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Abstract: With the rapid expansion in plant disease detection, there has been a progressive increase in the
demand for more accurate systems. In this work, we propose a new method combining color information,
edge information, and textural information to identify diseases in 14 different plants. A novel 3-branch
architecture is proposed containing the color information branch, an edge information branch, and a
textural information branch extracting the textural information with the help of the central difference
convolution network (CDCN). ResNet-18 was chosen as the base architecture of the deep neural network
(DNN). Unlike the traditional DNNs, the weights adjust automatically during the training phase and provide
the best of all the ratios. The experiments were performed to determine individual and combinational
features’ contribution to the classification process. Experimental results of the PlantVillage database
with 38 classes show that the proposed method has higher accuracy, i.e., 99.23%, than the existing feature
fusion methods for plant disease identification.

Keywords: central difference convolution network, deep neural networks, feature fusion, leaf images,
ResNet, plant disease identification

1 Introduction

The world is facing various threats toward food security, whether it is a massive growth in global popula-
tion, severe weather issues due to climate change, or the risk of sudden upsurges in severe crop disease
epidemics. The unpredictable extreme weather conditions hamper the temperature, eventually leading to
various pathogen infections in crops. These crop infections affect the yield and quality of the crops [1].
There may be conditions that can lead to food shortage, human starvation [2,3], social instability, and
substantial economic disruptions. The production loss faced by four Indian districts namely- Nellore
(92,000–105,000 tons), West Godavari (30,000–36,000 tons), Karnal (46,000 tons), and Rangareddy Dis-
trict (22,000 tons) was estimated using Cramer method that showed the conservative loss proportion to be
3–16% [4]. The epidemic caused by the black pod disease in cocoa beans in Ghana in 2012 destroyed about
25% of the annual yield. The annual yield was observed to be 8,50,000 metric tons out of which 2,12,500
metric tons of yield got wasted because of the disease. The revenue loss was estimated to be 7.5 million in
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Ghanian cedi [5]. Two types of diseases – Target leaf spot and B. tabaci infection in Soybean yield caused
44–48.66% of loss in yield that costed 20USD per hectare of the agricultural fields [6].

Crop protection methods can help prevent these disease epidemics from happening. The techniques
used in the crop protection methods can detect the early onset of diseases so that the preventive actions or
the treatments are confined to the affected reason, which can minimize the quantity of the products used
before the appearance of visible symptoms [7]. The proposed approach is based on computer vision
methods to identify plant diseases. Computer vision is a branch of computer science which can be helpful
in collecting the data from the images, analyze the patterns and produce predictions. The systems can be
integrated with Computer vision and automate the plant disease identification systems. Computer vision
works on two main concepts: Feature extraction and classification [8–12]. There are many challenges in the
field of plant disease identification, for example, the decision to choose the best features so that it provides
the best classification accuracy. This can be possible using different machine learning techniques [13–17].
An advanced version of these machine learning techniques has been introduced in the world of Computer
vision, i.e., deep neural networks (DNNs). DNNs extract the significant features without any human inter-
vention and classify large amount of data in just a few hours [17–19].

There are many challenges in the field of plant disease identification, for example, the decision to
choose the best features according to their contribution in providing the best classification accuracy.
Another problem is that the weights in DNNs update at random, which might reduce the accuracy of the
system. Also, the state-of-the-art techniques cannot provide the individual contribution of the features
contributing in the correct identification.

The main contribution of this work is summarized as follows:
(a) Analyzes the contribution of features contributing to the correct classification of the images.
(b) Provides the contribution percentage of individual features.
(c) Obtains the highest accuracy in the area of feature-fusion-basedmethods for Plant disease identification.
(d) Updates weights automatically to improve the accuracy.
(e) Visualizes the results on the input images.

The rest of this article is organized as follows. In Section 2, the state-of-the-art techniques based on
feature fusion are explained. Section 3 describes the novel proposed feature-fusion-based technique. The
dataset description is provided in Section 4. Section 5 details the experimental setup, and the results are
illustrated. Section 6 contains the visualization of the results. Section 7 contains the analysis of the novel
proposed approach. And Section 8 contains the conclusion of the work.

2 Related works

The task of feature extraction plays the most crucial role in image classification. An image can contain
thousands of features which can be helpful, but it is a cumbersome task to identify which features to use.
The features can be categorized into two types: Local features and global features. Global features describe
the whole image with the help of one vector. On the other hand, the local features are manually extracted
from the image and are represented by many small vectors [20,21]. Standard local descriptive features are
the edge features and the texture features.

Color features mainly include the color moment features (e.g., mean value, standard deviation, and
skewness), color histogram features, and average RGB features [22]. Color features can help distinguish
between diseased and unaffected leaf areas. Various edge extraction techniques are proven to be good
feature extraction techniques for extracting the veins, affected areas, dead parts of the leaves. The Canny
edge operator is one of the most common edge descriptors [23]. Other edge description techniques are the
Sobel edge detector and the Prewitt edge detector. Texture features exhibit the repetition of patterns in the
images which can facilitate the extraction of regions that contain the areas affected by the disease. Texture
features can be contrast, entropy, RMS, energy, kurtosis, correlation, variance, fifth and sixth central
moment, smoothness, mean value and standard deviation [24]. Other texture-based plant identification
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methods include local binary patterns, local edge pattern histograms, and complete local binary patterns
[25,26].

Various researchers have used different combinational fusions of features with neural networks for
different tasks. Khan et al. developed a multi-scale feature-fusion-based breast cancer detection technique.
Deep features extracted from DenseNet-201, NasNetMobile, and VGG16 CNN pre-trained models were con-
catenated and passed into the classifier after performing numerous data augmentation techniques. Transfer
learning and fine-tuning were integrated to facilitate the performance of the system. The system could
achieve 98% accuracy with two breast cancer datasets [27]. A fusion of handcrafted features and DNNs was
developed to detect melanoma and nevus skin lesions. CIE L*a*b* model was used to extract statistical
color features from the region of interest (ROI). Area, perimeter, circularity, diameter, and eccentricity were
used as shape features of the ROI. The texture was extracted using Gray-level co-occurrence matrix statis-
tical features. The combination of handcrafted features and deep features was then passed into three types
of classifiers: Linear regression, support vector machine (SVM), and relevance vector machine. The system
could achieve an accuracy of 92.40% [28].

A system was developed to detect brain tumors using a feature-fusion-based approach. The fast non-
local mean and the Otsu methods were used to preprocess the images and accomplish the segmentation
task. GEO, local binary pattern (LBP), and Histogram of Oriented Gradients (HOG) features were extracted
and fused to create a single feature vector. Seven classifiers were used to perform the classification task –
SVM, logistic regression, k-nearest neighbors algorithm, ensemble, linear discriminant analysis, decision
tree, and quadratic discriminant analysis [29]. A covid-19 detection system was developed using chest X-ray
images based on the fusion of extracted features and deep learning. The feature extraction was performed
using HOG and a CNN-based feature extractor. The classification was done with the help of VGG-Net. The
system achieved 98.36% accuracy [30].

An image classification system was proposed to combine Superpixels-based features, which exhibit
global (GIST), appearance (dilated SIFT histogram), and texture (color thumbnail) features. A complex
feature vector was created using a parallel feature fusion strategy. The dimensionality reduction was made
using principal component analysis as the feature vector size was huge. The highest accuracy of all
experiments was 84.71% [31]. A feature fusion method was developed to classify different types of images.
Scale invariant feature transform (SIFT), self-similarity (SSIM) descriptor, LBP, PACT descriptor, and HOG
were fused to create a vector of features. The combined features were then passed to a multi-kernel SVM.

All the abovementioned existing techniques lack the contribution of individual features used, which is
a significant drawback of these techniques. The proposed work overcomes this limitation and provides the
contribution of significant and non-significant features in the correct classification of the images.

3 The proposed approach

The novel proposed automatic adaptive weighted feature-fusion-based plant disease identification classi-
fier is a 3-branch architecture, as illustrated in Figure 1. The first branch, namely, the color feature branch,
contains the RGB values of the images (size of 256 × 256), which are passed as input to a ResNet-18 DNN and
deep, robust features (F1) of size 512 × 7 × 7 are extracted from this branch. The second branch is the edge
feature branch, in which the input is the image that contain the Sobel edge information. For generating the
input for the edge branch, the RGB images are first converted into grayscale images and then the Sobel edge
detection is applied.

The Sobel edge information images are then passed into a ResNet-18 architecture and its deep, robust
features (F2) of size × ×512 7 7 are extracted from this branch. The third branch is called the texture feature
branch. It is created by replacing the traditional convolutional layers of ResNet-18 DNN with the newly
introduced texture descriptor, Central Difference Convolutional layers. The RGB images are passed to this
new ResNet-central difference convolution network (CDCN), and the deep, robust features (F3) of size

× ×512 7 7 are extracted from this branch.
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These features obtained from every branch are of size ( × ×512 7 7 ). For analyzing the contribution of
each feature, some weights ( = )n 1, 2, 3α , wheren are assigned to features obtained from each branch,
which are achieved by multiplying the assigned weights to the features and creating the new features F′1 , F′ ,2
and F′3. These weighted features are summed up to create a combinational feature, i.e., F4.

= ⨂F′ F α1 1 1 (1)

= ⨂F′ F α2 2 2 (2)

= ⨂F′ F α3 3 3 (3)

= ′ ⊕ ⊕F F F′ F′ .4 1 2 3 (4)

The dimensionality of these F4 features were too high, i.e., × ×1, 536 7 7 . It is then reduced using two
convolutional layers to suit the hardware compatibility. The new features F6 obtained after two convolu-
tions are of size × ×16 5 5. The features are then flattened to a feature vector, F7 of size ×400 1. These
final features were passed to the fully connected layer and then to the SoftMax Layer for classification.

3.1 Extraction of texture features using CDCN

CDCN is a textural descriptor that provides texture difference information of an object by combining the
pixel intensity value and its gradient information, as shown in Figure 2. CDCN helps to obtain the patterns’
essential and significant features by merging the intensity and gradient information. Unlike the textural
description models based on vanilla convolution, it is more robust in model building. It provides extra-
ordinary performance in extracting the features from fine-grained patterns captured in environments with
diverse variations. The advantage of CDC over the traditional vanilla convolution is that without increasing
any parameter, it can work in the place of vanilla convolution with the capability of generating models more
robust than traditional ones [32].

The standard vanilla convolution used to extract features in CNNs can be represented as follows:

( ) ( )( ( ) ( ))∑= + −+

∈

M f w f M f f M f ,s c
f l

l s c l s c1
l

(5)

Figure 1: The proposed network architecture: Color + edge + texture.
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where ( )+M fs 1 c signifies the next level feature map extracted from the current feature map ( )M fs c . fc carries
the pixel value of the current feature map. l represents the local receptive field region to be operated. fl
carries the pixel value of the local receptive field and enumerates through the kernel neighborhood. w is the
weight used in the kernel.

The CDC and vanilla convolution are combined to become

( ) ( ) ( ) ( ) ( )( ( ) ( )∑ ∑= − + + + −+

∈ ∈

M f σ w f M f f σ w f M f f M f1 ,s c
f l

l s c l
f l

l s c l s c1
l l

(6)

Figure 2: CDC method.

Figure 3: Converting ResNet18 architecture to ResNet–CDCN.
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where σ parameter is used for the combination and ∈ [ ]σ 0, 1 . The final generalized CDC equation can be
expressed as follows [33]:

( ) ( ) ( ) ( )( ( )∑ ∑= + −+

∈ ∈

M f w f M f f σ w f M f .s c
f l

l s c l
f l

l s l1
l l

(7)

The ResNet–CDCN model integrates transfer learning and fine-tuning for an improved training experi-
ence. In this work, the CDC is used to replace all the convolutions in ResNet-18 architecture, as shown in
Figure 3, due to its capability to avoid any additional parameters in the network while still providing a more
robust textural description. The learning rate (LR) optimizer is also employed in training for optimizing the
network.

4 Dataset description

The dataset used for this work is the publicly available dataset, the PlantVillage dataset [34]. The hugest
dataset publicly available for plant disease identification tasks contains 53,606 color plant leaf images. This
dataset has been used for the same task by many researchers [35–39]. The images are labelled with 38
classes, including healthy plant leaf images and plant leaf images of different types of diseases. The total
number of plants used to create the dataset is 14. The resolution of these images is ×256 256 pixels and are
in JPEG format. Few samples from the dataset can be seen in Figure 4.

Figure 4: Sample images from the PlantVillage dataset for plant disease identification.

6  Kirti et al.



The images of healthy plant leaves possess uniform color, no abnormalities, or discoloration. On the
other hand, the diseased plant leaf images exhibit symptoms like different color spots, lines and patches,
and discolored, crumbled, and dead-looking parts of the leaves. These symptoms can be identified with the
help of some manual experts.

5 Experimental setup and results

For the experimental setup, the parameters are fixed for all models. The database used contained 53,606
images in JPEG format. The resolution of the images is 256 × 256 pixels. The split to train the data is set to be
80:10:10, i.e., 80% data is used for training, 10% data is used for validation, and the rest of the 10% data is
used for testing the system. The batch size and epochs are chosen to facilitate the system capacity, i.e., 8
and 15, respectively. The ADAM optimizer is used in the models for training. The initial LR is set to be
0.0001, and a learning rate optimizer is integrated to improve the accuracy. The period of LR decay is
chosen to be 1, with the multiplicative factor of LR decay as 0.8. The execution environment of all the
models is an NVIDIA Graphical Processing Unit, as summarized in Table 1.

5.1 LR optimization

LR is an essential parameter to be set in a DNN that instructs the optimizer on how distant the weights
should be from the gradient direction for a batch of images for training. The learning rate has to be chosen
wisely since if the LR is set to very low, although the training is accurate, the steps for minimizing the loss
function will become so small that it becomes time-consuming. On the other hand, if it is set to be too high,
the changes in the weight distance are so massive that it can hamper the training process by making it even
worse [40]. The more innovative way to choose the weights optimally is by using a LR scheduler [41]. The
learning rate scheduler helps choose the optimal weights by decaying the LR of all the parameters at some
defined number of epochs. The decay factor can be selected in terms of percentage. For example, if the
initial learning rate is set to be 0.1 and the gamma factor is 0.6, so for a step size of 5, the LR will be 0.1/0.6,
i.e., 0.04, then for the subsequent five epochs, the LR value will be decayed by 60%. In this work, the initial
LR value is set to 0.0001, which will decay after every epoch with a decay/gamma factor of 0.8.

Table 1: Experimental parameters with their selected values

Parameter Value

Dataset size 53,606 JPEG images (38 Classes)
Input size 256 × 256
Split (train, test, and validation) 80:10:10
Mini batch size 8
Epochs 15
Optimizer ADAM
Initial LR 0.0001
Period of LR decay (step size) 1
Multiplicative factor of LR decay (gamma) 0.8
Execution environment GPU
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5.2 Automatic weight updation mechanism (AWUM)

The AWUM [42] contains two steps: (1) Combining the three types of features that are good in extracting
significant features, as shown in Figure 5. The color, edge, and texture features are chosen in this case. All
these features perform well in the feature extraction procedure but contribute differently to the process. (2)
Assigning different weights to the features and analyzing their individual, as well as the combinational,
contribution can be beneficial for choosing the best features, reducing time consumption and redundant
information that can help obtain better results in classifying the diseases in plants.

The features used, apart from the color images, are the images containing Sobel edge features and the
texture features extracted by using the CDCN. The equation used for the AWUM can be expressed as
follows [42]:

( )∑ ∑= =W α w x α, 0.25, 0.4, 0.5, 0.6, 0.75, 1.0,
i

I

i i
i

I

i (8)

where α signifies the weight assigned to a feature. wi corresponds to the features, and W represents the
output of the AWUM.

In this work, there is no need for human intervention to update the weights, but the system automa-
tically updates the weights assigned to features to obtain the best value. This system updates the C value
with the same mechanism as the system weights, i.e., the backpropagation algorithm. The α weights are
appended to the list of system weights to get updated similarly. The weight α depends upon the contribu-
tion of the individual features used and gets automatically updated accordingly. This mechanism can
wholly use each feature for the plant disease classification, and the best significant features can also be
extracted. The final feature vector can be computed as follows:

⎧

⎨
⎩

( ) ( ) ( )⎫

⎬
⎭

= + +

+ + =

W α w x α w x α w x
α α α 1 ,1 1 2 2 3 3

1 2 3
(9)

where α1, α2, and α3 are the weight assigned to the individual features and used to compute the contribution
of the features. The sum of the weights assigned to the features is kept such that the sum is 1.

Figure 5: Automatic weight updation mechanism.
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Figure 6: Computation of features and classification based on individual feature models.
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5.3 Image transformation and augmentation

Deep learning models face overfitting problems during the training phase and produce a large amount of
training error. This leads to poor classification results. The deep learning models can be helpful only when
there is a reduction in validation and training errors. A method called data augmentation is used to achieve
a low training error. The training with augmented images can be beneficial in reducing the training and
validation error by representing a more significant set of feature points [43].

The augmentation process includes considering some images of the same class as input images and
providing a processed image of the same size as the output. The input and output images are fed to further
layers of the network as input [44]. This work uses four types of operations for image augmentation:
Random rotation with the range of −180 to 180 degrees, random scaling with values 0.75–1.25, random
shearing with the value range of 2–4 and horizontal flipping.

5.4 Performance of color, edge, and texture information models

The RGB images are used for the color only and texture only models. The edge only model uses the Sobel
edge images produced by applying the Sobel edge detector on RGB images, as represented in Figure 6.

It has been observed that the color model produced the highest test accuracy, i.e., 99.108%, along with
the highest precision, recall, F1, and AUC values: 98.894, 98.842, 98.861, and 99.995%, respectively. On the
other hand, the second highest test accuracy is obtained using the texture only model, i.e., 94.423%, along
with the highest precision, recall, F1, and AUC values: 93.286, 92.272, 92.679, and 99.909%, respectively.
The least test accuracy is obtained using edge only model, i.e., 50.821%, along with the highest precision,
recall, F1, and AUC values: 44.589, 36.889, 37.46, and 93.611%, respectively, as shown in Table 2.
Loss/accuracy plots and confusion matrix plots for individual feature information models can be seen
in Figure 7.

5.5 Performance of color + edge information model with different weight
combinations

It has been observed that the best results of the proposed color + edge model (illustrated in Figure 8) are
obtained when α1 and α2 are initialized to 0.5 and 0.5, respectively. It is further observed that the automatic
weighting of α1 and α2 changes their values to 0.68 and 0.32, respectively, as shown in Table 3. This
indicates that the model considers 68% of color features and 32% of edge features. The alpha initial values
vs final values plot, loss/accuracy plots, confusion matrix plots for individual feature information models
can be seen in Figures 9 and 10, respectively.

Table 2: Performance comparison of individual feature models based on highest accuracy achieved, precision, recall, F1 score,
and AUC score

Model Highest test accuracy Precision Recall F1 AUC

Color only 99.108 98.894 98.842 98.861 99.995
Edge only 50.821 44.589 36.889 37.46 93.611
Texture only 94.423 93.286 92.272 92.679 99.909
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Figure 7: Loss/accuracy plots for individual feature information models: (a) color only information model, (b) edge only
information model, and (c) texture only information model.

Figure 8: Color + edge information model.
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Table 3: Performance comparison of color + edge information combinational model based on highest accuracy achieved,
precision, recall, F1 score, and AUC score, with initial and final alpha values

Color + Edge

Initial alpha values Final alpha values Test accuracy Precision Recall F1 AUC

α1 α2 α1 α2

0.5 0.5 0.68 0.32 99.248 98.829 98.852 98.826 99.983
0.6 0.4 0.74 0.26 99.02 98.547 98.522 98.525 99.994
0.4 0.6 0.60 0.40 99.195 98.991 98.856 98.914 99.998
0.75 0.25 0.82 0.18 99.02 98.647 98.486 98.559 99.99
0.25 0.75 0.47 0.53 99.108 98.801 98.865 98.826 99.993

Figure 10: Confusion matrix plot for combinational feature information model: Color + edge information model with best
values ( = =α α50% and 50%1 2 ).

Figure 9: (a) Initial/final alpha value plot and (b) loss/accuracy plot for combinational feature information model: color + edge
information model with best values ( = =α α50% and 50%1 2 ).
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5.6 Performance of the color + texture (CDC) information model with different
weight combinations

It has been observed that the best results of the proposed color + texture model (illustrated in Figure 11) are
obtained when α1 and α2 are initialized to 0.5 and 0.5, respectively. It is further observed that the automatic
weighting of α1 and α2 changes their value to 0.62 and 0.38, respectively, as shown in Table 5. This indicates
that the model considers 62% of color features and 38% of texture features. The alpha initial values vs final
values plot, Loss/accuracy plots, and confusion matrix plots for individual feature information models can
be seen in Figures 12 and 13, respectively (Table 4).

Figure 11: Color + texture (CDC) information model.

Figure 12: (a) Initial/final alpha value plot and (b) loss/accuracy plot for combinational feature information model: color +
texture information model with best values ( = =α α100% and 100%1 2 ).
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Figure 13: Confusion matrix plot for combinational feature information model: Color + texture information model with best
values ( = =α α100% and 100%1 2 ).

Table 4: Performance comparison of color + texture information combinational model based on highest accuracy achieved,
precision, recall, F1 score, and AUC score, with initial and final alpha values

Color + Texture

Initial alpha values Final alpha values Test accuracy Precision Recall F1 AUC

α1 α2 α1 α2

0.5 0.5 0.62 0.38 99.23 99.154 99.144 99.146 99.997
0.6 0.4 0.70 0.30 98.986 98.877 98.803 98.836 99.992
0.4 0.6 0.48 0.52 99.195 99.067 98.894 98.977 99.996
0.75 0.25 0.86 0.14 99.073 98.968 98.787 98.868 99.996
0.25 0.75 0.35 0.65 99.073 98.831 98.641 98.731 99.993

Table 5: Performance comparison of edge + texture information combinational model based on highest accuracy achieved,
precision, recall, F1 score, and AUC score, with initial and final alpha values

Edge + Texture

Initial alpha values Final alpha values Test accuracy Precision Recall F1 AUC

α1 α2 α1 α2

0.5 0.5 0.47 0.53 90.594 88.841 86.956 87.562 99.81
0.6 0.4 0.54 0.46 89.683 86.648 85.706 86.025 99.73
0.4 0.6 0.42 0.58 91.59 90.139 89.671 89.831 99.836
0.75 0.25 0.65 0.35 90.052 87.378 86.563 86.818 99.754
0.25 0.75 0.33 0.67 91.241 89.977 87.965 88.803 99.839
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5.7 Performance of the edge + texture (CDC) information model with different
weight combinations

It has been observed that the best results of the proposed edge + texture model (illustrated in Figure 14) are
obtained when α1 and α2 are initialized to 0.4 and 0.6, respectively. It is further observed that the automatic
weighting of α1 and α2 changes their value to 0.42 and 0.58, respectively, as shown in Table 6. This indicates
that the model considers 42% of edge features and 58% of texture features. The alpha initial values vs final
values plot, loss/accuracy plots, and confusion matrix plots for individual feature information models can
be seen in Figures 15 and 16, respectively.

Figure 14: Edge + texture (CDC) information model.

Table 6: Performance comparison of Color + edge + texture information combinational model based on highest accuracy
achieved, precision, recall, F1 score, and AUC score, with initial and final alpha values

Color + Edge + Texture

Initial alpha values Final alpha values Test accuracy Precision Recall F1 AUC

α1 α2 α3 α1 α2 α3

0.33 0.33 0.33 0.54 0.23 0.23 99.09 98.995 98.905 98.942 99.99
0.50 0.25 0.25 0.71 0.19 0.10 99.09 98.839 98.865 98.836 99.994
0.25 0.50 0.25 0.49 0.37 0.14 99.108 98.908 98.777 98.826 99.997
0.25 0.25 0.50 0.41 0.17 0.42 99.23 98.93 99123 99.02 99.996
0.60 0.20 0.20 0.74 0.16 0.10 99.003 98.917 98.511 98.698 99.996
0.20 0.60 0.20 0.43 0.44 0.13 99.16 98.948 98.975 98.955 99.997
0.20 0.20 0.60 0.34 0.16 0.50 99.143 98.974 98.889 98.926 99.987
0.70 0.15 0.15 0.82 0.11 0.06 99.055 98.676 98.634 98.64 99.995
0.15 0.70 0.15 0.38 0.50 0.13 99.213 99.094 98.839 98.956 99.998
0.15 0.15 0.70 0.30 0.13 0.56 98.898 98.577 98.553 98.554 99.995
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5.8 Performance of color + edge + texture (CDC) information model with different
weight combinations

It has been observed that the best results of the proposed color + edge + texture model (illustrated in Figure 17)
are obtained when α1, α ,2 and α3 are initialized to 0.25, 0.25, and 0.50, respectively. It is further observed that
the automatic weighting of α1, α ,2 and α3 changes their value to 0.41, 0.17, and 0.42, respectively, as shown in
Table 7. This indicates that the model considers 41% of color features, 17% of edge features, and 42% of texture
features. The alpha initial values vs final values plot, loss/accuracy plots, and confusion matrix plots for
individual feature information models can be seen in Figure 18.

Figure 16: Confusion matrix plot for combinational feature information model: edge + texture information model with best
values ( = =α α40% and 60%1 2 ).

Figure 15: (a) Initial/final alpha value plot and (b) loss/accuracy plot for combinational feature information model: edge +
texture information model with best values ( = =α α40% and 60%1 2 ).
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Figure 17: Color + edge + texture (CDC) information model.

Figure 18: Plots for combinational feature information model: color + edge + texture model with best values
( = = =α α α25%, 25%, and 50%1 2 3 ). (a) Initial/final alpha value plot, (b) loss/accuracy plot, and (c) confusion matrix plot.
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It is noticed that the color + texture model outperformed all other models with the highest accuracy of
99.23%, as shown in Table 8. The precision, recall, F1 score, and AUC are obtained to be 98.98, 99.10, 99,
and 100%, respectively, as represented in Figure 19.

5.9 Performance comparison of traditional plant disease identification
approaches and the proposed approach

In this work, the test accuracy is the performance metric for comparing the traditional approaches for plant
disease classification and the proposed novel automatic adaptive weighted features-fusion-based approach
for plant disease identification. The traditional techniques for plant disease classification provided the
accuracy as high as 91.22, 92, 93, 94, 95.63, 96.02, 97, 97.7, 97.96, and 98.06%, respectively as shown in
Table 8. The proposed novel weighted features-fusion-based approach performed exhaustively and pro-
vided the highest accuracy of 99.230%, as illustrated in Figure 20.

6 Visualization of results with LayerCAM for different feature
attentions

Zhou introduced the idea of visualizing the features via class activation maps, which proposed the concept
of CAMs, i.e., Class Activation Maps [48]. These CAMs were created using the neural network structure in

Table 7: Comparison between all the models with their best-obtained values: Highest accuracy provided by color + texture
model with best values ( =α1 50% and =α2 50%)

Model Best alpha values Highest test accuracy Precision Recall F1 AUC

α1 α2 α3

Color only — 99.108 98.894 98.842 98.861 99.995
Edge only — 50.821 44.589 36.889 37.46 93.611
Texture only 94.423 93.286 92.272 92.679 99.909
Color + edge 0.5 0.5 — 99.248 98.829 98.852 98.826 99.983
Color + texture 0.5 0.5 — 99.230 98.98 99.1 99 100
Edge + texture 0.4 0.6 — 91.59 90.139 89.671 89.831 99.836
Color + edge + texture 0.25 0.25 0.5 99.230 98.93 99123 99.02 99.996

Table 8: Comparison of existing approaches and the proposed approach

Approaches Accuracy (%)

Hu et al. [45] 91.22
Chen et al. [46] 92
Ma et al. [47] 93
Agarwal et al. [48] 94
Alehegn [49] 95.63
Gao and Lin [50] 96.02
Bin Tahir et al. [51] 97
Kaur et al. [52] 97.7
Sethy et al. [53] 97.96
Waheed et al. [54] 98.06
The proposed approach 99.230
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which the global average pooling layer replaced the fully connected layer. Various methods were intro-
duced in past years to generate class activation maps. They could able to locate the target feature regions
excellently. Still, the problem that has been found so common among all these methods is that they utilized
the final convolutional layer of CNN to create CAMs. The issue with relying on a final convolutional layer of
CNN is that it has a low spatial resolution and hence can trace only the coarse regions [49], which limits the
performance of the CAM methods.

Figure 19: Plots for (a) highest accuracy achieved, (b) precision, (c) recall, (d) F1 score, and (e) AUC for all models.
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LayerCAM is convenient with the standard CNN-based image classifiers without altering the network
architectures and weights obtained from backpropagation. The LayerCAM attention method was introduced
by Jiang. LayerCAM does not uses the final convolutional layer of CNN but also utilizes different shallower
layers of the CNN to create effective class activation maps to obtain more fine-grain features and to locate
the target effectively. The attention plots or class activation maps of all three models, color model, edge
model, and the proposed color + edge + texture model, utilized in this work, can be seen in Figure 21.

Figure 20: Comparison of existing approaches and the novel proposed approach.

Figure 21: Attention plots with LayerCAM visualization for each feature model.
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7 Discussion

In this work, we introduced a novel automatic adaptive weighted fusion of features-based approach for
plant disease identification. The proof of the efficiency of the proposed approach can be seen in Tables 7
and 8. The key insights of the proposed approach are described as follows:
1. The experiments examined the proposed approach in every aspect, i.e., in terms of test accuracy, F1

score, precision, recall, and AUC score.
2. The developed approach provided the highest accuracy among all the existing feature-fusion-based

approaches, i.e., 99.230%
3. Out of the total 53,606 images, the proposed feature-fusion-based approach classified 53,193 images

correctly, and only 413 images were misclassified.
4. The proposed approach provided significant insight into the contribution of the features used, i.e., the

color features and the texture features contributed the highest in the classification of the images, even
contributed equally. On the other hand, edge features contributed negligibly to the process.

Apart from the several advantages, this approach also has some limitations. First, the images used for
the experiments were captured in an environment with no chance of illumination variation, which eased
the classification process. The system could not get the opportunity to face the challenge of tackling
illumination variations. Another limitation is that the leaf images of the dataset contain one type of disease
per leaf. In real-world scenarios, the problem of disease identification is much more complex because the
leaves may contain multiple diseases per leaf. In future, the system will be improvised to work for the leaf
images containing various illumination variations and with multiple disease symptoms.

8 Conclusion

Integrating the color, edge, and texture features, a novel 3-branch classifier for plant disease classification
has been proposed. The proposed classifier can classify between 38 classes of 14 different plants. A newly
introduced texture extraction method is used for extracting the prominent texture from the plant leaves, i.e.,
CDCN. The features are trained using ResNet-18 with an AWUM for automatically adjusting the weights in DNN
and analyzing each feature’s contribution to achieving the highest classification accuracy. The individual
features, as well as the combinational features, are analyzed by performing various types of experiments.
The highest accuracy is achieved with a 50% contribution of color features and 50% of texture features. The
proposed classifier outperformed the existing feature-fusion-based approaches for plant disease identification.
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