negative and predicted to be negative; Fp (false
positive) is data that are actually positive but predicted to be negative; and Fy (false negative) is data that are
actually negative but predicted to be positive.

240
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Figure 6: Network energy surplus in different methods.

4.4 Model training

In the process of developing energy-saving systems, the residual energy of the network is an important
parameter to be considered. To verify the superiority of the proposed technology based on II-IoT in terms
of energy-use efficiency, the EMD-BILSTM was simulated and compared with WRAMF [32], WSIR [33], and
FDM-DCN [35]. The residual energy of different methods is shown in Figure 6.
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Figure 7: Response time of different II-IoT systems.

The results in Figure 6 indicate that the proposed EMD-BiLSTM has less residual energy and uniform
power distribution compared with WRAMF, WSIR, and FDM-DCN. A small amount of residual energy means
that the system can use most of the power provided for processing. This is one of the reasons for considering
the proposed effective resource allocation method.

The system response time of WRAMF, WSIR, FDM-DCN, and the proposed EMD-BiLSTM is compared, and
the results are listed in Figure 7.

It can be seen from Figure 7 that the time consumption curve of all methods is weak at first but rising
steadily after some simulations. The proposed method exhibits the slowest increase in response time per
simulation, indicating that it takes the least time to achieve the same effect. This is because the power is evenly
distributed to all nodes after the cluster, so the system responds quickly.
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Learning rate

Results / %
=] > > . o o o o
[5) S N =) [—) N £ (=)
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(=]
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Figure 8: Prediction results obtained under different learning rates.

During the model training process, the setting of the learning rate usually affects the final prediction
effect. Therefore, different learning rates were set to explore the best prediction results, as shown in Figure 8.
Figure 8 shows that the proposed EMD-BIiLSTM model can achieve the best prediction performance when
the learning rate is set to 0.0001. By analyzing the reasons, a high learning rate will lead to underfitting of the
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model, resulting in lower prediction results. If the learning rate is too low, it will make the model converge too
slowly and unstable, and to some extent, it will also reduce the prediction results.

Table 2: Results obtained by four different methods

Indicator Method
EMD-BILSTM (ours) (%) WRAMF (%) WSIR (%) FDM-DCN (%)
A 94.01 89.10 92.16 93.29
P 91.37 88.24 89.82 90.08
R 90.60 86.67 88.93 89.78
A 90.99 85.98 88.74 89.03

4.5 Comparative analysis

To verify the superiority of the proposed EMD-BIiLSTM, it was compared with WRAMF [32], WSIR [33], and
FDM-DCN [35] using the same dataset and evaluation metrics. The final calculation results of different methods
are listed in Table 2.

In Table 2, under the same database, the A4, P, R, and F1 of the proposed EMD-BiLSTM are higher than those
of the other three comparison models. The A of the proposed algorithm is 94.01%, the P is 91.37%, the R is
90.60%, and the F1 is 90.99%. Analyzing the reasons, several comparative models can usually consider the
nonlinear problem of QoS data, but WRAMF and WSIR only focus on the time-varying characteristics of
individual component data, ignoring the interaction between component data. Although FDM-DCN can con-
sider the interaction between component data, it ignores the non-stationary characteristics of QoS data. The
proposed EMD-BIiLSTM model solves the problems of nonlinearity and non-stationary in QoS data through
EDM. At the same time, BILSTM is used to model the temporal characteristics of multiple component time-
series data and the potential relationship between components. This allows the model to extract fine-grained

Lol =< - True value =~ —— — - WRAMF
Lol WSIR FDM-DCN

100k EMD-BiLSTM (ours)

0.09
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0.06
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Time / ms

I 2 3 4 5 6 7 8 9 10
Time series

Figure 9: Multi-step predicted results in time series of different methods.
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information from QoS time-series data and fully capture the temporal correlations between components of
different scales. Therefore, the proposed EMD-BILSTM model exhibits better prediction performance for
dynamically changing QoS temporal data with nonlinear and non-stationary characteristics.

The multi-step predicted results in time series of WRAMF, WSIR, FDM-DCN, and the proposed EMD-
BiLSTM are listed in Figure 9.

It can be seen from Figure 9 that the predicted response time values by the proposed EMD-BiLSTM model
are closer to the real values. The errors of WSIR and FDM-DCN are relatively large, and the prediction results
of WRAMF begin to have a large deviation at the fifth moment, which is due to the accumulation of prediction
errors in the previous steps. The proposed model has an error correction function, which can properly correct
the deviation and reduce the deviation of the prediction results. Although the prediction results of the other
three comparison methods differ significantly from the real response time, the trend of the actual corre-
sponding time data can still be captured. The proposed EDM-BIiLSTM model can maintain high prediction

Table 3: Experimental results of ablation model

Indicator Model

A (%) P (%) R (%) F1 (%)
EMD 62.42 58.39 56.48 57.79
LSTM 75.32 73.48 72.74 71.66
EMD-WLSTM 89.46 87.29 86.62 87.07
EMD-BILSTM (ours) 94.01 91.37 90.60 90.99

accuracy while ensuring a small-time error with the true value, which has effectively reduced the task
processing delay of communication nodes. Overall, the proposed model has better performance than the
other models.

To better verify the role and importance of each part of the model, Table 3 shows the ablation experiment
results.

In Table 3, the results of the proposed EMD-BiLSTM model are the highest. The index value of the EMD-
LSTM model is relatively low. However, the evaluation index values of EMD and LSTM models are very low,
making them inapplicable to the actual situation. This is because the simple EMD model can decompose the
signal according to the time-scale characteristics of the data itself, but it cannot properly capture the depen-
dence of a long distance, while the simple LSTM is the opposite. Although the EMD-LSTM model can learn and
forget information through the training process, it cannot capture the two-way semantic dependence. The
EMD-BiLSTM model combines the advantages of both EMD and BiLSTM models and achieves the best perfor-
mance results.

5 Conclusion

To address the challenges of secure and reliable communication and system QoS prediction in IPLs under the
II-IoT environment, this study proposes a communication architecture based on a redundant collaborative
security model. Compared to the single-path communication model, the introduction of a multi-path redun-
dancy mechanism effectively improves the security of II-IoT systems. This study proposes an EMD-BiLSTM-
based QoS prediction model that combines the advantages of the EMD method and the BiLSTM model in time-
series data analysis and processing. EMD can reconstruct raw data without loss and has excellent reconfigur-
ability, which improves the performance of QoS time-series data analysis. The optimized QoS prediction model
based on EMD-BIiLSTM can reduce the task processing delay of network nodes, providing technical solutions to
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deduce the QoS attribute trend in a longer service time and judge the quality of communication service of each
server in the network.

One of the limitations of this article is that the proposed EMD-BiLSTM model has only been validated on
small-scale datasets. Therefore, in future work, technologies such as BERT and transformer will be introduced
to design new prediction models for solving multidimensional data problems in large-scale complex industrial
scenarios. In addition, as the number of terminal devices continues to increase, the computing center load of
the designed II-IoT system will also continue to increase, which is not conducive to application in ultra-large
application scenarios. Therefore, federated learning and blockchain technology with distributed character-
istics will be introduced into the designed II IoT security system. While the security is improved, it will be
better applied in ultra-large industrial scenarios.
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