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Abstract: In this work, a technique is proposed to identify the diseases that occur in plants. The system is
based on a combination of residual network and attention learning. The work focuses on disease identifica-
tion from the images of four different plant types by analyzing leaf images of the plants. A total of four
datasets are used for the work. The system incorporates attention-aware features computed by the Residual
Attention Network (Res-ATTEN). The base of the network is ResNet-18 architecture. Integrating attention
learning in the residual network helps improve the system's overall accuracy. Various residual attention
units are combined to create a single architecture. Unlike the traditional attention network architectures,
which focus only on a single type of attention, the system uses a mixed type of attention learning, i.e., a
combination of spatial and channel attention. Our technique achieves state-of-the-art performance with the
highest accuracy of 99%. The results show that the proposed system has performed well for both purposes
and notably outperformed the traditional systems.

Keywords: attention network, deep neural architecture, disease diagnosis, image classification, plant dis-
ease identification, residual learning, smart agriculture

1 Introduction

Agricultural productivity is affected by various factors such as increasing global population, the effects on
crops caused by extreme weather variations and various epidemics occurring on a severe level affect the
food security. The farmers use disease control measures which are costly and can exceed the yield losses.
The farmers would only take actions at the time when it is too late for the disease to stop from spreading
because it will cost too much for the farmers to implement the crop protection measures during the early
onset of the diseases which results in very less benefits [1]. Many procedures can be adopted for crop
disease management so that yield loss can be minimized, and crop health can be improved.

One of the main criteria for crop protection is the early detection of the plant diseases and implementa-
tion of the suitable treatment methods and keep it as confined as possible to lessen the requirement of the
chemicals used for the methods. These methods should be implemented ideally before the symptoms of the
disease are significantly visible [2]. The plant leaves are the parts of plants that are usually considered to
detect the disease from the affected portions, which are extremely helpful in judging the disease [3-8]. It
has been observed that computer devices with the technology of computer vision can be helpful in various
fields of real-life problems [9-15]. It can be used in crop protection practices as they can detect disease,
pests, malnutrition, by means of graphics, image processing, and artificial intelligence [16,17].

* Corresponding author: Kirti, University School of Information, Communication & Technology, Guru Gobind Singh Indraprastha
University, Golf Course Rd, Sector 16 C, Dwarka, Delhi-110078, India, e-mail: kitzk13@gmail.com

Navin Rajpal: University School of Information, Communication & Technology, Guru Gobind Singh Indraprastha University, Golf
Course Rd, Sector 16 C, Dwarka, Delhi-110078, India, e-mail: navin.rajpal@ipu.ac.in

8 Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.


https://doi.org/10.1515/jisys-2022-0248
mailto:kitzk13@gmail.com
mailto:navin.rajpal@ipu.ac.in

2 — Kirti and Navin Rajpal DE GRUYTER

Mishra et al. developed a real-time corn disease recognition system using various deep-learning net-
works. The main focus was to develop a system which does not need any internet connection for the
processing. The method was implemented on an embedded system using Raspberry pi. The system used
corn plant leaf images. A total of 679 healthy/diseased leaf images were used, and the system could achieve
an accuracy of 88.46%. The proposed system could recognize single-plant diseases [18]. Sujatha et al.
proposed a plant disease detection system using Citrus leaf images. The dataset contained images of
healthy citrus plant leaves and images of different diseases that occur in the citrus plant. The system
used two classification methods, i.e., the traditional ML methods (SGD, RF, SVM) and deep learning
methods (Inception-v3, VGG-16, VGG-19). The proposed technique could achieve the highest accuracy of
89.5% and focus on single-plant problems [19].

A few short learning approaches was proposed by Argiieso et al. that used two training architectures (two
Siamese networks with Inception v3 Network) for plant disease classification. Experiments were performed on
two datasets containing 32 classes (48,775 images) and 6 classes (5,528 images), respectively. The technique
showed the highest accuracy at 90%. The system proved incapable of discriminating the leaves with similar
morphologies [20]. A transfer learning based technique for detecting diseases and pests from the images of the
Hot Pepper dataset was proposed by Yin et al. The dataset contained 28,011 images with 34 classes of diseased
and pest-infested leaves of Hot Pepper. The classification was performed using MobileNet, ResNet 50, Incep-
tion, Inception v4, DenseNet, Xception, VGG16, and VGG19. The technique achieved the highest accuracy of
93.62%, which seems to be much less [21]. Arsenovic et al. developed a plant disease detection system, the
Plant Disease Net, as a novel, two-stage architecture. The system was evaluated using 79,265 images of
healthy/diseased leaves of plants. YOLO was used for classification purposes. The system exhibited the
highest accuracy of 93.67%, which was significantly low compared to the current systems [22].

Wu proposed a disease identification system for identifying Soybean plant diseases. Seven hundred
images were labelled as Bacterial, Downy mildew, Health, Pest, Pesticide, Spider mite, and Virus disease.
Since the dataset was very small and the system posed an overfitting issue, the data augmentation proce-
dure was applied to generate 8,470 soybean leaf images from 700 images. The pre-trained deep learning
models, AlexNet, GooglLeNet, and ResNet, were used to evaluate the system. The system achieved an
accuracy of 94.29%. The limitation of this system was that it emphasized a single crop [23]. A nine-layer
deep convolutional neural network was introduced by Geetharamani and Arun. The network used 38
different classes (61,486 images) of crop images for evaluating the performance. The system could achieve
only an accuracy of 96.46% even after possessing such an extensive training set [24]. Gajjar et al. designed a
real-time convolutional neural network to detect and identify plant leaf diseases on an embedded platform.
A novel single-shot detector CNN was created that could identify the disease and localize the leaf. The
system showed an accuracy of 96.88%. In this case, the system needed extra computation to extract the
region of interest or affected portion of the leaf [25]. Thenmozhi and Srinivasulu created a deep convolu-
tional network to classify pests in the crop images. Three types of datasets were used to evaluate the
performance of the network — NBAIR insect dataset (40 classes), Xiel (24 classes) insect dataset, and
Xie2 (40 classes) insect dataset. VGG-16, AlexNet, ResNet-101, VGG-19, and ResNet-50 were incorporated
into the system for the classification task. The network achieved an accuracy of 97.47%. The approach used
extra computation in localizing the region of interest [26].

Turkoglu et al. developed a DNN named as PlantDiseaseNet using an ensemble method. The classifica-
tion task was accomplished using deep learning architectures such as AlexNet, GoogLeNet, ResNet-18,
ResNet-50, ResNet-101, and DenseNet-201 and a traditional machine learning classifier, SVM. The input
dataset contained a total of 15 distinct classes and 4,447 images. The system displayed an accuracy of
97.56%. The issue with the system was that the feature length was too high, leading to high computation
[27]. Picon et al. designed three types of convolutional neural networks for massive multi-crop plant disease
classification. The images for the dataset were captured using a mobile phone. The proposed approach
integrated the contextual non-image meta-data, such as crop information, with an image-based CNN. The
dataset contained 17 different types of diseases and 5 types of crops. The architecture of ResNet-50 DNN
inspired the system. The approach managed to achieve 98% of accuracy. The system failed to integrate a
promised feature in the network, i.e., multiplicative suppression [28].
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Shin et al. created a DNN for detecting powdery mildew disease in the strawberry plant. The dataset
contained 1,450 RGB images of strawberry plant leaves. The low amount of dataset created an over-fitting
issue, which was overcome using data augmentation operations with eight types of rotations. Six types
of deep learning architectures were used for evaluation, i.e., SqueezeNet-MOD1, SqueezeNet-MOD?2,
AlexNet, GoogLeNet, SqueezeNet, and ResNet-50. The system could achieve 98.11% accuracy. The dataset
was created in a controlled environment, hence the system could not overcome real-life complexities,
such as variations in lighting conditions [29]. Li proposed an approach based on deep learning for classi-
fying disease severity in the Ginkgo plant. Three labels were given to the images of the dataset — healthy,
mild, and severe. A total of 1,322 images were captured under laboratory conditions which were used to
create 15,670 images using data augmentation. Similarly, 2,408 Ginkgo plant leaf images were clicked
under field conditions that were used to create 15,670 more images with data augmentation. Two deep
learning architectures, VGG16 and Inception V3, were integrated for the classification task. The system
could achieve 98.44% accuracy. The approach showed significantly less accuracy for the classification of
field images [30].

The main challenges in this field of research include difficulties in detecting different diseases showing
similar symptoms on the images of the leaves, and detecting the diseases from the images with different
lightening conditions, i.e., images not captured in a controlled environment but natural conditions. In this
research, various experiments were performed to overpower current systems’ limitations and make the
system more practical to implement.

The critical contribution of this work is four-fold and embodies as follows:
¢ Incorporated residual attention learning for the task of disease identification.
¢ Obtained high accuracy with publicly available standard datasets.
¢ The system can distinguish between 4 different crops and 20 different classes.

The rest of this work is organized as follows: Section 2 contains the illustration and explanation of the
research methodology, including the architecture followed by the various composite units of the proposed
approach. The description of the datasets, the specifications of the system used for experiments, and the
details of evaluation metrics are contained in Section 3. Section 4 consists of the details about the experi-
mental and parameter setup, observed results from various experiments and the performance comparison
of the various models used and current models for disease identification. Section 5 gives the conclusion.

2 Research methodology

In this section, the architecture of the proposed technique is illustrated, and the related concepts are
discussed in detail.

2.1 Architecture

The proposed architecture is based on the ResNet-18 network. The Attention mechanism is integrated into
ResNet-18 architecture and a novel deep neural network (DNN) is developed. The attention modules are
placed after every residual unit of ResNet-18. The attention mechanism blends the local and global infor-
mation and learns the discriminative feature for classification [31]. The proposed architecture for plant
disease identification is inspired by the Residual Attention (Res-ATTEN) network introduced in a previous
study [32] and uses Attention-56 Network, as shown in Figure 1.
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Figure 1: Architecture of the proposed approach for plant disease identification.

The architecture is structured by assembling various attention modules, which is an application of a
special kind of attention, i.e., mixed attention (a fusion of spatial and channel attention) which makes the
architecture capable of capturing different kinds of attention from the attention modules. A direct stacking
up of attention modules might lead to a decline in the system’s performance. So, to avoid this issue, Res-
ATTEN network came into the picture, which imitates the bottom-up fast feedforward process and top-
down attention feedback in a single feedforward process that permits the creation of an end-to-end network
that can be trained with top-down attention.

The first layer of the plant disease identification architecture denotes the input layer, which acquires an
image with an input size of 224 x 224. The second layer after the input layer was a convolutional layer
containing 64 filters, kernel size 7 x 7, and stride value = 2, which provides an output of size 112 x 112. After
that, max-pooling is done using a 3 x 3 kernel with stride = 2, creating an output of size 56 x 56. A residual
unit contains three types of convolutional layers, i.e., 1 x 1kernel with 64 filters, 3 x 3 kernel with 64 filters,
and 1 x 1 kernel with 256 filters, producing an output of size 56 x 56.

The residual unit is followed by an attention module, attention module stagel producing an output of
56 x 56. Then, another residual unit is placed with three types of convolutional layers, i.e., 1 x 1 kernel with
128 filters, 3 x 3 kernel with 128 filters, and 1 x 1 kernel with 512 filters, producing an output of size 28 x 28.
This residual unit is followed by an attention module, attention module stage2 producing an output of size
28 x 28. After that, one more residual unit is placed with three types of convolutional layers, i.e., 1 x 1
kernel with 256 filters, 3 x 3 kernel with 256 filters, and 1 x 1 kernel with 1,024 filters, producing an output
of size 14 x 14. The third and last attention module is placed, namely, attention module stage3 producing
an output of size 14 x 14. The third attention module is followed by three more residual units, each with
three different types of convolutional layers, i.e., 1 x 1 kernel with 512 filters, 3 x 3 kernel with 512 filters,
and 1 x 1 kernel with 2,048 filters, producing an output of size 7 x 7. After that, an average pooling is done
using a1 x 1 kernel with stride = 7, creating an output of size 1 x 1. The fully connected layer was modified
according to the number of classes required using transfer learning.
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2.2 Residual learning units

The increase in the depth of the architectures leads to a saturation in the system accuracy. Eventually, it
degrades at a point. This problem is known as the degradation problem. The degradation problem can be
avoided by creating shallower architectures in combination with their deeper counterparts which contain
the identity mappings copied from the layers of already learned shallower architecture, as illustrated in
Figure 2. The desired residual mappings can be denoted as H(h). The non-linear layers can be fitted into the
following mapping in equation (1):

Func(h) = H(h) - h. 1)
The original mapping can be re-casted as in equation (2).
H(h) = Func(h) + h. )
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Figure 2: Residual learning block.

The residual networks show tremendous results and better accuracy even in deeper networks [23],
which shows that optimizing the residual mapping is much easier than optimizing the original or unrefer-
enced mappings. Therefore, it was observed that it was easier to optimize residual networks than their
counterparts, i.e., the plain networks since there is an increase in training error with an increase in depth.

2.3 Residual attention learning

Residual learning is combined with the attention mechanism, which developed the concept of the Res-ATTEN
network. The mixed type of attention is used in the attention modules. The attention modules contain the
residual units, convolutional layers, interpolation layers, and sigmoid function, as shown in Figures 3-5.

The attention modules employed in the proposed architecture contain two types of branches (1) Trunk
branch (Tk) and (2) Soft mask branch (Mk), as shown in Figure 6. The output of attention module ATT is as
in equation (3).

ATT; cu(h) = Mk; cn(h)* Tk cn(h), 3)
where i denotes all the spatial positions, and Ch € {1, 2, 3,..., Ch} signifies the index of the channel. The

attention mechanism is combined with the residual learning, and the formula was created similar to the
concept of residual learning to modify the output ATT of the attention module as in equation (4).

ATT; cu(h) = (1 + Mk;,cn(h))*H; cn(h), (4)
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where the range Mk(h) is between 0 and 1, with Mk(h) approximating to zero, ATT(h) approximates the
original features H(h), which is called as the residual attention mechanism.

Trunk branch: The trunk branch contains the operations which perform the feature extraction tasks. The
soft mask branch imitates the fast feedforward and feedback attention process and employs the bottom-up
and top-down structures to acquire a mask Mk(h) of the same size as the trunk branch Tk(h) with input h.

Soft mask branch: The soft mask branch comprises two operations — the first is the fast feedforward
sweep that accumulates the global information from the entire image and the second is the top-down
feedback process which interfuses the global information with the original feature maps.
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Figure 6: Attention module: soft mask branch and trunk branch.

The up-sampling of output is performed using linear interpolation layers after the processing from
some residual units. The input coming from the previous layers gets entered into attention modules. After
the processing in few residual unit, the max pooling operation is performed on the inputs numerous times
for increasing the size of the receptive field rapidly. The global information expands by the help of a top-
down architecture which is symmetrical in nature, as soon as the lowest resolution approaches. This
process was intended to guide the input features in each position. After that, to ensure the output size is
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same as the input feature maps, the number of bilinear operations was kept the same as the number of max
pooling layers.

The output then gets normalized using a sigmoid function as in mixed attention, there are no additional
restrictions. It uses a simple sigmoid function, as illustrated in Figure 7, for each channel and spatial
position. The function for the mixed type of attention is as in equation (5).
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Figure 7: Attention module: soft mask branch.

where i denotes the range of spatial positions, Ch denotes the range of channels, and h; ¢, signifies the
feature vector at the ith spatial position.

The element-wise cross-product of the output from the soft mask branch and the trunk branch was
done. The output of this process was then summed up (element-wise) with the output of the trunk branch
and further passed from the residual units. The output was passed from an average pooling layer to the fully
connected layer, where the classification label gets generated. The number of pre-processing residual units
is denoted as pgry, the number of trunk branch residual units is denoted as try. Moreover, the number of
residual units between the pooling layer in the mask branch is denoted as res.

3 Datasets, system specifications, and evaluation metrics

This section provides details about the datasets used for disease identification and the specifications of the
system employed for the experiments.

3.1 Datasets for disease identification

The experiments for the disease identification task employed four datasets from two different databases,
i.e., PlantVillage Database and Rice Disease Database, as illustrated in Figure 8.

Apple, corn, and grape datasets are taken from the PlantVillage database [33]. Each dataset contains
the leaf images of the mentioned plants. All the images are in jpeg format and have a resolution of 256 x 256
pixels, as summarized in Table 1.
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Figure 8: Sample images from the datasets for disease identification.

Table 1: Details of dataset for disease identification

Dataset name Plant No. of classes No. of total images Format Resolution
PlantVillage Apple 4 3,171 .jpeg 256 x 256
Corn 4 3,852 .jpeg 256 x 256
Grape 4 4,062 .jpeg 256 x 256
Rice leaf disease dataset Rice 4 5,932 .jpeg 300 x 300

The datasets are structured in the following manner: the first type of leaf images are the plant's healthy
leaf images without any visible disease symptoms. The rest of the images are distributed as three different
kinds of diseases. The apple dataset contains three types of diseases: apple scab (630 images), black rot (621
images), and cedar rust (275 images), along with healthy leaf images (1,645 images). Similarly, the corn
dataset consisted of three types of diseases: Cercospora leaf spot (513 images), common rust (1,192 images),
and northern leaf blight (985 images), along with healthy leaf images (1,162 images). The grape dataset has
three types of diseases: black measles (1,383 images), black rot (1,180 images), and Isariopsis leaf spot,
along with healthy leaf images (423 images).

The Rice leaf disease dataset is the second database used for disease identification [34]. There are a
total of 5,932 images contained in this dataset. The images are captured in the rice crop fields and have four
types of diseases, i.e., rice tungro (1,308 images), brown spot (1,600 images), rice blast (1,440 images), and
bacterial blight (1,584 images). All the Rice leaf disease dataset images are in jpeg format with a resolution
of 300 x 300 pixels.

3.2 System specifications

A Lenovo Legion 64-bit system with a 4GB NVIDIA Geforce GTX 1650 graphical processing unit (GPU) is
employed for performing the experiments and obtaining the results. The system possessed an Intel(R) Core
(TM) i5-9300H CPU with a clock speed of 2.40 GHz and 16 GB RAM.
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3.3 Evaluation metrics

The testing accuracy has been used as an evaluation metric for the performance comparison of the classi-
fication models. The accuracy signifies the number of correct predictions the model provides over the total
number of predictions [35]. The method to compute the accuracy of the model is as follows:

TruePos + TrueNeg

Acc = s
Model = T riePos + FalPos + FalNeg + TrueNeg

(6)

where TruePos refers to the case under True positive, where a leaf has a label x, and the model classifies this
case as the label x. TrueNeg refers to the case under True Negatives, where a leaf is not having label x, and
the model classifies this case as not label x. FalPos refers to a case under False Positives, where a leaf is not
having label x, and the model classifies this case as label x. FalNeg refers to a case under False Negatives
where a leaf has label x, and the model classifies this case as not label x.

4 Experiments and results

This section discusses the experimental setup and results from various experiments, along with the per-
formance comparison of DNN models.

4.1 Experimental setup for experiments

The four ResNets, ResNet-18, ResNet-50, ResNet-101, and Res-ATTEN, were employed for the classification
task in disease identification. The mini-batch size was kept to eight to adapt to the system. The datasets
were split into the ratio of 80:10:10, i.e., 80% of the data was employed for training purposes, 10% was used
for validation purposes, and the rest of the 10% of data from each dataset was kept aside for testing
purposes. ADAM optimizer and Cross entropy are chosen for computing loss function. The execution
environment was set to be on GPU. The parameter setup is encapsulated in Table 2.

Table 2: Parameter setup for experiments

Parameter Value

Mini batch size 8

Data split 80:10:10

Loss function Cross entropy
Optimizer ADAM
Execution environment GPU

A learning rate (LR) scheduler was incorporated, which declines the value of the learning rate of
each parameter group by a value known as gamma after every epoch [36]. This scheduler helps the DNN
to determine the optimal LR for minimizing the loss in the network. For every five epochs (i.e., setting step
size = 5), the learning rate will decay by half (i.e., gamma = 0.5). For example, if the initial LR was 0.01, then
after five epochs, the learning rate value will be 0.01 divided by 0.5, which is 0.02.

4.1.1 Data augmentation

There are cases of image classification in machine learning problems where the data in classes are not
uniformly available, which causes an issue known as over-fitting. So, to avoid this issue, a technique,
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namely, data augmentation, is employed for composing a dataset where each class contains an almost
equal number of images [37]. Various operations, such as cropping an area from the original image,
translation, rotation, and flipping, are applied to the original images, and new images are created [38].
In this work, the following operations are performed to virtually enlarge the datasets to avoid the issue
mentioned above, with mentioned parameter values, as shown in Table 3.

Table 3: Operations on images for data augmentation

Operations Values/range
Rotation —-180° to 180°
Scaling 0.75 -1.25
Shear 2-4
Horizontally flip 0.5

The random rotation operations are performed within a range of —180° to 180°. The random scaling is
performed on images in the range of 0.75—1.25. Random shearing is done within the values 2-4, followed
by the random horizontal flip with a value of 0.5.

4.2 Performance comparison of DNNs with Res-ATTEN for disease identification

Three types of experiments were performed on all datasets. Four types of DNNs, i.e., ResNet-18, ResNet-50,
ResNet-101, and Res-ATTEN, are employed to compute the testing accuracy of the system, and a perfor-
mance comparison between the DNNs was made accordingly. The LRs varied for the experiments in the
following manner: 1st experiment with LR = 0.1, 2nd experiment with LR = 0.001, and 3rd experiment with
LR = 0.0001. The performance comparison between the DNNs is made according to the highest testing
accuracy. All three LRs are compared, and the best testing accuracy providing DNN was selected. The
experiments on DNNs are run on categories, i.e., Epochs = 10 and 25. Various optimizing experiments select
the optimal number of epochs to get the best accuracy.

4.2.1 Performance on PlantVillage (apple) dataset

The results of the experiments performed on PlantVillage (apple) dataset for the identification of the labels/
classes: healthy, scab, black rot, and cedar rust are encapsulated in Table 4.

Table 4: Performance comparison of DNNs with Res-ATTEN for disease identification for PlantVillage (apple)

Testing accuracy (%): PlantVillage — apple

Batch size = 8, optimizer step size = 5, gamma = 0.5

DNN/testing accuracy LR =0.01 LR = 0.001 LR = 0.0001
ResNet-18 Epochs = 10 95 94 90

Epochs = 25 92 92 93
ResNet-50 Epochs =10 86 95 87

Epochs = 25 95 95 90
ResNet-101 Epochs = 10 90 93 89

Epochs = 25 95 94 93
Res-ATTEN Epochs =10 90 93 96

Epochs = 25 96 99 97
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The results show that the highest accuracy for PlantVillage (apple) dataset with ResNet-18 is LR = 0.01
with 95% at 10epochs. The highest accuracy ResNet-50 showed was 95% with LR = 0.01 at 10 epochs and
LR =0.001 at 10 and 25 epochs. The ResNet-101 DNN provided the highest accuracy of 95% with LR = 0.01 at
25 epochs, as illustrated in Figure 9. In comparison with all the DNNs, the proposed Res-ATTEN-based
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approach produced the highest accuracy of 99% with LR = 0.001 at 25epochs.
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4.2.2 Performance on PlantVillage (corn) dataset

The results of the experiments performed on the PlantVillage (corn) dataset for the identification of the
labels/classes: healthy, leaf spot, common, rust, and northern leaf blight, are encapsulated in Table 5.

Table 5: Performance comparison of DNNs with Res-ATTEN for disease identification for PlantVillage (corn)

Testing accuracy (%): PlantVillage — corn

Batch size = 8, optimizer step size = 5, gamma = 0.5

LR = 0.01 DNN/testing accuracy LR = 0.001 LR = 0.0001
ResNet-18 Epochs =10 83 86 87

Epochs = 25 88 89 83
ResNet-50 Epochs = 10 85 89 90

Epochs = 25 90 90 89
ResNet-101 Epochs = 10 84 87 87

Epochs = 25 92 90 90
Res-ATTEN Epochs = 10 83 89 94

Epochs = 25 93 92 94
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The results showed that the highest accuracy for PlantVillage (corn) dataset with ResNet-18 is 89% with
LR = 0.001 at 25 epochs. The highest accuracy ResNet-50 showed is 90% with LR = 0.01 at 25 epochs, LR =
0.001 at 25 epochs, and LR = 0.0001 at 10 epochs. The ResNet-101 DNN provided the highest accuracy of
92% with LR = 0.01 at 25 epochs, as illustrated in Figure 10. In comparison with all the DNNs, the proposed
Res-ATTEN-based approach produced the highest accuracy of 94% with LR = 0.0001 at 25 epochs.

PlantVillage (Corn Dataset): Accuracy Comparison between models with LR=0.01 PlantVillage (Corn Dataset): Accuracy Comparison between models with LR=0.001
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Figure 10: Graphs showing the comparison of testing accuracy among DNNs at (a) LR = 0.01, (b) LR = 0.001, and (c). LR = 0.0001
for PlantVillage (corn) dataset.

4.2.3 Performance on PlantVillage (grape) dataset

The results of the experiments performed on the PlantVillage (grape) dataset for the identification of the
labels/classes: healthy, black rot, black measles, and leaf spot are encapsulated in Table 6.

Table 6: Performance comparison of DNNs with Res-ATTEN for disease identification for PlantVillage (grape)

Testing accuracy (%): PlantVillage — grape

Batch size = 8, optimizer step size = 5, gamma = 0.5

DNN/testing accuracy LR =0.01 LR = 0.001 LR = 0.0001
ResNet-18 Epochs = 10 93 94 89

Epochs = 25 93 88 90
ResNet-50 Epochs =10 84 90 90

Epochs = 25 94 91 89
ResNet-101 Epochs = 10 93 92 93

Epochs = 25 93 92 94
Res-ATTEN Epochs = 10 83 88 96

Epochs = 25 96 95 97
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The results showed that the highest accuracy for PlantVillage (grape) dataset with ResNet18 is LR =
0.001 with 94% at 10 epochs. The highest accuracy ResNet-50 showed is 94% with LR = 0.01 at 25 epochs.
The ResNet-101 DNN provided the highest accuracy of 92% with LR = 0.01 at 25 epochs, as illustrated in
Figure 11. In comparison with all the DNNs, the proposed Res-ATTEN-based approach produced the highest

accuracy of 97% with LR = 0.0001 at 25 epochs.

PlantVillage (Grape Dataset): Accuracy Comparison between models with LR=0.01
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Figure 11: Graphs showing the comparison of testing accuracy among DNNs at (a) LR = 0.01, (b) LR = 0.001, and (c) LR = 0.0001
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for PlantVillage (grape) dataset.

971 =@ epochs=10
hs=2!
% @' epochs=25

©
&

©
g

©
~

TESTING ACCURACY (%)
© ©
= e}

©
S

.
° e

ol ettt 0

ResNet18 ResNet50

4.2.4 Performance on Rice leaf disease dataset

The results for the experiments performed on the Rice leaf disease dataset for the identification of the

ResNet101
DNNs
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ResNet-ATTEN

labels/classes: Tungro, Brown Spot, Blast, and bacterial leaf blight, are encapsulated in Table 7.

Table 7: Performance comparison of DNNs with Res-ATTEN for disease identification for Rice leaf disease dataset

Testing accuracy (%): Rice leaf disease dataset

Batch size = 8, optimizer step size = 5, gamma = 0.5

DNN/testing accuracy LR = 0.01 LR = 0.001 LR = 0.0001
ResNet-18 Epochs =10 84 87 82

Epochs = 25 87 87 84
ResNet-50 Epochs = 10 88 89 88

Epochs = 25 92 92 78
ResNet-101 Epochs = 10 88 88 86

Epochs = 25 90 90 88
Res-ATTEN Epochs = 10 92 94 97

Epochs = 25 98 99 99
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The results showed that the highest accuracy for Rice leaf disease dataset with ResNet-18 is 87%, with
LR =0.01 at 25 epochs and LR = 0.001 at 10 and 25 epochs. The highest accuracy ResNet-50 showed was 92%
with LR = 0.01 and LR = 0.001 at 25 epochs. The ResNet-101 DNN provided the highest accuracy of 90% with
LR = 0.01 and LR = 0.001 at 25 epochs, as illustrated in Figure 12. In comparison with all the DNNs, the
proposed Res-ATTEN-based approach produced the highest accuracy of 99% with LR = 0.001 and LR =
0.0001 at 25 epochs.

Rice Disease Dataset: Accuracy Comparison between models with LR=0.01 Rice Disease Dataset: Accuracy Comparison between models with LR=0.001
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Figure 12: Graphs show the testing accuracy comparison among DNNs at (a) LR = 0.01, (b) LR = 0.001, and (c) LR = 0.0001 for
Rice leaf disease dataset.

The overall highest testing accuracy achieved by each dataset at each DNN for the disease identification
task is as follows: for PlantVillage (apple) dataset — 95% with ResNet-18, ResNet-50, and ResNet-101 and
99% with Res-ATTEN. For PlantVillage (corn) — 89% with ResNet-18, 90% with ResNet-50, 92% with
ResNet-101, and 94% with Res-ATTEN. For PlantVillage (grape) — 94% with ResNet-18, ResNet-50, and
ResNe-t101 and 97% with Res-ATTEN. For Rice leaf disease dataset — 87% with ResNet-18, 92% with ResNet-
50, 90% with ResNet-101, and 99% with Res-ATTEN, as encapsulated in Table 8, and illustrated in
Figure 13.

It was observed that the Res-ATTEN-based plant disease identification system provided the highest
accuracy for every dataset compared to other ResNets.

4.2.5 Performance comparison of the proposed approach with traditional approaches
The performance metric for comparing the traditional and proposed approaches was chosen to be accuracy.

Various researchers implemented the traditional approaches for plant disease and observed the accuracy as
high as 88.46, 89.5, 90, 93.62, 93.67, 94.2996.46, 96.88, 97.47, 97.56, 98, 98.11, and 98.44%, as shown in
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Table 8: Overall highest testing accuracy achieved by each dataset at each DNN
Datasets Crop Highest testing accuracy achieved (%)
ResNet-18 ResNet-50 ResNet-101 Res-ATTEN

PlantVillage Apple 95 95 95 99

Corn 89 90 92 94

Grape 94 94 94 97
Rice leaf disease Rice 87 92 90 99

Highest Accuracy achieved with different models on datasets

*@ Apple . @
£ 981 =@ Comn sty
9 =@ Grape .*° ," @
> 96 - =@ Rice . . “‘ s
— .

z ‘----------‘---------."““.,'
NEZER ® 2 e
-
) L2
2 .
2
8 92 0" . @ .
Q - “ss L4
g . ., o
5 90 4 ‘.’ ° ' ¢
= @-"".¢
Q -
T884 4
*

[

ResNet18 ResNet50 ResNet101 Res-ATTEN
DNNs

Figure 13: Highest accuracy achieved by datasets with different DNNs.

Table 9. The proposed approach performed well with even small training data and provided the highest
accuracy of 99%, as illustrated in Figure 14.

5 Conclusion

The proposed technique for disease identification from the healthy/diseased plant leaf Images was based on
the Residual-Attention Learning Network. The research was performed on PlantVillage Database (apple, corn,

Table 9: Accuracy comparison between traditional approaches and the proposed approach

Approaches

Accuracy (%)

Mishra et al. [18]
Sujatha et al. [19]
Argiieso et al. [20]

Yin et al. [21]
Arsenovic et al. [22]
Wu et al. [23]

Geetharamani and Arun Pandian [24]
Gajjar et al. [25]

Thenmozhi and Srinivasulu [26]
Turkoglu et al. [27]

Picon et al. [28]

Shin et al. [29]

Li et al. [30]

Proposed approach

88.46
89.5
90
93.62
93.67
94.29
96.46
96.88
97.47
97.56
98
98.11
98.44
99
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Accuracy comparison between traditional approaches and proposed approach
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Figure 14: Comparison of the proposed approach with traditional approaches.

and grape datasets) and Rice leaf disease dataset. Four types of ResNets, i.e., ResNet-18, ResNet-50, ResNet-101,
and a unique Res-ATTEN network (a combination of residual network with attention learning), were employed
to compute the accuracy for disease identification. The testing accuracy of the system was set to be a parameter
to judge the best model out of all the ResNets. Various experiments were performed with parameters such as
epochs and LRs, and performance comparison was made among all four ResNets. The developed technique
handled large datasets very efficiently and provided the highest accuracy in every experiment. It provided a very
prominent accuracy with the standard datasets. The system achieved the highest accuracy of 99% and per-
formed well than the existing ResNet-based approaches for plant disease identification systems.
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