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Abstract: In recent years, there have been several calls by practitioners of machine learning to provide more
guidelines on how to use its methods and techniques. For example, the current literature on resampling
methods is confusing and sometimes contradictory; worse, there are sometimes no practical guidelines offered
at all. To address this shortcoming, a simulation study was conducted that evaluated ridge regression models
fitted on five real-world datasets. The study compared the performance of four resampling methods, namely,
Monte Carlo resampling, bootstrap, k-fold cross-validation, and repeated k-fold cross-validation. The goal was to
find the best-fitting λ (regularization) parameter that would minimize mean squared error, by using nine
variations of these resampling methods. For each of the nine resampling variations, 1,000 runs were performed
to see how often a good fit, average fit, and poor fit λ value would be chosen. The resampling method that chose
good fit values the greatest number of times was deemed the best method. Based on the results of the investiga-
tion, three general recommendations are made: (1) repeated k-fold cross-validation is the best method to select
as a general-purpose resampling method; (2) k = 10 folds is a good choice in k-fold cross-validation; (3) Monte
Carlo and bootstrap are underperformers, so they are not recommended as general-purpose resampling
methods. At the same time, no resampling method was found to be uniformly better than the others.
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1 Introduction

In machine learning, linear regression is one of the most widely used techniques for building a model that
predicts, or estimates, a quantitative outcome. Numerous textbooks and articles have been written on the subject.
At its core, linear regression involves fitting a linear model that minimizes the sum of squared error (SSE), and
then uses the linear model to make predictions on unseen data. Given a linear regression model of the form

= + + + …+ +Y β β X β X β X ϵ,p p0 1 1 2 2 (1)

where Y is the target or outcome variable, and X1, X2,…, Xp are the independent, or feature variables,
ordinary least squares (OLS) regression will find the β coefficients that minimize the SSE.
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where yi is the actual outcome and ŷi is the predicted outcome fitted by using the regression model for i = 1 to
n observations.
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However, linear regression can be prone to model overfitting. This can especially be problematic when
fitting a complex model having many parameters. Model overfitting means that a regression model does not
generalize well beyond the dataset on which it was trained, or as Provost and Fawcett [1, p. 113] define it, “a
tendency of data mining procedures to tailor models to the training data, at the expense of generalization to
previously unseen data points.” A visualization of model overfit involving linear regression is provided by
Figure 1. A set of x values (n = 50) is randomly generated from a normal distribution (μ = 50, σ = 10). The y
values are calculated from the quadratic function: y = x2 – 5x + ϵ, with the error term ϵ also randomly
generated from a normal distribution (μ = 0, σ = 10). The data are then fit with four different regression
models: (1) a straight line (underfit model), (2) a quadratic curve (correct fit), (3) a polynomial of degree 10
(overfit model), and (4) a polynomial of degree 15 (overfit model). Figure 1 shows how models (3) and (4)
overfit the data. Both models chase after noise in the data, and result in more erratic curves. When a
polynomial of degree 15 is fit to the data, the curve becomes extremely erratic. Even though R2 continues
to improve with higher order polynomials, the overfit models would not generalize well to unseen data.

One technique that can be used to deal with model overfitting is known as ridge regression. Hoerl and
Kennard [2], Marquardt [3], and others originally proposed the technique as a way for a regression model to
achieve better predictive accuracy in the presence of multicollinearity. The technique involves fitting a model of
all predictors, like in OLS regression, but the estimated coefficients are shrunken towards zero. To accomplish
this, ridge regression penalizes the β parameter estimates by adding a penalty term to the SSE in equation (2).
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where i is the observation from 1 to n and βj is the coefficient of the predictor variable from j = 1 to p.
The result is that ridge regression shrinks the β estimates toward 0 as λ becomes large. Conversely, the

β estimates of ridge regression are the same as the β estimates of OLS regression when λ = 0. The effect of

Figure 1: Four regression models are fitted on the same set of data. On the upper left panel, a line underfits the data (R2 =
0.269). On the upper right panel, a correct quadratic model is fitted (R2 = 0.938). On the bottom left, a polynomial of degree 10
is fitted (R2 = 0.945) and on the bottom right, a polynomial of degree 15 is fitted (R2 = 0.954). Even though the R2 continues to
improve, the higher degree polynomials are overfit. Source: Nakatsu [4].
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shrinking the coefficients (a process known as regularization) is that the regression model is less prone to
model overfitting. Selecting and fine-tuning the λ parameter can be accomplished by finding the ridge
regression model that minimizes prediction error – in regression modeling, mean squared error (MSE) is
commonly used. MSE is the average of the squared residuals or equation (2) divided by n.

A typical method is to randomly split a dataset into two sets, a training set and a validation set. A ridge
regression model is fit on the training set, and then validated on the validation set. The validation process
calculates the MSE over a range of λ values. The λ value that results in the lowest MSE on the validation set
is chosen as the best-fitting λ. Because the validation dataset is “held-out,” this method is sometimes
referred to as the holdout method.

Unfortunately, this holdout technique provides only a single estimate of a model’s validation error. The split
between training and validation sets could be a particularly biased choice – even if randomized – and could
either underestimate or overestimate MSE. This could especially pose a problem when dealing with smaller
datasets. A way to circumvent this problem is to use resampling, which means repeatedly drawing randomized
samples from a dataset and refitting the model on each sample [5]. By resampling, the average error rate of
multiple runs can provide a better estimate of error rate than a single-point estimate. This is the approach that is
investigated in this study. To that end, four of the most common resampling methods are compared: (1) Monte
Carlo resampling, (2) bootstrap, (3) k-fold cross-validation (k-fold CV), and (4) repeated k-fold CV.

Among resampling methods, the most straightforward is Monte Carlo resampling. This method is also
known as repeated learning-testing [6], repeated holdout [7], or random subsampling [8]. The method involves
randomly generating training/validation splits on the same dataset multiple times. In this study, a 75%/25%
(training/validation) split is used. Monte Carlo resampling can be implemented first by shuffling the dataset (i.e.,
randomizing the rows) and then designating the first 75% of the rows as the training set, and the remaining 25%
as the held-out validation set. For each repetition, a ridge regression model is fit on the training set and then
validated on the validation set. The average validation error rate is then calculated over the repetitions.

Bootstrap also randomly generates training and validation sets but, unlike Monte Carlo resampling, the
rows of the training set are randomly selected from the dataset with replacement [9]. Because sampling is
performed with replacement, a bootstrap sample will contain rows that are duplicated – on average 63.2% of the
rows are selected; by the same token, there will be some rows that are not chosen – on average the remaining
36.8% rows are not selected. The chosen rows are designated as the training set, while the unchosen rows
become the validation set. Like Monte Carlo resampling, bootstrap is intended to be run multiple times so that
the average validation error across the repetitions can be used to estimate error rates more accurately.

k-fold CV is a method that was introduced in 1974 [10–12] and over the years has become a popular
resampling method. Its popularity is evidenced in the many practitioner guides and textbooks, published
within the last 10 years, that advocate its use in model validation and selection [1,5,13–19]. The method
begins by randomly splitting a dataset into k partitions called folds (5 or 10 folds are most commonly used).
Subsequently, the technique iterates k times: for each iteration, one fold is set aside as the validation set,
and the remaining k−1 folds are used to train the model. The model thus built is validated on the validation
set. After iterating k times this way, an average of the k validation errors is calculated so that a more
accurate estimate of error rate can be obtained.

The most extreme case of k-fold CV is known as leave-one-out cross-validation (LOOCV). In this
approach, a single observation is held out as the validation set and the remaining observations are used as
the training set (i.e., the fold size is 1). The procedure is repeated n times, where n represents the number of
samples in the dataset. The average of the n validation errors is used as the estimate for the error rate.
Because LOOCV is run n times, it can become computationally prohibitive for larger datasets. In addition,
prior research indicates that LOOCV results in estimates that have high variance, leading to unreliable
estimates [20,21]. For these reasons, LOOCV is not further investigated in this study.

Another variation in cross-validation is known as repeated k-fold CV. Under this method, k-fold CV is
repeated multiple times and the average of the multiple repetitions is used to estimate the error rate. Given
n repetitions, there will be n × k validation errors; hence, the average validation error is calculated over the
n × k repetitions. The most common way of running k-fold CV is only once; thus, the repeated method has
been suggested by others as a way of obtaining more accurate and reliable estimates of error rates [17].
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This research investigation seeks to understand the resampling methods in greater detail and offer
some specific guidelines on its usage. Indeed, in recent years, there have been several calls for more
practical guidelines and more transparency. In a recent paper, King et al. [22] wrote: “ML is now a key
technology in modern science. However, its techniques need to be better understood. We therefore call for a
dialogue betweenML and domain scientists in which MLmethods, such as cross-validation, can be explained
to domain scientists so that they can trust and benefit from them.” We could not agree more with this
statement. The current literature on resampling methods such as cross-validation is confusing, and some-
times contradictory; worse, there is sometimes no practical guidance at all. Here are some current issues.

Sometimes no guidance at all is offered in the most popular practitioner guides and textbooks. While
some books do an excellent job in explaining and illustrating the resampling methods themselves [5,15,16]
they offer little to no guidance on how to choose among the approaches. The practitioner is left to adopt a
trial-and-error approach when choosing among the methods.

Many of the practitioner guides and studies that look at resampling arrive at conflicting recommenda-
tions. For example, some recommend LOOCV in some cases, specifically when computationally feasible
[17,23,24], while others suggest that LOOCV should be avoided altogether [14,20]. The fold size k is also not
well understood, and the recommendations are conflicting. The most common recommendation for fold
size k is 5 or 10 [8], while others claim that other values can be used [25]. In one research study that
examined the selection of SVM hyperparameters, the recommendation was to use k = 2 [26].

Finally, in a review of the research literature, it appears that single-run k-fold CV is the most popular
validation method to use when tuning hyperparameters on a machine learning method. Most research
studies do not even consider repeated k-fold CV, even if it could potentially benefit its results [27–30]. On
the other hand, other studies have suggested that repeated k-fold CV could be beneficial [7,31], while one
study recommends against its use [32].

To address the confusion surrounding resampling methods, a simulation study will look at and eval-
uate these different resampling methods on five different datasets, all involving a regression task in which a
quantitative outcome is to be predicted from a set of features. A ridge regression model is fitted on each
dataset and the regularization parameter λ is tuned using resampling. Of particular importance is how well
the four resampling methods perform in selecting a good λ value. The following questions are investigated:
(1) Which of the four resampling methods is most effective in selecting a suitable regularization para-

meter λ?
(2) Does increasing the number of repetitions – from 10 to 50 – improve the performance of the resampling

method?
(3) Keeping the number of repetitions constant, which approach, single-run cross-validation or repeated

cross-validation, performs better?
(4) For k-fold CV, what is an appropriate fold size k?
(5) Which randomization approach is more effective, Monte Carlo (sampling without replacement) or

bootstrap (sampling with replacement)?

2 Related work

Over the last decades, several researchers have investigated and compared the performance of different
resampling methods. Many of the earlier studies, especially, involve experimental studies on artificial and
smaller datasets. Later studies look more systematically at variations in the four resampling methods and
take on more computationally intensive approaches.

Some of the earlier studies report positive results on bootstrap’s performance. Efron [21], for example,
reports on sampling experiments comparing LOOCV to bootstrap. He found that LOOCV gives nearly
unbiased estimates of error but often with high variance, particularly if the sample size is small. Moreover,
he found that bootstrap performed best in his experiments. However, he recommended bootstrap with
caution, pending further numerical and theoretical study. Delaney and Chatterjee [33, p. 261], likewise,
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advocate the use of bootstrap and note that its benefits include its less subjective nature, ease of imple-
mentation, and robustness: “The bootstrap choice of the ridge parameter can be justified because it is based
on repeated and independent estimates of multiple predictions and is, therefore, robust.” However, they
compare bootstrap only to the ridge trace method – a method that is not addressed as this study is focused
on comparisons among more general-purpose resampling methods.

Later research investigations extend the evaluation of resampling methods to k-fold CV and Monte
Carlo resampling. Using a simulation study, Burman [6] evaluates three methods: LOOCV (referred to as
ordinary cross-validation), k-fold CV, and Monte Carlo (referred to as repeated learning-test). His recom-
mendation is to use k-fold CV or Monte Carlo if the computational cost of LOOCV is large. Further, with
respect to fold size, he advocates the use of larger fold sizes because the bias and the variance of k-fold CV
estimate decreases as the value of k increases. Regarding Monte Carlo, he does not advocate its use over k-
fold CV because k-fold CV has smaller variance.

Breiman and Spector [20] look at submodel selection in regression – their task is about feature selection in a
regression model, which is a different task from regularization parameter tuning, but their study’s results are
illuminating, nonetheless. Their study involved an extensive simulation. They discovered that non-resampling
estimates such as Cp and adjusted R2 turn out to be highly biased methods for submodel selection. According to
their results, the two best resampling methods to use in submodel selection are k-fold CV and bootstrap. One of
their findings was that 5-fold and 10-fold CV is better at submodel selection and evaluation than LOOCV.

Kohavi [8] reports on a large-scale experiment using classification algorithms C4.5 (decision trees) and
Naïve Bayes on real-world datasets. He used resampling to estimate the effects of different parameters on
these classification algorithms. He compared k-fold CV to bootstrap. For k-fold CV, he varied the number of
folds and whether the folds are stratified or not (by stratification he means that the folds contain approxi-
mately the same proportion of outcome labels as the original dataset). For bootstrap, he varied the number
of samples. His main result was that 10-fold CV is better than bootstrap in model selection. In addition, his
results show that stratification is generally a better scheme, both in terms of bias and variance when
compared to regular (non-stratified) k-fold CV. (In this study, stratified k-fold sampling is always used,
because it has become standard practice in machine learning model validation.)

More recent studies have looked at more computationally intensive methods of cross-validation,
including repeated k-fold CV, and compared it to more traditional approaches. Molinaro et al. [31] studied
classification problems using the algorithms linear discriminant analysis, diagonal discriminant classifiers,
nearest neighbors (NN), and CART. Their study used microarray datasets (in genomic studies) in which
there are thousands of features (i.e., gene measurements) collected on relatively few samples (i.e.,
patients). The goal of their analysis was to find differences among resampling methods in the estimation
of generalization error. They examined the effect of repeated k-fold CV using 2, 5, and 10 folds. Each was
repeated 10 and 30 times. One of their findings was that repeated k-fold CV is beneficial: when increasing
repetitions from 1 to 10, they found significant improvement in classifier performance; however, there was
minimal improvement when reps were increased from 10 to 30. A second finding was that Monte Carlo did
not decrease bias to warrant its use over k-fold CV. A third finding was that as the sample size grows, the
differences in performance among the resampling methods decrease.

Nakatsu [34] also performed an evaluation of resampling methods on four classification algorithms:
support vector machines (SVM), random forests, k-NN, and decision trees. Variations in resampling
methods were used to tune parameters on the classifiers. Nakatsu found significant differences in perfor-
mance among the resampling methods. No one resampling method was found to be always better than the
others, but repeated k-fold CV was, overall, the best performer across all four classification algorithms.

The current study continues in the tradition of these prior research investigations. Most of the prior studies
involve classification tasks, but none report on fine-tuning the regularization parameter in a regression model.
Because of the popularity of ridge regressionwith themachine learning community, this study explores whether
prior research results would hold in the ridge regression context. Second, this study investigates any unique
characteristics of ridge regression modeling in which the general results might not hold.

Finally, this research only considers standard resampling methods – i.e., Monte Carlo, bootstrap, and k-
fold CV. It does not investigate how to modify these resampling approaches themselves to obtain better
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ridge regression parameter estimates. Algamal [35] proposes a modified version of the cross-validation
approach, one which repeats the fold assignment and then determines a “quantile value” that is considered
as the final optimal value. In a second study [36], Algamal proposes a “kidney-inspired algorithm,”which is
a population-based algorithm inspired by the kidney process in the human body. Modifying the resampling
methods, themselves, is not considered in this research study.

3 Methods and materials

The simulation study looked at five datasets of varying sizes, drawn from different application domains. All
the following datasets are available online:
• Baseball [5]. Major League baseball data from 1986 to 1987 seasons. Target variable: salary
• Boston [37]. Housing values in the suburbs of Boston. Target variable: median home value
• Concrete [38]. Concrete mixtures and their compressive strengths. Target variable: compressive strength.
• Parkinson’s [39]. Biomedical voice measurements from 42 people with early-stage Parkinson’s disease.
Target variable: Total-Unified Parkinson’s Disease Rating Scale (UPDRS).

• Superconductor [40]. Superconductors, and their properties. Target variable: critical temperature.

A ridge regression model was fit, separately, on each of the five datasets. Each modeling task involved
the prediction of a numeric outcome from a feature set. The datasets range in size from n = 263 to 21,263
rows and from p = 9 to 81 features. They also vary in terms of subject matter, including a dataset from
business (Baseball), socioeconomics (Boston), medicine (Parkinson’s), materials science (Concrete), and
physical science (Superconductor). The intent was to develop generalized findings across a range of data-
sets in terms of size and problem-solving domain. Furthermore, the goal was to demonstrate these findings
on real-world datasets, not simulated data.

3.1 Determining good fit, average fit, and poor fit λ values

To determine how well the four resampling methods performed, ridge regression was run multiple times to
determine good fit, average fit, and poor fit values of λ on each of the five datasets. First, 10-fold CV was
performed 50–100 times on each of the 5 datasets to obtain a rough sense of where the optimal value of λ lay,
based on MSE. Then, a determination was made as to what an appropriate range of λ values would be to look at
further. For example, on the Boston dataset, it was determined that the optimal λ value would be low, so λ values
ranging from 0.01 to 1.0 (in 0.01 increments)were tested. For the Baseball dataset, a different set of λ values was
used – from 0.2 to 20.0 (in 0.2 increments). To fine-tune the MSE associated with each of the λ values, 10-fold CV
was repeated multiple times until we could discern what the good fit, average fit, and poor fit values were.
Figure 2 shows the resulting data plots when 10-fold CVwas repeated. Figure 2(a) shows the average MSE on the
Boston dataset after 500 reps of 10-fold CV were run. You can see that there is still noise in the data after 500
reps. When the number of reps was increased to 10,000, we were confident where the best-fit values lay, as the
MSE data converges to follow a curved line more closely, Figure 2(b).

Once an MSE curve was found, the following criteria were used to determine the fit type: (1) the top 20%
λ values (i.e., associated with the lowest MSE values) were designated as a good fit; (2) the middle 60% λ
values were designated average fit; and (3) the bottom 20% λ values (i.e., associated with the highest MSE
values) were designated as poor fit. The good fit and poor fit intervals are indicated in Figure 2(b); all
remaining λ values are designated average fit.

The same procedure and criteria were applied to the other four datasets to determine good fit, average fit,
and poor fit λ values. For example, Figure 2(c) shows the MSE curve for the Baseball dataset when 75,000 reps
of 10-fold CV were performed, as well as the designation of good fit and poor fit values on the graph. Good fit
values lay between λ = 4.6 and λ = 8.4; poor fit values lay between λ = 0.2 and λ = 2.0 as well as between λ =
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18.2 and λ = 20.0; all other values were designated average fit. Finally, Figure 2(d) shows the MSE curve for the
Parkinson’s dataset, where, again, good fit and poor fit intervals are indicated. Note that the Parkinson’s
dataset required only 2,000 reps to converge – this can be seen from the smooth curve in Figure 2(d) –
whereas the Boston and Baseball datasets required significantly more reps, 50,000 and 75,000, respectively.

It is important to underscore that even though repeated 10-fold CV was used to determine the good fit,
average fit, and poor fit λ values, the same solution could be arrived at using multiple iterations of either
Monte Carlo or bootstrap. This issue is addressed in Appendix A, which illustrates how Monte Carlo
resampling would arrive at the exact same solution as that found by repeated k-fold CV. The reason
repeated 10-fold CV was used instead is that it arrived at the final solution much more efficiently than
either Monte Carlo or bootstrap could.

3.2 Evaluating the four resampling methods

Once fit types (good, average, and poor) were established and determined, we were ready to begin evalua-
tion of the resampling methods. Nine variations of the four resampling methods were evaluated, by varying
either the number of reps (Monte Carlo and bootstrap), the number of folds (k-fold CV), or both the number
of folds and reps (repeated k-fold CV):
• Monte Carlo: (1) 10 reps; (2) 50 reps
• bootstrap: (3) 10 reps; (4) 50 reps
• k-fold CV: (5) 10 folds; (6) 50 folds
• repeated k-fold CV: (7) 5-fold CV, 2 reps; (8) 10-fold CV, 5 reps; (9) 5-fold CV, 10 reps

For repeated k-fold CV, we looked at one 10-iteration approach (5-fold CV, 2 reps) and two 50-iteration
approaches (10-fold CV, 5 reps and 5-fold CV, 10 reps). We sought to make comparisons, separately, among
the 10-iteration approaches and among the 50-iteration approaches. Comparing a 50-iteration approach to

Figure 2: Average MSE over a range of lambda (λ) values. The four plots show average MSE for a range of λ values. Average MSE is
calculated over multiple reps of 10-fold CV. Plot (a) shows average MSE for 500 reps on the Boston dataset. Plot (b) shows average
MSE for 10,000 reps on the Boston dataset. With more reps, the data in Plot (b) has less noise and approaches a curved line. Plot (c)
shows average MSE for 75,000 reps on the Baseball dataset. Plot (d) shows average MSE for 2,000 reps on the Parkinson’s dataset.
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a 10-iteration approach would be like comparing apples to oranges (a higher iteration approach was likely
to do better simply because more repetitions mean more accurate estimates of MSE) and we wanted to
control for this separately.

For each of the nine resampling variations, 1,000 runs were performed to see how often a good fit,
average fit, and poor fit λ value would be chosen. For both Monte Carlo and bootstrap, either 10 or 50 random
samples were drawn. For example, for the Monte Carlo 10 reps approach, a randomized training/validation
split (75%/25% split) was generated 10 times and the average MSE was calculated over the 10 runs. This was
done for each λ value over a designated range of values. The λ value that resulted in the lowest average MSE
was selected – i.e., the chosen λ. We counted howmany times the chosen λwas a good fit, average fit, or poor
fit over 1,000 runs. See Algorithm 1 below for the steps involved in Monte Carlo and bootstrap.

A similar approach is used when evaluating k-fold CV and repeated k-fold CV. For example, for 5-fold
CV 10 reps, the dataset was randomly split into 5 folds and the MSE was calculated 5 times. This was then
repeated 10 times, resulting in 5 × 10 or 50 MSE calculations. The average MSE was calculated over the 50
runs. This was repeated for each of the λ values. The λ value that resulted in the lowest average MSE was
selected as the chosen λ. Again, we counted howmany times the chosen λwas a good fit, average fit, or poor
fit over 1,000 runs. The steps for k-fold CV, and repeated k-fold CV are given in Algorithm 2 below.

ALGORITHM 1: Monte Carlo and Bootstrap
1. Repeat for λ from 0.01 to 1.0, in 0.01 increments1:

A. Repeat n times:
a) Randomly divide2 the whole dataset into a training set and a validation set.
b) Build a ridge regression model on the training set using the λ value.
c) Validate the model on the validation set by calculating the MSE.

B. Calculate the average MSE for each MSE calculated in
Step 1.A.c over the n repetitions. This value represents the average MSE for the λ value.

2. Select the λ value that has the lowest average MSE calculated in Step 1B. Refer to this value as the
chosen λ.
Footnotes:
1 The λ values are different, depending on the dataset. Here the λ values for the Boston dataset are used.
2 The way the randomization takes place in Step 1.A.a is either Monte Carlo (75%/25% training/test split) or
bootstrap (sampling with replacement). For bootstrap, the validation set comprises the unselected rows.

ALGORITHM 2: k-Fold CV and Repeated k-Fold CV
1. Repeat for λ from 0.01 to 1.0, in 0.01 increments1:

A. Repeat n times2:
a) Randomly generate k folds from the entire dataset.
b) Repeat for folds 1 through k:

i) The current fold selected is the validation set; all other k–1 folds are the training set.
ii) Build a ridge regression model on the training set using the λ value.
iii) Validate the model on the validation set by calculating the MSE.

B. Calculate the average MSE for each MSE calculated in
Step 1.A.b.iii, over the k runs of k-fold CV and repeated n times. There will be a total of n*k validation errors.
This value represents the average MSE for the λ value.

3. Select the λ value that has the lowest average MSE calculated in Step 1.B. Refer to this value as the
chosen λ.
Footnotes:
1 The λ values are different, depending on the dataset. Here the λ values for the Boston dataset are used.
2 n is 1 for single-run k-fold CV, but otherwise indicates the number of reps for repeated k-fold CV.
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4 Results

The main results of the study are presented in Table 1. The table summarizes how well each of the nine
resampling approaches performed over the five datasets, in terms of how often a good fit, average fit, and
poor fit λ was chosen. The methods are grouped according to whether they are 10-iteration approaches or
50-iteration approaches so that baseline comparisons can be made within each of these groups.

A first glance through Table 1 reveals significant differences in performance among the resampling
approaches. For example, in looking at the Parkinson’s dataset (fourth row of Table 1), Monte Carlo and
bootstrap methods performed poorly – for the 10-iteration approaches, they selected a good fit λ value only
27.6 and 27.7% of the time, respectively, whereas the 10-fold CV and 5-fold CV 2 reps approaches performed
dramatically better, selecting a good fit λ value 82.3 and 79.6% of the time, respectively. Also, indicated in
the table is the single best performer (denoted by **) or tied best performer (denoted by *). This is indicated,
separately, for the 10-iteration approaches and the 50-iteration approaches. The difference between “single
best” and “tied best” is that a resampling approach is deemed single best if the Chi-square statistic between
the top performer and second-best performer is significant (p < 0.05), whereas a tied best performer means
the statistic is not significant. You can quickly observe in Table 1 that the best performers are consistently k-
fold CV and repeated k-fold CV for both 10-iteration and 50-iteration approaches; Monte Carlo and boot-
strap are never the best performers across all five datasets.

Table 1: Fit classification results for nine resampling approaches

10-iteration approaches 50-iteration approaches

(1)
Monte
Carlo
10 reps

(2)
Bootstrap
10 reps

(3)
10-fold
CV

(4)
5-fold
CV

2 reps

(5)
Monte
Carlo

50 reps

(6)
Bootstrap
50 reps

(7)
50-fold
CV

(8)
5-fold
CV

10 reps

(9)
10-fold
CV

5 reps

Baseball
n = 263
Good fit 208 172 300* 285* 205 174 237 330* 359*
Average fit 627 655 589 613 652 669 628 606 575
Poor fit 165 173 111 102 143 157 135 64 66
Boston
n = 506
Good fit 218 173 635** 589 270 232 513 682 750**
Average fit 619 632 365 411 634 673 480 318 250
Poor fit 163 195 0 0 96 95 7 0 0
Concrete
n = 1,030
Good fit 444 517 965* 954* 646 681 985 989 998**
Average fit 528 446 35 46 351 318 15 11 2
Poor fit 28 37 0 0 3 1 0 0 0
Parkinson’s
n = 5,875
Good fit 276 277 823* 796* 338 351 916* 911* 922*
Average fit 587 636 177 204 610 616 84 89 78
Poor fit 137 87 0 0 52 33 0 0 0
Superconductor
n = 21,263
Good fit 700 772 1,000* 1,000* 941 962 1,000 N/A N/A
Average fit 290 226 0 0 59 38 0
Poor fit 10 2 0 0 0 0 0

**Denotes single best performance, * denotes tied best performance.
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In this section, five specific questions regarding differences in performance in the resampling
approaches are explored in more detail:
(1) Did performance increase when reps (iterations) were increased from 10 to 50? (Section 4.1)
(2) What was the effect of different values of k in k-fold CV? (Section 4.2)
(3) Keeping the number of iterations constant, which method was superior, single-run CV or repeated CV?

(Section 4.3)
(4) Which method of randomization was superior, Monte Carlo or bootstrap? (Section 4.4)

To compare the performance of one resampling approach to another, Pearson’s Chi-square test
is calculated. This statistic compares the frequencies observed in certain categories to the frequencies
you might expect to get in those categories simply by chance. In this analysis, if the statistic is
significant (p < 0.05), then there is a significant association between the resampling method and its
performance (i.e., how often it chooses good fit, average fit, and poor fit). Refer Tables 2–5 in the
Sections 4.1–4.4 for the Chi-square test results.

Table 2: Chi-Square tests, comparing 10 reps to 50 reps

(1) (2) (3) (4) (5)
Monte Carlo, 10 reps
vs Monte Carlo,
50 reps

Bootstrap, 10 reps vs
bootstrap, 50 reps

10-fold CV vs
50-fold CV

10-fold CV vs 10-
fold CV, 5 reps

5-fold CV, 2 reps vs
5-fold CV, 10 reps

Baseball 2.1 0.9 ↓11.0** 16.9*** 17.4***
Boston 23.1*** 44.4*** ↓30.4*** 31.1*** 18.8***
Concrete 93.2*** 78.0*** 8.2** 30 0*** 22.1***
Parkinson’s 44.9*** 33.3*** 38.1*** 44.1*** 52.9***
Superconductor 198.3*** 156.5*** 0.0 N/A N/A

*p < 0.05, **p < 0.01, ***p < 0.001.

Table 3: Chi-Square tests, comparing 5 folds to 10 folds

5-fold CV, 2 reps vs 10-fold CV 5-fold CV, 10 reps vs 10-fold CV, 5 reps

Baseball 1.2 2.1
Boston 4.5* 11.0***
Concrete 1.6 5.0*
Parkinsons 2.4 0.8
Superconductor 0.0 N/A

*p < 0.05, **p < 0.01, ***p < 0.001.

Table 4: Chi-Square tests, comparing single-run CV to repeated CV

(1) (2)
50-fold CV vs 5-fold CV, 10 reps 50-fold CV vs 10-fold CV, 5 reps

Baseball 41.0*** 51.0***
Boston 59.4*** 120.7***
Concrete 0.6 10.0**
Parkinson’s 0.2 0.2
Superconductor N/A N/A

*p < 0.05, **p < 0.01, ***p < 0.001.
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Finally, the possibility that Monte Carlo and bootstrap require a large number of iterations to perform
well was explored. The main study, as presented in Table 1, limits the number of repetitions to a
maximum of 50. Section 4.5 addresses the following question:

(5) Which resampling method performed best when performing 1,000 repetitions?

4.1 Increasing reps from 10 to 50

Table 2 shows the Chi-square tests, comparing 10 rep approaches to 50 rep approaches. Looking at Monte
Carlo and bootstrap, in all cases except for the Baseball dataset, 50 reps significantly increased performance
(in Table 1 compare col 1 to col 5 for Monte Carlo; compare col 2 to col 6 for bootstrap). For the Baseball
dataset, performance was about the same between the 10- and 50-iteration approaches. When looking at
cross-validation resampling, the trend was also unmistakable: in all cases, the 50 rep approaches (5-fold CV
10 reps and 10-fold CV 5 reps) demonstrated significantly better performance (p < 0.001) than their 10 rep
counterparts (5-fold CV 2 reps and single-run 10-fold CV, respectively) – in Table 1 compare col 4 to col 8 for
5 fold; compare col 3 to col 9 for 10 fold.

There was one case where using 50 reps was unnecessary: on the Superconductor dataset, perfect
performance (100% selection of a good fit λ value) was achieved after using a 10-iteration approach, both
10-fold CV and 5-fold CV 2 reps (see fifth row of Table 1). Hence, we did not run 50-iteration repeated k-fold
CV because it would not have resulted in better performance.

For single-run k-fold CV, increasing the number of folds from 10 to 50 did not enhance performance,
and, in some cases, performance was significantly worse (this result is discussed in more detail in the next
section when considering the effect of k on k-fold CV). This is the one exception where increasing reps from
10 to 50 did not enhance performance.

4.2 Effect of k (number of folds) on k-fold CV

The effect of k can be seen by comparing col 3 to col 7 in Table 1. The Chi-square tests (see col 3 of Table 2)
show that increasing k from 10 to 50 folds resulted in worse performance for the Baseball and Boston
datasets (these results are indicated by ↓, which signifies that MSE performance moved in the opposite,
predicted direction). These results were significant for both the Baseball dataset (decreasing from 30.0%
good fit to 23.7% good fit) and the Boston dataset (decreasing from 63.5 to 51.3% good fit). On the other
hand, performance was significantly improved on the Concrete dataset (up from 96.5% good fit to 98.5%
good fit) and on the Parkinson’s dataset (up from 82.3% good fit to 91.6% good fit). These results suggest
that increasing the size of k can have mixed results. For larger datasets (in this case, datasets greater than
1,000 rows), performance was improved, but for smaller datasets increasing k beyond 10 folds resulted in
poorer performance.

Table 5: Chi-square tests, comparing Monte Carlo to bootstrap

(1) (2)
- Monte Carlo, 10 reps vs bootstrap, 10 reps Monte Carlo, 50 reps vs bootstrap, 50 reps

Baseball 4.2 3.4
Boston 8.2* (MC) 4.0
Concrete 13.7** (BS) 2.6
Parkinson’s 13.1** (BS) 4.5
Superconductor 16.8*** (BS) 106.1*** (BS)

*p < 0.05, **p < 0.01, ***p < 0.001.
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We also compared the performance differences between 5 folds and 10 folds, and the results are
displayed in Table 3. For 10-iteration resampling, 5-fold CV 2 reps is compared to 10-fold CV. In all cases,
10-fold CV performs better (see cols 3 and 4 of Table 1), although it is only significant in one case (Boston).
For 50-iteration resampling, 5-fold CV 10 reps is compared to 10-fold CV 5 reps. 10-fold CV 5 reps out-
performed 5-fold CV 10 reps in all cases (see cols 8 and 9 of Table 1), and these results were significant in
two. Hence, the overall recommendation is to use 10 folds rather than 5 folds because 10-fold CV does at
least as well and often better than 5-fold CV in all cases studied.

To get a better sense of how the size of k affected performance, we looked more extensively at the
Boston dataset, and ran the evaluation on resampling approaches (i.e., running k-fold CV 1,000 times) on a
range of k sizes from 10 to 100 folds. Figure 3 graphically displays these results. First, let us focus only on
the line labeled “Single-run k-fold.” You can see that performance is highest with a k size of 10 and 20, and
then it gradually declines for larger values of k. Again, this shows that k = 10 is a good choice, and that
increasing k beyond 10 for smaller datasets did not result in better performance (the difference in perfor-
mance between k = 10 and k = 20 is insignificant). On a related note, we do not believe that LOOCV is ever a
good choice for fine tuning a λ parameter in ridge regression. Much better results (with far less computa-
tional costs) can be achieved with fewer folds.

4.3 Single-run CV vs repeated CV

Table 4 shows the Chi-square tests that compare single-run CV to repeated CV (the fifth row of the table,
which shows the Superconductor results, can be ignored because 50-iteration repeated CV was not per-
formed). Specifically, two comparisons are made: (1) 50-fold CV (single-run) vs 5-fold CV, 10 reps (repeated)
and (2) 50-fold CV (single-run) vs 10-fold CV, 5 reps (repeated). For these comparisons, the analysis is
restricted to 50-iteration approaches. For the first comparison, repeated CV performed significantly better
on the smaller datasets (i.e., Baseball and Boston), but were statistically insignificant for the larger datasets
– see cols 7 and 8 in Table 1. For the second comparison, performance was better in all four cases,
significant in three out of the four, and especially pronounced for the smaller datasets – see cols 7 and 9
in Table 1. Again, it is not a coincidence that the smaller datasets, especially, showed more significant
improvement using repeated k-fold CV.

Figure 3: Comparing the performance of repeated 10-fold CV, single-run k-Fold CV, and Monte Carlo on the Boston dataset. The
top line (repeated 10 fold) shows how the number of reps increased performance (% good fit) from 2-reps to 10 reps of 10-fold
CV on the Boston dataset. The middle line (single-run k-fold) shows how performance decreases as fold size increases from k =
10 folds to k = 100 folds. The bottom line (Monte Carlo) shows how performance gradually increases with more reps of Monte
Carlo resampling, but in all cases, Monte Carlo is the lowest performing resampling method.
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To further elucidate the performance advantage of repeated k-fold CV, we looked more extensively,
again, at the Boston dataset. Let us return to Figure 3, and compare the performance of repeated k-fold to
single-run k-fold; compare the line labeled “Repeated 10 fold” to line labeled “Single-run k-fold. For the
first line, we looked at repetitions of 10-fold CV, repeated 2–10 times (i.e., 20–100 reps, in increments of 10).
You can see that there is a general increase in performance as you increase the number of reps. Likewise, we
looked at single-run CV, where k increases from 10–100 folds, in increments of 10. Here the opposite occurs:
the performance of single-run CV trends downwards. Furthermore, in all cases tested, single-run k-fold CV
is an inferior performer to repeated k-fold CV.

These results indicate, broadly, that repeated CV is a better performer than single-run CV. The general
recommendation is to use 10-fold CV 5 reps, which was the top performer. It appears that this resampling
approach will work well across a wide range of dataset sizes and types. For the 10-iteration approaches, on
the other hand, 5-fold CV 2 reps did not show any improvement over 10-fold CV – in fact, it declines in
performance (compare col 3 to col 4 in Table 1). Because there was no improvement in performance in 5-fold
CV 2 reps, we do not display the Chi-square results in Table 4. Hence, the recommendation is to use single-
run 10-fold CV if you want a lower (i.e., less computationally intensive) 10-iteration approach.

4.4 Monte Carlo vs bootstrap

Although Monte Carlo and bootstrap are the clear underperformers among the four resampling methods,
this study investigates whether there were differences in performance between the two resampling
methods. Comparing Monte Carlo to bootstrap is natural because they represent two different, but compar-
able, ways of randomization; sampling without replacement (in the case of Monte Carlo) vs sampling with
replacement (in the case of bootstrap).

Table 5 provides the Chi-square results of the comparison. See also cols 1 vs 2 and 5 vs 6 in Table 1 for
the actual results. For 10 reps, bootstrap excels in three cases, and Monte Carlo in one; the fifth case
(Baseball) is insignificant. For 50 reps, bootstrap excels in one case (Superconductor), but for the other
four cases, the differences are insignificant. Looking at these results, bootstrap has a slight edge over Monte
Carlo, but the results are close. Hence, no strong conclusions or recommendations can be made based on
this analysis.

4.5 Comparing the resampling methods with a high number of reps

To check that Monte Carlo and bootstrap methods were not disadvantaged by a low number of reps, we
conducted a second investigation in which 1,000 reps of Monte Carlo, bootstrap, and k-fold CV were run.
This time, three 1,000-iteration resampling approaches were compared: (1) 1,000 reps of Monte Carlo, (2)
1,000 reps of bootstrap, and (3) 10-fold CV using 100 reps. Like in the main study, we looked at how often
the resampling approach chose a good fit, average fit, or poor fit λ value; this was performed 100 times for
each of the three approaches. Table 6 also shows the results of the 1,000 iteration approaches. The 50-
iteration approaches are also included on this table, and calculated from Table 1, as percentages, for
comparison purposes (please note: because we ran the second study only 100 times¹, as opposed to
1,000 times like we did in the main study, percentages are presented in Table 6 in order to make direct
comparisons between the two studies).



1 Due to the high computational requirements of running 1,000 reps, the second study was performed only 100 times for each
resampling approach.
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Only the Baseball and Boston datasets are included in this additional analysis: 1,000 reps were not
performed on the other three datasets (i.e., Concrete, Parkinson’s, and Superconductor), because their
performance levels were approaching near-perfect when using just 50 iterations.

From Table 6, a key finding was that 10-fold CV, run 100 times, was far and away the best performer
among the three 1,000-iteration approaches: A chi-square test of independence showed that there was a
significant association between resampling method and performance on both the Baseball dataset, (χ2(4) =
55.02, p < 0.001) and the Boston dataset (χ2(2) = 69.87, p < 0.001²).

While there was some improvement in performance on the Boston dataset using the 1,000 reps for both
Monte Carlo and Bootstrap – e.g., Bootstrap 1,000 reps chose a good fit value 38% of the time vs 23% of the
time using 50 reps – the performance was far below that of 10-fold CV 100 reps, which chose a good fit value
94% of the time. In addition, both Monte Carlo and bootstrap did not even improve in performance on the
Boston dataset using 1,000 reps, the chi-square tests of independence comparing the 50 reps approach to
the 1,000 reps approach were not significant for either bootstrap or Monte Carlo. These results show that
Monte Carlo and Bootstrap were consistent underperformers, even when performing 1,000 reps.

5 Discussion

Based on the results of this study, three broad recommendations on resampling methods can be made when
choosing the right regularization parameter λ in ridge regression modeling (the underlined portion is the
broader recommendation).

Recommendation 1: For k-fold CV, the general recommendation is to use k = 10 folds; larger values of k
can be used on larger datasets. LOOCV is never recommended. For smaller datasets, performance deterio-
rated with larger numbers of folds (greater than 10). For larger datasets greater than 5,000 samples, 50 folds
performed better than 10 folds, but performance with 10 folds was respectable, and achieved at 20% the
computational cost. LOOCV (where k = n) is never recommended.

Recommendation 2: Repeated k-fold CV is the best overall performer among the four resampling
approaches. More specifically, we recommend 10-fold CV 5 reps as a general choice for ridge regression.

Table 6: Fit classification results, comparing 50-iteration approaches to 1,000 iteration approaches

50-iteration approaches 1,000-iteration approaches

(1) Monte Carlo
50 reps (%)

(2) Bootstrap
50 reps (%)

(3) 10-fold
CV 5
reps (%)

(4) Monte Carlo
1,000 reps (%)

(5) Bootstrap
1,000 reps (%)

(6) 10-fold CV
100 reps (%)

Baseball
n = 263
Good fit 21 17 36** 22 14 53**
Average fit 65 67 58 63 61 47
Poor fit 14 16 7 15 25 0
Boston
n = 506
Good fit 27 23 75** 56 38 94**
Average fit 63 67 25 44 62 6
Poor fit 10 10 0 0 0 0

**Denotes single best performance.



2 The chi-square statistic has only two degrees of freedom on the Boston dataset because the poor fit category was eliminated in
the calculation: all three of the 1,000-iteration methods chose only good fit and average fit – a poor fit λ value was never chosen.
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For larger datasets, the differences in performance are less pronounced between repeated k-fold CV and
single-run k-fold CV.

Recommendation 3: Monte Carlo and bootstrap are not recommended as general-purpose resampling
methods. These two resampling methods were consistent underperformers in Study 1, across all five
datasets studied. In addition, these two resampling methods did not perform better than repeated k-fold
CV even when using a large number of reps (i.e., 1,000 reps).

Recommendation 1, which recommends k = 10 folds, agrees with conclusions reached by Kohavi [8] and
other studies – the consensus in the literature is 5 or 10 folds. Furthermore, as has already been noted in the
article, LOOCV is not recommended by many researchers because it results in estimates with high variance,
leading to unreliable results. Flach [14] recommends that, as a rule of thumb, a fold should contain a
minimum of 30 instances. The recommendation against LOOCV, however, is not universal and unanimous
– for example, Kuhn and Johnson [17] do not write it off completely but state that LOOCV can be considered
if the number of samples is small. Our recommendation is more direct and straightforward: we never
recommend LOOCV, not only because it is computationally inefficient, but also because it provides inferior
results compared to repeated k-fold CV. A better way to achieve more accurate estimates of validation error
is not to increase the number of folds beyond 10, but to increase the number of repetitions in 10-fold CV.

Recommendations 2 and 3 are largely in line with recent empirical work by Molinaro et al. [31], and
Nakatsu [34]. Repeated k-fold CV has been recommended as a way of obtaining more accurate estimates of
validation error than single-run k-fold CV. However, these two studies focus exclusively on classification
algorithms, not regression modeling, and we are unaware that this result has been demonstrated elsewhere
on ridge regression modeling. Furthermore, even though some prior research has demonstrated the effec-
tiveness of repeated k-fold CV, most practitioner books and textbooks do not mention the method – one
exception is Kuhn and Johnson [17] who do recommend the method. However, we want to qualify Recom-
mendation 2 by noting that it was not always necessary to increase repetitions. For example, on the larger
Superconductor dataset (n = 21,263), it was unnecessary to conduct any repetitions of 10-fold CV at all. For
larger datasets, or datasets that quickly converge to a solution, single-run 10-fold CV should suffice.

For Recommendation 3, we have found that Monte Carlo and bootstrap consistently underperform in
ridge regression (although in other machine learning algorithms and contexts, including classification
algorithms, this may not be the case). Moreover, even though we recognize that Monte Carlo and bootstrap
may require a higher number of iterations to perform well, we did not find that they performed better than
repeated k-fold CV when using a high number of reps.

Would these results hold and generalize when used on different datasets? To confirm and verify the
results of this study, a second independent study was conducted. The results are reported and discussed in
a separate appendix, which are available upon request from the authors. In this study, the exact same
methodology was used, in which we evaluated nine variations of the four resampling methods. We can
report that all three recommendations were verified by the results of the second study. Hence, we are more
confident that the recommendations will generalize more broadly, even though we conducted Study 1 on
only five datasets.

A key feature of the study’s methodology is that it controls for the number of times a ridge regression
model was run, to provide baseline comparisons among (1) 10-iteration approaches and (2) 50-iteration
approaches. For example, when looking at the effect of fold size on resampling method performance, 10-
fold CV 5 reps is compared to 5-fold CV 10 reps (both 50-iteration approaches). Most prior studies simply
compare different fold sizes without controlling for overall repetitions (e.g., [31]). Likewise, when comparing
single-run CV to repeated CV, appropriate baseline comparisons are performed, for example, 10-fold CV vs 5-
fold 2 reps (both 10-iteration approaches) and 50-fold CV vs 10-fold 5 reps (both 50-iteration approaches). We
know of few studies that controlled for number of repetitions as systematically and consistently as we did. In
the end, we believe that this approach bolsters the final recommendations and conclusions of the study.
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Appendix A

Estimating the λ parameter using Monte Carlo resampling

The intent of this discussion is to show how Monte Carlo resampling reaches identical results to those
obtained by repeated k-fold CV, as discussed in Section 3.1 (determining good fit, average fit, and poor fit
values). Indeed, given enough repetitions, both the Monte Carlo and bootstrap resampling methods will
converge to the same solution, or the same fitting graph.

To illustrate, we estimated the λ value on the Parkinson’s dataset. The Parkinson’s dataset [39] contains
biomedical voice measurements from 42 people with early stage Parkinson’s disease (n = 5,875, p = 17 voice
measurements). The target variable is Total-UPDRS, which is the Unified Parkinson’s Disease Rating Scale,
and represents the progression of Parkinson’s disease in the patient. Ridge regression was used to fit models
on this dataset, using 100 λ values from 0.1 to 1.0. Figure A1 shows the results of average MSE plotted
against λ for varying reps of Monte Carlo resampling, 1,000 reps, 4,000 reps, 20,000 reps, and 40,000 reps.
You can see that with a larger number of reps, the scatterplot becomes less noisy, and approaches a more
discernible fitting graph, or straight-line curve.

When only 1,000 reps are used – Figure A1(a) – there is considerable noise in the data, and it is hard to
discern an exact fitting graph. By 4,000 and 20,000 reps – Figure A1(b and c) – a clearer picture of the
fitting graph emerges. By 40,000 reps – Figure A1(d) – there is only marginal improvement from 20,000
reps, suggesting that there are diminishing returns in running more reps. However, it is clear that the
scatterplots are converging to a straight-line curve with more reps.

Figure A2 shows a direct comparison between 2,000 reps of k-fold CV and 40,000 reps of Monte Carlo.
You can see that both scatterplots generate similar results. Although we did not run more reps of Monte

Figure A1: Average MSE over 100 lambda (λ) values from 0.01 to 1.0 on the Parkinson dataset using the Monte Carlo resampling
method. The four plots show average MSE, for increasing number of reps: (a) 1,000 reps, (b) 4,000 reps, (c) 20,000 reps, and
(d) 40,000 reps.
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Carlo, the two approaches – repeated k-fold CV and Monte Carlo – will eventually converge to the same
solution. As can be seen in this example, repeated k-fold CV is much more efficient in coming up with the
correct fitting graph with only 2,000 reps, whereas 40,000 reps of Monte Carlo resampling still result in a
noisy curve.

Although the results for bootstrap are not reported here, we obtained similar results using the bootstrap
resampling method on the Parkinson’s dataset. Hence, all three methods – repeated k-fold CV, Monte Carlo,
and bootstrap – arrive at the same solution, but at different rates.

Figure A2: A comparison of the results using (a) 2,000 reps of k-fold CV vs (b) 40,000 reps of Monte Carlo.
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