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Abstract: The current technology of foundation pit deformation measurement is inefficient, and its accuracy is
not ideal. Therefore, an intelligent prediction model of foundation pit deformation based on back propagation
neural network (BPNN) is proposed to predict the foundation pit deformation intelligently, with high accuracy
and efficiency, so as to improve the safety of the project. Firstly, to address the shortcomings of BPNNs, which
rely on the initial parameter settings and tend to fall into local optimum and unstable performance, this study
adopts the modified particle swarm optimization (MPSO) to optimise the parameters of BPNNs and constructs
a pit deformation prediction model based on the MPSO–BP algorithm to achieve predictive measurements of
pit deformation. After training and testing the data samples, the results show that the prediction accuracy of
the MPSO–BP pit deformation prediction model is 99.76%, which is 2.25% higher than that of the particle
swarm optimization–back propagation (PSO–BP) pit deformation prediction model and 3.01% higher than that
of the BP pit deformation prediction model. The aforementioned results show that the MPSO–BP pit deforma-
tion prediction model proposed in this study can effectively predict the pit deformation variables of construc-
tion projects and provide data support for the protective measures of the staff, which is helpful for the cause of
construction projects in China.
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1 Introduction

In various engineering activities, the geological conditions involved are relatively complex, the demand for
underground space is also increasing, and the number of foundation pit works is also increasing [1]. In this
context, the measurement and prediction of foundation pit deformation is very important, which is directly
related to the safety of foundation pit engineering [2]. In previous studies, scholars from various countries
have conducted in-depth research and discussion on the prediction and measurement of foundation pit
deformation, and a large number of research results have been published [3]. The current foundation pit
deformation measurement technology is inefficient, and its accuracy is not ideal enough to effectively ensure
the safety of construction workers. Based on previous research results, this study proposes the use of neural
network algorithms to make intelligent predictive measurements of foundation pit deformation in construc-
tion projects, in order to provide data to support the safety and protection of staff. Firstly, this study proposes
strategies to improve the particle swarm optimization (PSO) algorithm in terms of particle flight speed, inertia
weights, and learning factors. Then, the back propagation neural network (BPNN) is optimised based on the
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improved PSO algorithm, and a pit deformation prediction model is constructed using MPSO–BP. The model
has a positive effect on the safety of foundation pit projects and provides guidance for the application of intelligent
algorithms in foundation pit projects. The main purpose of this study is to build a model to predict the deformation
of the foundation pit efficiently and accurately, so as to play a positive role in the safety guarantee of the foundation
pit project. The main contributions of the research are two points. The first point is to provide guidance for the
application of intelligent algorithms in foundation pit engineering and promote the development process of
automation and intelligence in construction engineering. The second point is to provide an efficient and accurate
path for the deformation prediction of the foundation pit, thus improving the safety of the staff. There are twomain
innovations in the research. The first is to apply BPNN to the deformation measurement of foundation pit to realise
intelligent and accurate measurement of foundation pit deformation; the second point is to use the improved PSO
algorithm to optimise the BPNN, thus improving the performance of the BPNN model.

2 Related works

With the number of construction projects increasing year by year, people’s demand for underground space
has become increasingly strong, and the number of foundation pit projects has also increased. The deforma-
tion of deep foundation pit engineering will affect the safety of project construction and surrounding build-
ings, so the deformation measurement of foundation pit has always been the focus of engineering practice.
Many scholars have conducted in-depth research on foundation pit engineering. Taking a large deep founda-
tion pit project in Guangzhou financial city as the research background, Xi et al. [4] conducted a comparative
analysis of numerical simulation and monitoring data of deep foundation pit excavation deformation. Wang
et al. [5] used the finite element analysis software ABAQUS 6.1.4 to simulate and analyse the displacement
changes of supporting structures such as deep foundation pit excavation, underground diaphragm wall, and
steel support. In order to study the stability and adjacent historical operation of the foundation pit during
excavation, Liao et al. [6] carried out numerical simulation and field monitoring with a foundation pit in the
southern new City of Nanjing as the research background. Wen and Yuan [7] established a three-dimensional
symmetrical shield model to study the influence of the change of grouting pressure on the deformation and
mechanical properties of the foundation pit and tunnel when the double line shield tunnel crosses the existing
foundation pit. Based on the Verhulst model, Chang et al. [8] realised the prediction and early warning of axial
force of foundation pit steel support to improve the safety of foundation pit engineering. Li et al. [9] proposed
an isolation method in the backfill area of foundation pit to reduce the ground vibration of buildings and
developed a new isolation product with high axial stiffness and low shear stiffness. Liu et al. [10] analysed the
construction monitoring data of deep foundation pit in structural loess in northwest China to optimise the
foundation pit design scheme and save the cost of foundation pit engineering.

With the progress of science and technology, the rapid development of computer technology, and Internet
technology, all fields have begun to carry out information and intelligent transformation. In this case, as an
important member of intelligent algorithm technology, BPNN plays an important role in various fields.
Therefore, many scholars have discussed the application effect of BPNN. Zou et al. [11] used a genetic algorithm
(GA) to optimise a BPNN for lunar shear parameter identification. Wang et al. [12] combined convolutional
neural networks and BPNNs to construct an integrated model for automatic classification of mill grains to
improve the efficiency of mill grain classification and reduce workload. Song et al. conducted mathematical
modelling of solid oxide fuel cell (SOFC) through BPNN to evaluate and predict the performance of SOFC at
different furnace temperatures. The experiment shows that the error of this prediction method is less than 5%,
and it is better than the traditional method [13]. In order to make up for the defects of BPNN, Han et al. selected
GA to obtain network parameters, optimise BPNN, and evaluate the effect of unmanned aerial vehicle shape
product design scheme based on the optimised BPNN. The results show that the relative error of the evaluation
method is less than 4%, and the design scheme can be evaluated quickly and scientifically [14]. Wang and Fu
[15] analysed the integrated performance statistics of green suppliers based on fuzzy mathematics and BPNN,
through which enterprise managers can reasonably evaluate the key aspects of enterprise management,
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correctly, completely, and reasonably allocate enterprise resources correctly, completely and rationally to
minimise costs and maximise profits. Zou [16] concluded that the causes of consumer resale behaviour are
complex, so based on machine learning and BPNNs, he constructed a model for measuring consumer online
resale behaviour, and the results showed that the model is effective and can provide a theoretical reference for
subsequent related research.Wei and Jin [17] appliedmachine learning techniques to a human resourcemanage-
ment system in order to improve the usefulness of the system and built a combined model consisting of an
optimised GM(1,1) model and a three-layer BPNNmodel according to the dimensionality of the predictionmethod
selection. Zhang and Liang [18] developed a wearable inertial sensor-based athlete motion capture based on the
BPNN algorithm for the problem that most of the body recognition detection of athletes is technical recognition
and less motion state detection, and he constructed a wireless signal transmission scheme based on the sensor
system. Huang et al. [19] proposed a beetle swarm antennae search-BPNN algorithm, a method that was proposed
to predict the crosstalk of multi-stranded bundles of multi-stranded wires.

As can be seen in the aforementioned review of research results, BPNNs are widely used in various fields
and play an important role in various industries. However, there are few research results that apply BPNNs to
the measurement of foundation pit deformation in construction projects. The study uses the improved PSO
algorithm to optimise the BPNN and constructs a pit deformation prediction model based on the optimised
BPNN to achieve intelligent prediction and measurement of pit deformation and ensure the safety of pit work,
bridging the gap in the application of neural network algorithms in pit engineering.

3 Improved BPNN-based pit deformation prediction model

3.1 Defects of traditional PSO algorithm

In the course of the rapid development of China’s market economy, the number of deep foundation pit
construction projects is also increasing year by year. The deformation of deep foundation pit projects can
affect the construction safety and the safety of the surrounding buildings, so the measurement of foundation
pit deformation has always been the focus of engineering practice. The BPNN-based pit deformation prediction
model has been proven to be effective in previous studies, but the BPNN is not stable enough and easily
falls into local optimisation, so the study uses the PSO algorithm to improve the BPNN. The PSO algorithm is
a biomimetic intelligent algorithm that can obtain the optimal solution through information transfer between
particles and the overall iterative update of the population. Therefore, the PSO algorithm is widely used in
the solution of optimisation problems. Let there be a population containing m particles, denoted as

{ }=x x x x, ,…, m1 2
; { }=x x x x, ,…,i i i id1 2

denotes the coordinates of the i particle; { }=v v v v, ,…,i i i id1 2
denotes the

flight speed of the i particle; { }=p p p p, ,…,
i i i id1 2

denotes the fitness value of the i particle, where the best fitness
value is denoted as p

best

and is considered as the individual extreme value; { }=p p p p, ,…,
g g g gd1 2

is the position
of all particles in the population; and the best position is denoted as g

best

and is considered as the global
extreme value. In previous studies, in order to improve the performance of the PSO algorithm, some scholars
have introduced inertia weights on the velocity term w, and after obtaining the individual and global
extremes, PSO can be updated iteratively according to equation (1) to update the velocity and position of
the particle i in the d dimension.

( ) ( ) ( ) ( )( ( ) ( )) ( )( ( ))

( ) ( ) ( )

⎧
⎨
⎩

+ = ⋅ + ⋅ − + ⋅ −
+ = + +

v k w k v k c p k x k c p x k

x k x k v k

1 rand rand

1 1 ,

i d i i d i d i d g d i d

i d i d i d

, , 1
,

, 2
,

,

, , ,

(1)

where k represents the number of iterations of the algorithm update; c c,
1 2

is the learning factor, where c
1

mainly regulates the step of the optimal flight of individual particles and c
2
mainly regulates the step of the

global optimal flight; ( )⋅rand is a random number with the value range of [0,1]; ( )v ki d, represents the velocity of
the i th particle in the d th dimension at the k th iteration; ( )x ki d, represents the position of the i th particle in
the d th dimension at the k th iteration; ( )p k

i d,
represents the global extreme value of the i th particle in the k

th iteration; d ( )p k
g d,

represents the global extremum of the population in the d dimension at the k iteration. In
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equation (1), when the value of w is large, it is good for global optimisation, but it will affect the solving
efficiency of the algorithm; when the value of w is small, the solving efficiency of the algorithm is faster, but it
is easy to fall into local optimisation. Therefore, the setting of the w value is related to the speed and accuracy
of the PSO algorithm. In order to adjust the w value, using a linear decreasing strategy, w can be expressed in
the following equation:

( ) ( )= − − ⋅w k w w w

k

T

,i max max min

max

(2)

where w
max

and w
min

are the maximum and minimum values of w and T
max

is the maximum number of
iterations of the algorithm. The basic flow of the PSO algorithm is shown in Figure 1.

However, the PSO algorithm also has more obvious limitations, such as weak global convergence, the
tendency to fall into local optima, and the tendency to converge early. To this end, the study proposes
strategies to improve the PSO algorithm in terms of particle flight speed, inertia weights, and learning factors.

3.2 Optimisation strategy for the PSO algorithm

To facilitate the calculation, set the particle dimensions to one dimension, and assume that the position and
velocity of all particles in the particle swarm, except for the particle i, do not change, then the subscript d i, can
be ignored in the formula. Let = +φ φ φ

1 2

, where φ
1

and φ
2

are defined as shown in the following equation:

⎧
⎨
⎩

= ⋅
= ⋅

φ r c

φ r c
,

1
1 1

2
2 2

(3)

where r rand
1 2

are two random numbers with values in the range [0,1]. Set a variable ρ, which is calculated as
shown in the following equation:
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Y

Figure 1: Basic flow of the PSO algorithm.
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Based on the aforementioned equations, equation (1) can be replaced with the following equation:
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From equation (5), the following equation is obtained:

( ) ( ) ( ) ( )+ + − − + + = ⋅x k φ w x k wx k φ ρ2 1 1 . (6)

Through equation (6), it can be learned that the concept of speed can be removed from the PSO algorithm,
thus being able to dispense with the initialisation of the initial speed when initialising the various parameters,
thus reducing the complexity of the algorithm and improving its operational efficiency. Based on the afore-
mentioned fact, it is possible to obtain an iterative update formula for the PSO algorithm, which is deformed by
simplification to obtain a first-order differential equation, as shown in the following equation:

( ) ( ) ( )+ + − =x k φ w x t φρ1 . (7)

It can be seen that the new iterative update formula in equation (7) has fewer parameters compared to
equation (1), simplifying the algorithm’s operations and improving efficiency. In traditional PSO algorithm
optimisation, the inertia weights are generally used in a linear decreasing strategy to ensure both the global
and local search capability of the algorithm. However, this method can lead to weaker flight ability of particles
in the late iterative stage due to the small value ofw , and thus, it is difficult to jump out of the local extrema for
particles caught in the local extrema. To address this drawback, a random inertia weight is proposed to make
the w value with some uncertainty, so that the particles have the ability to fly out of the local optimum even in
the late iteration. The study combines the stochastic inertia weight and the linear decreasing inertia weight to
obtain the following equation:

( )= + −w μW μ W1 ,
1 2

(8)

where W W μ, , and
1 2

are defined as shown in the following equation:
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whereW Wand
max min

are the maximum and minimum weight values set, respectively. Drawing on the idea of
variation in GA, a variation operation is added to the random inertia weights to make it possible for the
particles to have a reverse search to avoid missing the global optimum, and this parameter is represented by r

3
.

Combining the aforementioned equations, the expression for the stochastic inertia weights is obtained and is
given in the following equation:

( ( ) ) ( )= ⋅ + − ⋅ ⋅w μ W μ W r1 sign
1 2 3

(10)

There are two learning factors in the PSO algorithm, c c,
1 2

. c
1
is used to adjust the step size of the particles

towards the individual extremes, while c
2
is used to adjust the step size of the particles towards the global

extremes. Therefore, a large value of c
1
is needed at the beginning of the iteration to ensure that all particles in

the swarm are closer to the optimal position to obtain the individual extremes, thus enhancing the global
search capability; a large value of c

2
is needed at the end of the iteration to ensure the convergence of the PSO

algorithm and thus obtain the global optimal solution. From the aforementioned fact, we know that the values
of c

1
and c

2
are basically inversely proportional. When the value of c

1
is larger, a smaller value of c

2
is required;

when the value of c
2
is larger, a smaller value of c

1
is required. For this reason, the study proposes an

evolutionary formula for the learning factor, as shown in the following equation:
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where c
max

and c
min

are the maximum and minimum values of the pre-set learning factors, respectively.
According to equation (11), in the early iteration of the PSO algorithm, the value of c

1
is larger and the value of c

2

is smaller, which makes the PSO algorithm have a strong global search capability; in the late iteration, the
value of c

2
is larger and the value of c

1
is smaller, which makes the PSO algorithm have a strong local search

capability and higher accuracy, which in turn strengthens the convergence performance of the PSO algorithm.
In the process of the PSO algorithm particle search, there is a certain possibility of flying out of the feasible
domain range, leading to a decrease in the accuracy of the PSO algorithm and the occurrence of invalid
solutions. Therefore, certain measures need to be taken to deal with the out-of-bounds particles accordingly.
The strategy adopted in the study is as follows: when a particle in the population appears to be out of bounds, a
dimension of the particle flies beyond the flight domain, or the particle flies beyond the flight domain, at which
point the out-of-bounds particle is reset and a value is regenerated in the flight domain, as shown in the
following equation:

( ) ( )= − ⋅ ⋅ +x x x xrand .
max min min

(12)

Based on the aforementioned fact, the modified particle swarm optimization (MPSO) is constructed to
improve and optimise the particle swarm algorithm to increase efficiency and accuracy. The flow of the MPSO
algorithm is shown in Figure 2.

Start
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Calculate the fitness of all particles
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N

Figure 2: MPSO algorithm flow.
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3.3 Construction of a pit deformation measurement model based on MPSO–BP

BPNN is a kind of error direction propagation neural network, which is one of the most widely used and
mature neural networks.

As can be seen in Figure 3, the BPNN is a three-layer model, consisting of an input layer, an implicit layer,
and an output layer. In Figure 3, xj represents the input signal of the node j; wij represents the connection
weight of the node i in the hidden layer and the node in the input layer; j θi represents the threshold of the
node in the hidden layer; i ( )ϕ x is the activation function of the neuron in the hidden layer; ( )ψ x is the
activation function of the neuron in the output layer; ak represents the threshold of the nodek in the output
layer; and ok is the output value of the node k in the output layer. There are two signals in the underlying
BPNN. One is called the work signal, which is propagated forward in the BPNN; the other signal is called the
error signal, which is propagated backward in the BPNN. During the forward propagation of the working
signal, the output value ok of the node k in the output layer is shown in the following equation:

∑ ∑=
⎛

⎝
⎜

⎛

⎝
⎜ +

⎞

⎠
⎟ +

⎞

⎠
⎟

= =
o ψ w ϕ w x θ a .k

i

q

ki

j

M

ij j i k

1 1

(13)

In the back-propagation process of the error, the error between the output value of the output layer and
the desired output value is obtained after the calculation, and this error is back-propagated up to the neurons
in the hidden layer, and then, the connection weights and thresholds are adjusted according to the value of this
error, and this operation is repeated in the process of iteration until the error is less than the set value or the
number of iterations reaches the set value. The training error of the BPNN is calculated as shown in the
following equation:

( )∑ ∑= −
= =

E T o

1

2

,

p

p

k

L

k

p

k

p

1 1

2 (14)

where E denotes the training error of the BPNN and p denotes the number of training samples. BPNNs have
important applications in various fields, for example, in deep foundation pit projects, where the extent of pit
deformation is predicted and measured by monitoring data. There are generally three types of pit deforma-
tion: surface settlement, pit bottom uplift deformation, and enclosure deformation. The historical data
obtained from the monitoring points are fed into the BPNN, which is trained to obtain the predicted values
of pit deformation and then formulate countermeasures to ensure the safety of the pit project. However, the
performance of the BPNN depends on the initial parameters, which is prone to local optimisation and unstable
performance, so a global optimisation algorithm is needed to optimise the training of the BPNN. The study uses

Input layer Hidden layer Output layer

ok

Forward calculation process

x1

xj

xm

Wij

θ1

θi

θq

a1

ak

aL

Figure 3: Basic structure of BPNN model.
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the MPSO algorithm to optimise the training of BPNNs. Before the MPSO algorithm is used to optimise the
BPNN, the connection weights and thresholds of the layers in the BPNN are first encoded. The study uses vector
coding to perform the coding operation; in vector coding, all particles are considered as a vector, and each
vector represents a neural network parameter that needs to be initialised, such as weights and thresholds. The
coding can be expressed in the following equation:

( ) [ ]=i w w θ aparticle , , , ,ij ki i k (15)

where i denotes the number of particles and =i m1, 2,…, . After the coding is completed, the parameters to be
initialised aremapped to particle dimensions and an optimisation search operation is performed to obtain the optimal
parameters. After optimising the BPNN using the MPSO algorithm, the MPSO–BP model is constructed to achieve
predictive measurements of pit deformation. The basic flow of the MPSO–BP algorithm is shown in Figure 4.

4 Performance analysis of MPSO–BP pit deformation prediction
model

The study used deformation monitoring data samples from deep excavation engineering in C city to construct
an experimental dataset for training and testing the model constructed by BPNN. Divide the experimental
dataset into two datasets in a 7:3 ratio: one for training and the other for testing. The performance of the model
constructed by the BPNN was tested on the test sample set. The models were constructed based on BPNN,
PSO–BPNN, and MPSO–BPNN, respectively. A foundation pit deformation prediction model is constructed
based on BPNN, PSO–BPNN, and MPSO–BPNN, respectively. The basic parameter settings of all models,
such as maximum iteration number, particle number, and transfer function of output-layer neurons, are

Start
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Initialize the structure parameters and particle 

swarm parameters of BP neural network

Input samples to calculate particle fitness

Update particle speed and position

Is the global optimal fitness less than the set value?
Is the number of iterations greater than the 

maximum number of iterations?

Output global optimal particle 

position

Obtain the optimal parameter setting 

of BP neural network

Output particle position sequence

Iterations +1

Y

N

Y

N

Figure 4: Basic flow of the MPSO-BP algorithm.
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consistent. The parameter settings are shown in the reference literature [20]. The training process of the three
models is shown in Figure 5. This process is represented by the fitness value of the model. In the training
process, the faster the fitness value decreases, the better the convergence of the model.

In Figure 5, a lot of information can be shown. It can be seen that as the number of iterations increases, the
fitness functions of all three models decrease. The MPSO–BP pit deformation prediction model has the fastest
convergence rate and the best convergence performance, with the smallest fitness value of 6.52 at 165 itera-
tions; the PSO–BP pit deformation prediction model has a worse convergence performance compared to the
MPSO–BP pit deformation prediction model, with the smallest fitness value of 6.56 at 272 iterations: the BP pit
deformation prediction. As can be seen, the MPSO–BP pit deformation prediction model requires the fewest
number of iterations to achieve optimal performance, 107 fewer than the PSO–BP pit deformation prediction
model and 135 fewer than the BP pit deformation prediction model. After convergence, the MPSO–BP pit
deformation prediction model had the lowest fitness value, 0.04 lower than the PSO–BP pit deformation
prediction model and 0.15 lower than the BP pit deformation prediction model. The aforementioned results
show that the convergence and accuracy of MPSO–BP are better than those of the other two models, indicating
that the optimisation effect of MPSO on BPNN is significant.

The variation in accuracy of the three models during the training process is shown in Figure 6. The
accuracy of the model is evaluated by the error value. The smaller the error value, the higher the accuracy
of the model and the better the performance of the model. In addition, the faster the error value of the model
decreases, the better the convergence of the model.
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The MPSO–BP pit deformation prediction model requires the least number of iterations to achieve the
target accuracy, 189, which is 84 less than the 273 iterations of the PSO–BP pit deformation prediction model
and 373 less than the 562 iterations of the BP pit deformation prediction model. These results show that the
convergence performance of the MPSO–BP pit deformation prediction model is better than that of the other
two models. It shows that MPSO can effectively optimise the BPNN model.

The prediction errors of the three models were analysed by using the numbers in the three data sample
sets as the test sample set. Prediction error refers to the error between the output value of the model and the
actual measurement value. The smaller the prediction error, the better the prediction effect of the model on
the deformation of the foundation pit. The percentage prediction errors of the three models for pit deforma-
tion are shown in Figure 7.

In Figure 7, it is easy to see that the MPSO–BP pit deformation prediction model has the smallest prediction
error from day 10 to day 50 of monitoring, with an average of 4.84%; the PSO–BP pit deformation prediction
model has a larger prediction error than the MPSO–BP pit deformation prediction model and a smaller
prediction error than the BP pit deformation prediction model, with an average of 6.72%; the BP pit deforma-
tion prediction model has the largest prediction error of the BP pit deformation model, with an average of
9.46%. It can be seen that the prediction error of the MPSO–BP pit deformation prediction model is 1.88% lower
than that of the PSO–BP pit deformation prediction model and 4.62% lower than that of the BP pit deformation
prediction model. This shows that the accuracy of BPNN model has been significantly improved after MPSO
optimisation, which also verifies the improvement effect of MPSO on BPNN.
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The mean absolute error (MAE) of the three models is shown in Figure 8. The average absolute error is the
average of the absolute value of the deviation between all single observations and the arithmetic mean, which
can accurately reflect the size of the actual prediction error.

In Figure 8, there is a significant decrease in the MAE values of the models over the course of the three model
iterations. After 150 iterations, the MAE value of the MPSO–BP pit deformation prediction model was 1.26; the MAE
value of the PSO–BP pit deformation predictionmodel was 1.78, whichwas 0.52 higher than that of theMPSO–BP pit
deformation prediction model; and the MAE value of the BP pit deformation prediction model was 2.27, which was
1.01 higher than that of theMPSO–BP pit deformation predictionmodel. The aforementioned results show that after
optimisation, the error of the MPSO–BPNN model is lower than that of the other two models.

F1 indicator was used to evaluate the performance of the three models. The F1 values of the three models
are shown in Figure 9. F1 is an indicator used in statistics to measure the accuracy of binary classification
models. It takes into account both the accuracy and recall of the classification model, effectively reflecting the
correctness and accuracy of the model.

In Figure 9, it can be seen that the F1 values of all three models increase as the number of iterations
increases. At 300 iterations, the F1 value of the MPSO–BP pit deformation prediction model is 0.63; the F1 value
of the PSO–BP pit deformation prediction model is 0.45, which is 0.18 lower than that of the MPSO–BP pit
deformation prediction model; and the F1 value of the BP pit deformation prediction model is 0.27, which is
0.36 lower than that of the MPSO–BP pit deformation prediction model. At 600 iterations, the F1 value of the
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Figure 10: Prediction accuracy of three models.
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MPSO–BP pit deformation prediction model was 0.92; the F1 value of the PSO–BP pit deformation prediction
model was 0.63, which was 0.29 lower than that of the MPSO–BP pit deformation prediction model; and the F1
value of the BP pit deformation prediction model was 0.44, which was 0.48 lower than that of the MPSO–BP pit
deformation prediction model. The accuracy of the three models is shown in Figure 10.

In Figure 10, it can be seen that the pit prediction accuracy of all three models increases as the number of
iterations increases. The prediction accuracy of the MPSO–BP pit deformation prediction model was 99.35% at
300 iterations; the prediction accuracy of the PSO–BP pit deformation prediction model was 97.75%, which was
2.60% lower than that of the MPSO–BP pit deformation prediction model; the prediction accuracy of the BP pit
deformation prediction model was 96.51%, which was 2.84% lower than that of the MPSO–BP pit deformation
prediction model. The prediction accuracy of BP pit deformation prediction model was 96.51%, which was
2.84% lower than that of the MPSO–BP pit deformation prediction model. At 600 iterations, the prediction
accuracy of the MPSO–BP pit deformation prediction model was 99.76%, which was 2.25% higher than that of
the PSO–BP pit deformation prediction model and 3.01% higher than that of the BP pit deformation prediction
model. The aforementioned results show that the accuracy of the MPSO–BPNN model is significantly higher
than the other two models. This shows that MPSO can optimise the accuracy of BPNN model by finding the
optimal parameters. In summary, optimisation of the BPNN based on the improved particle swarm algorithm
can effectively improve the prediction accuracy and efficiency of the pit deformation prediction model, so that
countermeasures can be formulated to ensure the safety of the pit project.

5 Conclusion

In construction engineering, the prediction of foundation pit deformation plays a vital role in the quality of
engineering and the safety of workers. The accuracy and efficiency of current prediction methods of founda-
tion pit deformation are low. Therefore, the defects of BPNN and PSO algorithm are analysed, and the
MPSO–BP algorithm is proposed. Based on the MPSO–BP algorithm, a prediction model of foundation pit
deformation is built, and the foundation pit deformation is predicted according to historical monitoring data.
Experimental results show that the MPSO–BP model requires 107 fewer iterations than the PSO–BP model, 135
fewer iterations than the BP model when achieving optimal performance. After convergence, the adaptation
value of the MPSO–BP model is 0.04 lower than that of the PSO–BP model, 0.15 lower than that of the BP model.
4.62%. After 150 iterations, the MAE value of the MPSO–BP model was 1.26, 0.52 lower than that of the PSO–BP
model and 1.01 lower than that of the BP model. At 600 iterations, the F1 value of the MPSO–BP model was 0.92,
0.29 higher than that of the PSO–BP model and 0.48 higher than that of the BP model; the prediction accuracy
of the MPSO–BP model was 99.76%, 2.25% higher than that of the PSO–BP model and 3.01% higher than that of
the BP model. In summary, the MPSO–BP pit deformation prediction model has a relatively impressive
prediction accuracy and efficiency, which can facilitate the staff to formulate countermeasures and ensure
the safety of the pit project. The study’s optimisation of the BPNN is mainly based on theory and does not take
into account the actual engineering situation, which requires further research in the follow-up.

Author contributions: All authors contributed to the study conception and design. Material preparation, data
collection and analysis were performed by Xiaoli Zhou. The first draft of the manuscript was written by Yong
Wu. All authors read and approved the final manuscript.

Conflict of interest: Author states no conflict of interest.

Data availability statement: The data are available from the corresponding author on reasonable request.

12  Yong Wu and Xiaoli Zhou



References

[1] Chen H, Zhang K, Jiang Y, Shi Z. Prediction and forewarning of axial force of steel bracing in foundation pit based on Verhulst
model. PLOS ONE. 2022;17(3):e0265845.

[2] Chen Z, Huang J, Zhan H, Wang J, Dou Z, Zhang C, et al. Optimization schemes for deep foundation pit dewatering under
complicated hydrogeological conditions using MODFLOW-USG. Eng Geol. 2022;303:106653.

[3] Zeng Y, Pan P, Zhang D, Yang J. Experimental study of isolation in the backfill zone of the foundation pit (IBF) method to reduce
ground-borne vibration in buildings. Eng Struct. 2020;202:109740.

[4] Xi H, Li Z, Han J, Shen D, Li N, Long Y, et al. Evaluating the capability of municipal solid waste separation in China based on AHP-
EWM and BP neural network. Waste Manag. 2022;139:208–16.

[5] Wang J, Hu J, Zhang Y, Xie Q, Shi Y. Investigation of imbibition areas during well shut-in based on mercury injection experiment and
BP neural network. Fuel. 2019;254:115621.1–8.

[6] Liao H, Gao Y, Wang Q, Wilson D. Development of viscosity model for aluminum alloys using BP neural network. Trans Nonferrous
Met Soc China. 2021;31(10):2978–85.

[7] Wen L, Yuan X. Forecasting CO_2 emissions in Chinas commercial department, through BP neural network based on random forest
and PSO. Sci Total Environ. 2020;718(May20):137194.1–14.

[8] Chang Y, Yue J, Guo R, Liu W, Li L. Penetration quality prediction of asymmetrical fillet root welding based on optimized BP neural
network. J Manuf Process. 2020;50:247–54.

[9] Li Q, Wu J, Chen Y, Wang J, Gao S, Wu Z. A new response approximation model of the quadrant detector using the optimized BP
neural network. IEEE Sens J. 2020;20(8):4345–52.

[10] Liu J, Huang J, Sun R, Yu H, Xiao R. Data fusion for multi-source sensors using GA-PSO-BP neural network. IEEE Trans Intell Transp
Syst. 2020;99:1–16.

[11] Zou M, Xue L, Gai H, Dang Z, Wang S, Xu P. Identification of the shear parameters for lunar regolith based on a GA-BP neural
network. J Terramechanics. 2020;89:21–9.

[12] Wang S, Wu TH, Shao T, Peng ZX. Integrated model of BP neural network and CNN algorithm for automatic wear debris
classification. Wear. 2019;426–427:1761–70.

[13] Song S, Xiong X, Wu X, Xue ZZ. Modeling the SOFC by BP neural network algorithm. Int J Hydrog Energy. 2021;46(38):20065–77.
[14] Han JX, Ma MY, Wang K. Product modeling design based on genetic algorithm and BP neural network. Neural Comput Appl.

2021;33:4111–7.
[15] Wang Y, Fu P. Integration performance statistics of green suppliers based on fuzzy mathematics and BP neural network. J Intell

Fuzzy Syst. 2021;40(2):2083–94.
[16] Zou X. Analysis of consumer online resale behavior measurement based on machine learning and BP neural network. J Intell Fuzzy

Syst. 2021;40(2):2121–32.
[17] Wei G, Jin Y. Human resource management model based on three-layer BP neural network and machine learning. J Intell Fuzzy

Syst. 2021;40(2):2289–300.
[18] Zhang L, Liang F. Monitoring and analysis of athletes’ local body movement status based on BP neural network. J Intell Fuzzy Syst.

2021;40(2):2325–35.
[19] Huang C, Zhao Y, Yan W, Liu Q, Zhou J, Meng Z, et al. Analysis of crosstalk problem in multi-twisted bundle of multi-twisted wire

based on BSAS-BP neural network algorithm and multilayer transposition method. Appl Comput Electromagn Soc J.
2020;35(8):941–50.

[20] Feng T, Wang C, Zhang J, Zhou K, Qiao G. Prediction of stratum deformation during the excavation of a foundation pit in composite
formation based on the artificial bee colony–back-propagation model. Eng Optim. 2022;54(7):1217–35.

Construction pit deformation measurement technology  13


	1 Introduction
	2 Related works
	3 Improved BPNN-based pit deformation prediction model
	3.1 Defects of traditional PSO algorithm
	3.2 Optimisation strategy for the PSO algorithm
	3.3 Construction of a pit deformation measurement model based on MPSO-BP

	4 Performance analysis of MPSO-BP pit deformation prediction model
	5 Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


