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Abstract: The nonlinear system is difficult to achieve the desired effect by using traditional proportional
integral derivative (PID) or linear controller. First, this study presents an improved lazy learning algorithm
based on k-vector nearest neighbors, which not only considers the matching of input and output data, but also
considers the consistency of the model. Based on the optimization index of an additional penalty function, the
optimal solution of the lazy learning is obtained by the iterative least-square method. Second, based on the
improved lazy learning, an adaptive PID control algorithm is proposed. Finally, the control effect under the
condition of complete data and incomplete data is compared by simulation experiment.
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1 Introduction

With the development of information science and technology, the production process and manufacturing
technique of enterprises are becoming more and more complex. In the practical engineering application,
many examples have verified the effectiveness and practicability of proportional integral derivative (PID)
control [1]. Scholars have proposed the robust adaptive backstepping control strategy based on the wavelet
neural network [2]. The common algorithms include offline reference trajectory-based guidance method,
online trajectory-based guidance method, and prediction guidance method.

But the mechanism modeling or identification modeling of these processes faces enormous challenges. As
a control method that does not require the precise model of the controlled object and only relies on the input/
output (I/O) data and other control information of the control system to complete the control tasks of the system,
data-driven control has gradually become the focus of modern control field research. The database selection
rules that have impact on the data-driven control method are modified, including the size of the database
capacity, the principle of data elimination and retention, so as to achieve efficient online update of data.

Because of the nonlinear system strong uncertainty, it is difficult to achieve the desired effect by using
traditional PID or linear controller. With the development of control theory and technology, many adaptive
control methods have been proposed. When using these advanced control methods, it is necessary to identify
the control systemmodel [3]. The online identification uses a rolling data window to identify the local model of
the current running point. The offline identification requires the nonlinear model of the system, and then, the
local linearization model of the system is obtained by the linearization of the working point. In the actual
system control, these control methods have achieved good results. But it takes a lot of time and cost to obtain
the reliable identification results, and the controller designed by this method becomes more complex with the
change of the identification work point [4]. In this article, the PID method that can change the linearized model
and update the control parameters adaptively according to the working point change was studied.
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2 Adaptive PID control based on lazy learning

2.1 An improved algorithm for lazy learning identification

The lazy learning algorithm is to find the similar data in the sample data and then use the best linear
combination approximation of the basis function in the local model of the adjacent domain [5]. The local
model is used to obtain the output data corresponding to any input data in the adjacent domain.

The production process and manufacturing technique are becoming more and more complex. And the
mechanism modeling or identification modeling of these processes faces enormous challenges. As a control
method that does not require the precise model of the controlled object and only relies on the I/O data and
other control information of the control system to complete the control tasks of the system, data-driven control
has gradually become the focus of modern control field research. In this study, the model-free adaptive PID
control is based on the lazy learning algorithm.

For a class of the Single input single output systems, the discrete model expression is as follows [6]:

( ) ( ( ) ( ) ( ) ( )) ( )= − ⋯ − − ⋯ − − +y i f y i y i n u i p u i p n ε i1 , , , , , ,y u1
(1)

where ( )⋅y is the system output, ( )⋅u is the control input, ny is the system output order, nu is the system input
order, >p 0 is the time delay of the system input and output, ( )⋅f is the unknown function of the system
dynamic, and ( )ε i is the white noise interference signal.

The aforementioned expression can be transformed into the following expression:
( )= +y f X ε

i i i1
, where [ ( ) ( ) ( ) ( )]= − ⋯ − − ⋯ − −X y i y i n u i p u i p n1 , , , , ,i y u

T .
In this study, we consider an unknown multi-input single-output nonlinear mapping ( ) →f X R R:i

n
1

and
assume measurable I/O data: {( )} =X y,i i i

N
1, where ∈X Ri

n and ∈y R
i

. The random variable ∈ε Ri satisfies the
independent random distribution in which the mean value is 0 and the variance is σ 2.

In accordance with the basic identification principle, the identification problem based on the lazy learning
algorithm obtains the corresponding relations of I/O data under the given sample set and further gives any
given vector Xq, and the output estimate ŷ

q
is given by using the corresponding relation [7,8]. Therefore, it can

be summarized as the following optimization problem:

( ( ))
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∑ −
∈

y f X θ wmin , ,

X y Ω

i i i

,
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(2)

where Ωk is the local space of the nearest Xq, k samples; ( )⋅f
1

is the nonlinear mapping function of I/O vector;
and wi is the degree to which the input data of the local space affects the output data. That is, the nearest input
value corresponding to the input vector distance can reflect the current output vector.

The mathematical expression for an input vector Xq with k samples in local space Ωk is as follows:

{ } { | ( ) }≜ ⋯ = <Ω X X X X d X X h, , , , ,k k i i q1 2 (3)

where ∈h R is the radius of the neighborhood space Ωk , which determines the number of samples in the input
vector neighborhood space, as a distance function ( )⋅d , to measure the distance between the samples and to
determine whether the samples are in the current neighborhood space Ωk . In this case, if there are k samples
in a neighborhood space Ωk , then these samples are recorded as ⋯X X X, , , k1 2 . For a domain Ωk , any value in the
domain is taken as an input data, and then the output data of the object model can be estimated by the value
under the input using the identified mapping function ( )⋅f̂

1
[9,10].

At the input vector Xq, the system-related local functional expression ( )f .,. can be expressed as a p-th-
order polynomial expression:

( ) ( ) ( )= + − + ⋯+ − =f θ θ θ θ θ φX X X X Xˆ , ,i p i
p T

i1 0 1 (4)

where [ ]= ⋯θ θ θ θ, , , p
T

0 1 ; [( ) ( ) ( ) ]= − − −φ X X X X X X, , ... ,
i i q i q i q

P0 1 ; then, the optimization problem for (2)
can be expressed as:
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In these expressions, the functional relationship wi between the data window h and the distance ( )d X X,i q ,

that is,
( )

= ⎛
⎝

⎞
⎠w Ki

d X X

h

,i q , the effect of the sample Xi on the local modeling of the system, is usually determined by

the kernel function.
In this study, we consider not only the fitting accuracy of the input and output, but also the smoothness of

the fitting model; the input and output pairs of the fitted model are guaranteed not to change dramatically at
the adjacent sampling time. From (4), when the input data Xi is close to the current value X, the corresponding
output should be close, and the derivatives should be close to ensure the smoothness of the model [11,12]. And
the optimization parameter is the parameter that represents each order derivative. Therefore, in order to
guarantee the smoothness of the fitting model, it is reasonable to use some constraints on the optimization
parameters θ as a penalty term [13]. In this study, the spherical constraint on the parameters θ is chosen as the
penalty term, so that the solution of the model-fitting optimization problem can be expressed as fol-

lows: ( ) ∥ ∥=
⎧
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The aforementioned formula can be simplified as follows:
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For this optimization problem, the iterative solution process is summarized as follows.
Theorem: for performance index function:
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The penalty factor is
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The performance index is ( )J θ
2

. The solution ( )( )∈ J θminθ S θ ε¯, 2
is in the following recursive form:
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The recursive expression is
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Thus, the recursive least-square estimate of the unknown parameter vector is the following:

( ) ( )( )= + − + − −− − − − − − −θ θ P φ y φ θ w P α α θ θˆ ˆ ˆ ¯ ˆ ,t t t t t t
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(11)

Proof: Because the performance index ( )J θ
2

is quadratic form with respect to an unknown parameter θ, we
obtain an estimated value of the parameter θ.
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To obtain a recursive expression of the parameter estimated value θ̂t, the matrix Pt is defined as follows:
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Thus, the estimated value θ̂t can be expressed as:
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Substituting (15) into −
Pt

1 can yield:
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Substituting (15) into (14) can yield:
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The aforementioned expression is (10) in theorem. For equation (16), the inverse operation is taken on both sides
at the same time, and the matrix inverse lemma formula is used to obtain
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Thus, (19) in theorem is obtained, and (18) in theorem can be obtained inversely.
This theorem is consistent with the least-square estimation of the unknown parameter vectorθ. When the

least-square solution is obtained, the autoregressive model estimation of the object can be obtained by
substituting the model (14).

( )=y f X θˆ ˆ , .
i i1

(17)

In this way, the Jacobian information matrix of the object model can be obtained.

∂
∂

≈
∂
∂
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y
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ˆ
.

i

i

i

i

(18)

2.2 Design adaptive PID controller based on lazy learning

In the practice of PID control, because of the variety of control objects, the parameters of PID controller need to
be adjusted repeatedly. Although there are only three parameters of PID controller, which correspond to the
coefficients of proportional, differential, and integral, respectively; the linear combination of each parameter
cannot guarantee the control effect if we want to obtain a good control effect [14,15]. In order to find the
optimal combination from the almost infinite coefficient combination sequence, it is necessary to adopt the
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optimization method. Here, Jacobian matrix by the lazy learning algorithm can be used to optimize PID control
parameters kp, ki, and kd by adaptive optimization algorithm.

The design of the neural network adaptive PID controller based on the lazy learning is realized by the
following two steps:
(1) First, the classical PID controller structure is given. The PID controller uses the output data and control

instructions of the system to control the controlled object directly, and its three parameters kp, ki, and kd

will be selected in the next step.
(2) Then, a lazy learning algorithm is used to obtain the local model of the object, and Jacobian information of

the controlled object at the current time is calculated. The optimal parameters of PID controller corre-
sponding to some optimal index function are obtained by using the gradient principle.

The classical PID controller is expressed in an incremental form as:

( ) ( ) ( ( ) ( )) ( ) ( ( ) ( ) ( ))= − + − − + + − − + −u t u t k e t e t k e t k e t e t e t1 1 2 1 2 .p i d (19)

In the aforementioned expression, kp, ki, and kd represent the proportional, integral, and differential
coefficients, respectively.

The performance index function for the original continuous system is

( ) ( ( ) ( ))= −E t r t y t
1

2
.2 (20)

For the system of I/O data sampling and the object model estimation by the lazy learning algorithm, the
parameters are set as follows:
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1

2

1

2
ˆ .2 2 (21)

Using the gradient descent to adjust the PID parameters k k k, ,p i d and using the identification result of the
lazy learning algorithm, the following rules can be obtained [16]:
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The structure of the adaptive PID controller based on the lazy learning algorithm is shown in Figure 1. The
whole controller is composed of PID controller, lazy learning algorithm module, and adaptive mechanism
module. In the lazy learning module, the object is modeled locally by the input and output sampled data of the
object, and the parameters of the model change with the change of the system working state. The Jacobian

Control 

object
PID Controller

Adaptive PID

dkikpk

Lazy 

learning

yr

Jacobian

Figure 1: Structure of adaptive PID controller based on the lazy learning algorithm.
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matrix of the controlled object is approximated by the local model, and then, the adaptive module uses the
approximate value to optimize the PID parameters and gives its adaptive dynamics. In this way, a complete
adaptive PID controller based on lazy learning can obtain the optimal solution of PID parameters in real time
with the change of the working state of the controlled object, thus realizing model-free adaptive control.

3 Simulation

Continuous stirred tank reactor (CSTR) is an important part of chemical production [17]. It is a typical non-
linear object in chemical system. Its dynamic equation is

( ) ( )

( )
( )

( ) ( )⎟⎜

⎧

⎨
⎪

⎩
⎪

= − − −
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V
C C k C E RT

T

t

q

V
T T

H k C

ρC
E RT

ρ C

Q C
Q

hA

Q ρ C
T T

d

d
exp / ,

d

d

Δ
exp / 1 exp ,

a

af a a

f

a

p

c pc

c p
c

c c pc

cf

0

0

(22)

whereCa is the the concentration value of the product A in the reactor,T is the the temperature of the reactant, q is
the flow rate of incoming and outgoing material, and Q

c
is the flow rate of the coolant. According to the require-

ments of the modern technology, the concentration value Ca, reactant temperature T , control variable Q
c
, and

external disturbance variables Tc, q, and Caf are determined. The schematic diagram is shown in Figure 2 [18].
The input information vector of the system model is shown in the following:

( ) [ ( ) ( ) ( ) ( )]− = − − − −ϕ t T t T t Q t Q t1 1 , 2 , 1 , 2 .
c c (23)

The local model order is =n 2y and =n 1u . The lazy learning online modeling parameters are =α 0.85 and
[ ]∈k 12, 100 . PID controller penalty term is =Q 9.3.

Figure 2: Schematic diagram of CSTR.
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3.1 Simulation and verification of completeness data

Temperature T output tracking setting is ( )= → →yr 443 447 438.5 .
Figure 3 shows that the lazy learning control algorithm can quickly track the modeling data when the

running points of the system change. The system output can track the given output value without static error,
and there is no overshoot. Under the third instruction, the system can track the given output value without
static error, but the overshoot occurs, and its tracking speed is faster. This reflects the inherent contradiction
between the overshoot and the tracking speed. The presence of overshoot is more apparent in Figure 3.

In the whole tracking trajectory, the PID control parameters change as shown in Figure 4. As can be seen
from the diagram, when the instruction changes from the first to the second, the parameter transformation of
the controller is mainly reflected in the integral term, while when the instruction changes from the second to
the third, the parameters of the controller vary greatly in all three components. This is also the reason why the
dynamic performance of the control result changes greatly at this time. The simulation results show that the
neural network PID control based on a real-time learning can realize the output tracking control of CSTR, and
the control effect is good.

Figure 3: CSTR response curve.

Figure 4: Variation curve of PID controller parameters.
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3.2 Simulation and verification of incomplete data

Temperature T output tracking is ( )= → →yr 444 451 442 .
The output tracking value of 451 is not in the working condition interval covered by the data, so the

original 2,000 sets of samples are not complete under the new control goal, and now the closed loop control is
carried out under these data; based on this, the stability of the closed-loop system is analyzed and the tracking
performance is compared under the condition of complete data and incomplete data [19,20]. The controller
parameter is selected as [ ]=c 15 10

T . =q 0.8, =g 0.95, and =m 0.01. The simulation results are shown in
Figures 5 and 6. Figure 5 is the parameter change curve of PID control. It can be seen that the tracking
performance of the proposed algorithm depends more on the completeness of the data. If the training data
cannot cover the whole working range completely, the tracking performance will be greatly reduced.

As can be seen from Figure 5, the neural network PID method can adjust the temperature well when the
control target is in the effective coverage of the data collected, such as when the temperature instruction is 444

Figure 5: CSTR response curve (incomplete data).

Figure 6: Variation curve of PID controller parameters (incomplete data).
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and 442 K. But the control target is not in the coverage of the sampled data, for example, when the temperature
instruction is 451 K, the control effect of neural network PID is not ideal, there is a large overshoot, and the
steady-state error becomes smaller gradually. As can be seen from the diagram, the neural network can still
realize the temperature control when the data is not perfect, but the control effect is not ideal.

Figure 6 shows the variation of the control parameters. It can be seen that the proportional and differ-
ential feedback parameters do not change much under various temperature commands, but the integral
parameters do. This is in accordance with the engineering experience and the physical meaning of PID control.
Because the temperature command is a trapezoid signal and the tracking speed and overshoot of the com-
mand are not important in the optimization index of control parameters, the selection of control parameters is
mainly determined by the adjustment error of output. Therefore, the parameter that deals with the steady-
state error changes more obviously in the control process; it is well known to PID control that this parameter is
the integral feedback parameter. As can be seen from Figure 6, the magnitude of the variation of the integral
parameter is the largest in the control process, and it is almost constant when the instruction parameter is not
in the valid range of the sampled data.

The performance index of parameter updating was further optimized, and the control quantity was
increased to improve the accuracy of parameter updating. Experiments show that the data-driven control
method can optimize online to calculate the best control parameters and obtain the best control effect. It is
found that the data-driven PID control can always complete the control task faster and more stable when the
system changes control, better robustness, and response speed.

4 Conclusion

In thisarticle, the application of PID controller based on nonlinear system theory model free was studied. The
main research is the algorithm of self-optimizing update of PID parameters. Online identification of solid oxide
fuel cell (SOFC) voltage output dynamic model is realized by using radial basis function neural network under
the condition that SOFC cannot obtain accurate analytical model; Jacobian information of voltage control
model is obtained from the identified model to realize online adjustment of SOFC controller parameters.
Because fuel utilization and control input constraints are the important factors to be considered in SOFC
voltage control system, after the controller is designed, an anti-saturation compensator is connected in series,
which is used to calculate the size of the reference object caused by the saturation effect, so as to ensure that
the control signal is kept within the constraint range, the introduction of anti-saturation module also ensures
that the error of parameter estimation is bounded rather than divergent. Theoretical analysis and simulation
results show that it is effective and the control performance is better than the conventional PID control.

This study describes and analyzes the lazy learning algorithm and presents a PID control algorithm based
on the improved lazy learning. The algorithm only needs to acquire the corresponding number of system input
and output and then uses lazy learning to approximate the system model locally and update the model with
the change of working point. After the estimation model is obtained, Jacobian information of the estimation
model can be used to replace the corresponding information of the original system, and the adaptive updating
law of PID parameters can be obtained by using the optimization algorithm. Finally, a simulation example is
given to verify the effectiveness of the proposed method.
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