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Abstract: The efficiency of distribution networks is hugely affected by active and reactive power flows in
distribution electric power systems. Currently, distributed generators (DGs) of energy are extensively
applied to minimize power loss and improve voltage deviancies on power distribution systems. The best
position and volume of DGs produce better power outcomes. This work prepares a new hybrid SSA–GWO
metaheuristic optimization algorithm that combines the salp swarm algorithm (SSA) and the gray wolf
optimizer (GWO) algorithm. The SSA–GWO algorithm ensures generating the best size and site of one and
multi-DGs on the radial distribution network to decrease real power losses (RPL) (kW) on lines and resolve
voltage deviancies. Our novel algorithm is executed on IEEE 123-bus radial distribution test systems. The
results confirm the success of the suggested hybrid SSA–GWO algorithm compared with implementing the
SSA and GWO individually. Through the proposed SSA–GWO algorithm, the study decreases the RPL and
improves the voltage profile on distribution networks with multiple DGs units.

Keywords: distributed generators, radial distribution systems, real power losses, gray wolf optimizer,
metaheuristic optimization, salp swarm algorithm, IEEE standard case

1 Introduction

As power demand increases, utility companies face several challenges, including power losses and low
power, power factor, energy efficiency, continuity, short circuit scale, and stabilization. Moreover, around
13% of the produced energy in supply networks is lost in the form of power loss [1]. A greater current flows
in the supply network than in the power transmission lines, causing a greater power loss. The efficient
answer for power troubles performance is keeping low load point voltages. However, several solutions, for
example, growing the ability of supplied load points with low voltages, are unusable. Another issue is that
high-voltage lines of transportation on a radial network are restricted.
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The supply network can be improved by applying some optimization solutions. Moreover, using the
distributed generation (DGs) units is the most successful approach to the problem of distribution systems. A
DG is a tiny energy generator unity, and on account of its high performance, small size, depressed operating
costs, and protection are critical in improving the power sector [2]. DGs are typically associated with
sustainable energy sources, such as photovoltaic (PV) systems, solar systems, and wind turbines (WT).
DGs come in three varieties: active power (P) can be supplied by the first form, the next can provide reactive
energy (Q), and the last can provide both [3].

Many algorithms have been suggested for managing optimal placing and energy size problems in DG on
the radial supply or distribution network (RDN). The best and most popular algorithms for solving the
problem of optimization include Genetic algorithms (GA), Extreme Learning Machine (ELM), particle swarm
optimization (PSO), and multi-objective processes are the approaches applied among the suggested
methods [4–7]. In ref. [8], to discover the optimum location and scale of capacitors and multi-DGs in the
radial distribution network, the authors suggested hybridizing the artificial bee colony algorithm and GA.
The initial aim is to decrease the cost of the system by optimally positioning several capacitors and DGs to
minimize actual power losses (RPLs).

In the work of ref. [9], an autonomous group particle swarm optimization method was described. The
method is evaluated without and with network reconfiguration to improve RDN efficiency by using seven
case studies (except the base case) to overcome power loss reduction in RDN through the best size and site
of capacitors and DGs device. A standard IEEE 69-bus RDN is being tested for the suggested method. In the
work of ref. [10], the authors suggest a new collection of non-dominated fuzzy sortation and GA techniques
to decrease four-goal functions, namely, loss of power, deviation of voltage, cost, and emission, on a
standard 34-node test micro-grid.

An algorithm of the kind described in ref. [11] was proposed to mitigate losses and preserve appropriate
voltage profiles at the same time in a radial supply network. The aim is to optimal value and position DGs in
the system in suitable buses to minimize real power losses (RPL) and running costs and increase voltage
reliability. On IEEE 33-and 69-node delivery networks, the proposed algorithm is implemented and dis-
played. In the work of ref. [12], to resolve the problems of optimal positioning and sizing of SCs, and DGs,
the Newton–Raphson method with a simple PSO algorithm was proposed. In ref. [13], the authors suggested
an optimization sample to organize different distribution observers founded on a lately progressing heur-
istic search tool that is gray wolf optimization (GWO). Numerous case studies are being conducted on IEEE
69-and 33-node test systems modulated by PV panels, tap-changing transformers, and capacitors.

In the work of ref. [14], in order to solve the position trouble, a water cycle optimization algorithm
(WCA)was applied. In the work of ref. [15], to optimally assess the positions and volume of WT and PV DGs,
the authors suggested cuckoo search optimization. Increasing the accuracy and reliability of a system is a
major aim. The solution proposed is being examined on IEEE 69-node examination systems. In the work of
ref. [16], the authors used moth flame optimization (MFO) and two other optimization algorithms, PSO and
Imperialist Competitive, to solve the voltage deviation issue.

In the work of ref. [17], in order to specify the size of DGs, the authors suggested PSO and a population-
founded incremental education algorithm locate the best position of DGs. The major objectives are to
enhance nodular voltage profiles and reduce RPL and computation time. IEEE 69 and 33-bus radial supply
networks are considered for testing the suggested algorithms. In the work of ref. [18], a hybrid WOA-SSA
algorithmwas proposed based on the whale optimization algorithm (WOA) and salp swarm algorithm (SSA)
as a way to reduce total RPL (kW), address voltage variance, optimum size, and scale of the multi-DGs unit
in the radial supply network, reduce the total power kW, the energy cost, and increase the net savings. In
refs. [19–24], the authors propose the MFO approach through the selection of the best size and location for
capacitor banks in power radial supply systems.

In the work of ref. [25], an approach is presented for reducing system operating costs and active power
loss while at the same time maintaining an acceptable voltage profile. The SVC’s location was specified by
the voltage collapse proximity indication method (VCPI), and TCSC’s optimal location was specified by
applying the power flow analysis method. Testing has been conducted according to IEEE 30 and IEEE 57
standards. In the work of ref. [26], the authors proposed the use of two meta-heuristic algorithms, namely
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Harris Hawk–Particle Swarm Optimization (HHOPSO) and its hybrid version for solving voltage-con-
strained reactive power planning (VCRPP). This study aims to determine the optimal location of Var sources
using a VCPI and make use of the IEEE 57 bus test system for testing. Using fuzzy logic and crow search
algorithms (CSA), the authors proposed a novel method to determine capacitor placement positions [27].
This method is referred to as the oppositional CSA. In this study, the proposed method was applied to
standard IEEE 30 and IEEE 57 bus networks, and it was compared to several other methods of planning
variables that have been established. It was observed that the proposed method successfully reduced the
active power loss and costs associated with system operation.

This study aims to present a new SSA–GWO hybrid algorithm based on two different meta-heuristic
algorithms, GWO and SSA, respectively. The hybrid optimization SSA–GWO algorithm aims to reduce the
full power loss (kW) and solve the voltage variance by installing a multi DGs unit. This article uses three-
phase off-balance IEEE 123 bus simulation systems to test the proposed algorithm’s performance.

The rest of this article is arranged as follows. In Section 2, we present a mathematical formulation of the
problem. SSA–GWO optimization algorithms are described in Section 3. The results of the simulated
experiments are presented in Section 4. In Section 5, the conclusions, findings, and recommendations
for future research are provided.

2 Methods and materials

2.1 Distributed generators (DG)

DGs’ best placement and scale on the radial delivery network are necessary for reducing energy loss and
enhancing voltage profile. The SSA–GWO algorithm finds a better site and volume of DGs in all the buses
except the slack bus to lessen energy loss and improve the voltage. Figure 1 shows a typical DG network.

A one-line scheme of the two nodes of a delivery network is shown in Figure 2 [28]. In Figure 1, the two
branches (bus i) are the send end bus and the receiving end bus (bus i + 1)). Equation (1) and (2) will
calculate the active energy (Pi+1) and the reactive energy (Qi+1).

Figure 1: A typical DG network.
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The active loss of power (Ploss i,i + 1) and reactive loss of power (Qloss i,i + 1) in the midst of two nodes can be found
by equations (3) and (4). The full energy loss TPloss of the radial supply system can be computed by equation (5).
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The objective function is utilized to lessen the full RPL and enhance the voltage. It can be written as the
following:
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DGs’ best positioning and scale have some constraints such as bus voltage magnitude, DGs’ capacity
limits, and optimal DGs’ optimal location as represented in equations (7)–(9), respectively.

∣ ∣≤ ≤V0.95 1.05,j (7)

≤ ≤P P P ,imin max (8)

≤ ≤ B2 DG ,LLi max (9)

where P i
loss is the real loss of power (kW) in a branch i. Vj is the magnitude of voltage on bus j (p.u.). Pi is the

actual energy volume of the DG on the bus i. Pmin and Pmax are the min and max active power sizes of DGs,
respectively. DGLi is the site of the DG on bus i, and BLmax

has the greatest site on the bus.

2.2 SSA

Mirjalili et al. [29] presented the SSA as a recent nature-inspired optimization in 2017. SSA is designed to
build a population-based optimizer by simulating the swarm behavior observed in nature. Figure 3 shows a
basic SSA algorithm.

So far, to the best of our knowledge, no study has been conducted on the effectiveness of the original
SSA as an ELM trainer. The SSA algorithm shows a sufficient propensity for diversification and intensifica-
tion, making it suitable for developing ELM training tasks. It is also critical to note that the advantages of

Figure 2: A line radial feeder diagram with DG placement.
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the SSA approach cannot be obtained by utilizing traditional optimization techniques, such as GSA, PSO,
and GWO [30]. An SSA can be characterized by its capability, flexibility, simplicity, and ease of use in
parallel and serial modes. In addition, it only has one parameter, which decreases the adaptively to keep
diversification and intensification inclinations in balance.

2.3 Gray wolf optimizer (GWO)

Gray wolves in nature are socially and hierarchically structured, which the GWO algorithm emulates.
Within a wolf pack, there may be different types of members based on the level of dominance, such as
α, β, δ, and ω. In terms of dominance and leadership power, the most dominant wolf is α, and the level
decreases from α to ω [31]. Figure 4 shows the hierarchy of dominance among gray wolves in a pack.

Implementation of this mechanism consists of classifying a population of potential solutions for a given
optimization problem into four groups. A population of six solutions is being considered in this process.
However, the first three most suitable solutions are considered α, β, and δ. All the remaining solutions are
combined in the group of ω wolves.

3 Proposed SSA–GWO algorithm

An inhabitant based on the optimization approach suggested by Mirjalili et al. is the SSA [29]. By computing
it with the Salp chain looking for ideal nourishment sources, the attitude of the SSA is more convincing. The
eating source in the seeking space is called F and is the aim of this swarm. In the SSA, the wolfs are split into
either leaders or followers according to the roles of the individuals in the chain (i.e., Salps). With a chief, the
followers initiate and use the chain to guide them in their movements.

Figure 3: The basic SSA algorithm.
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Gray wolf optimization is an intelligent swarm mechanism sophisticated by Mirjalili et al. [31], which is
well known for its group hunting and the leadership hierarchy of wolf mimics. The gray wolf belongs to the
family Canidae and prefers to live in a pack. They have a rigid hierarchy of social dominance; a male or
female called Alpha is the king. A hybrid method to solve the issue of the best position and capability of DG
units in the radial supply network is proposed in this article. SSA–GWO is a crossbreeding of two optimiza-
tion algorithms, SSA and GWO, where algorithms operate concurrently. The flowchart in Figure 5 illustrates
the hybrid SSA–GWO algorithm.

Figure 4: A hierarchy of dominance among gray wolves within a pack [26].

Figure 5: Flowchart for the suggested hybrid SSA–GWO algorithm.
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4 Simulation and results

With the aid of a simulation system based on the IEEE 123-bus, a sample optimization procedure was
implemented to determine DG devices’ position and their volume (kW). The network maps of the nodes
circuit are shown in Figure 6.

Table 1 represents the constant power load applied in the IEEE 123-bus simulation trial systems [18]. In
this research, the DG part is used to take a unity power operator. Thence, only real power is added to the
IEEE simulation test device without reactive power in the various simulations. The length (km) of the IEEE
123-node simulation system is 12, inclusive of 126 lines, 123 buses, and the most prevalent elements found in
existing systems, such as voltage regulators and shunt capacitor banks. All details of this simulation
training, like bus data, line data, and load profile, have been listed in [32]. This simulation system has a
combined simulated power load (kVAr) and actual power load (kW) of 1,920 kVAr and 3,490 kW, respec-
tively. In equation (8), the Pmin and Pmax are DGs’ min, and max active power sizes equal 0 and 5,000 kW,
respectively.

Compared to the normal IEEE situation without a DG connection, the best results of SSA–GWO are
compared, and GWO and SSA algorithms are implemented individually. Table 2 displays that the perfor-
mance of the suggested multiple DG algorithm is higher than that of the SSA and GWO processes and the
IEEE situation without DG units. The best outcome seen in Table 2 is gained using the suggested algorithm.
A contrast of the real loss of power (kW) of the line, profile of voltage, and convergence of the IEEE 123-node
simulation network is shown in Figures 4–6, respectively, after the addition of five DG units to the sug-
gested SSA–GWO, GWO, and SSA algorithms.

Figure 6: IEEE 123-bus node map [18,32].
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The total actual energy casualties are diminished by 26.506% in an IEEE 123 bus simulation network.
Figure 7 shows the contrast of substantial loss of power on the IEEE 123-bus test network after implementing
SSA, GWO, and SSA–GWO algorithms with five DGs.

Figure 8 shows the number of actual losses of power on transmission lines with 5 DGs on the circuit
used for testing. This figure shows that the energy losses in the proposed algorithm are less than the energy

Table 1: Constant reactive and real loads on IEEE 123 node test device [18]

Bus no. Phases Active
load (kW)

Reactive
load (kVAr)

Load
type

Bus no. Phases Active
load (kW)

Reactive
load (kVAr)

Load
type

1 1 30 20 W 62 3 25 20 W
2 2 12 10 W 63 1 27 20 W
4 3 26 20 W 64 2 50 35 W
5 3 13 10 W 65 1 23 25 D
6 3 25 20 W 65 2 24 25 D
7 1 14 10 W 65 3 52 50 D
9 1 24 20 W 66 3 52 35 W
10 1 13 10 W 68 1 12 10 W
11 1 26 20 W 69 1 25 20 W
12 2 14 10 W 70 1 13 10 W
16 3 26 20 W 71 1 26 20 W
17 3 12 10 W 73 3 27 20 W
19 1 26 20 W 74 3 28 20 W
20 1 26 20 W 75 3 28 20 W
22 2 25 20 W 76 1 62 80 D
24 3 26 20 W 76 2 46 50 D
28 1 28 20 W 76 3 45 50 D
29 1 28 20 W 77 2 26 20 W
30 3 24 20 W 79 1 27 20 W
31 3 13 10 W 80 2 30 20 W
32 3 14 10 W 82 1 29 20 W
33 1 26 20 W 83 3 12 10 W
34 3 25 20 W 84 3 13 10 W
35 1 28 20 D 85 3 25 20 W
37 1 28 20 W 86 2 13 10 W
38 2 12 10 W 87 2 27 20 W
39 2 13 10 W 88 1 29 20 W
41 3 12 10 W 90 2 29 20 W
42 1 13 10 W 92 3 24 20 W
43 2 25 20 W 94 1 26 20 W
45 1 15 10 W 95 2 14 10 W
46 1 14 10 W 96 2 13 10 W
47 1,2,3 64 75 W 98 1 26 20 W
48 1,2,3 137 150 W 99 2 30 20 W
49 1 23 25 W 100 3 28 20 W
49 2 45 50 W 102 3 12 10 W
49 3 23 20 W 103 3 27 20 W
50 3 29 20 W 104 3 26 20 W
51 1 15 10 W 106 2 25 20 W
52 1 25 20 W 107 2 25 20 W
53 1 26 20 W 109 1 29 20 W
55 1 13 10 W 111 1 15 10 W
56 2 13 10 W 112 1 11 10 W
58 2 13 10 W 113 1 25 20 W
59 2 15 10 W 114 1 13 10 W
60 1 14 10 W
Total 3,490 1,920
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Table 2: Performance of SSA–GWO compared with IEEE standard case, SSA, and GWO algorithms on IEEE 123-node with DGs

DG no. Particulars 123-bus without DG Algorithms

SSA GWO SSA–GWO

1 Optimal location — 67 67 67
Total power losses (kW) 95.434 70.246 70.984 70.162
Optimal DG size (kW) — 2017.729 2021.233 1978.521
% Power losses reduction — 26.416% 25.620% 26.481%
Minimum voltage (p.u.), bus 0.98401 (65) 0.97824 (65) 0.97173 (65) 0.97858 (65)
Mean voltage (p.u.) 1.0207 1.0173 1.0186 1.0152
Maximum voltage (p.u.), bus 1.0481 (83) 1.0477 (83) 1.0477 (83) 1.0403 (83)

3 % Power losses reduction — 25.626% 25.922% 26.206%
Optimal location — 149 56 97 90 28 160 151 67 56
Total power losses (kW) 95.434 70.978 70.696 70.425
Minimum voltage (p.u.), bus 0.98401 (65) 0.98948 (65) 0.98791 (65) 0.97858 (65)
Maximum voltage (p.u.), bus 1.0481 (83) 1.0476 (83) 1.0463 (83) 1.0403 (83)
Mean voltage (p.u.) 1.0207 1.0209 1.0209 1.0152
Optimal DG size (kW) — 755.84 4890.122 1345.624

1558.834 3822.095 2642.309
1667 1826.522 1994.325

5 Mean voltage (p.u.) 1.0207 1.0171 1.0158 1.0117
Minimum voltage (p.u.), bus 0.98401 (65) 0.98545 (65) 0.97585 (65) 0.97991 65
% Power losses reduction — 25.678% 26% 26.506%
Total power losses (kW) 95.434 70.928 70.621 70.138
Maximum voltage (p.u.), bus 1.0481 (83) 1.0468 (83) 1.0454 (83) 1.0412 83
Optimal location — 81 26 56 66 48 81 48 149 23 67 7898612967
Optimal DG size (kW) — 46.577 1486.329 1550.443

570.353 2005.140 3560.75
4572.243 2088.604 1532.325
217.167 1325.345 4062.252
2010.437 1275.563 1889.452

Figure 7: The contrast of actual loss of power on the IEEE 123-bus test network with SSA, GWO, and SSA–GWO and five DGs.
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losses in other algorithms (SSA and GWO). Figure 5 shows the amount of voltage profile on the bus in the
circuit used for testing with 5 DGs, as we note that the voltage stability is better in the proposed algorithm
than in the rest of the algorithms.

Figure 9 compares the convergence after implementing SSA, GWO, and SSA–GWO algorithms on the
IEEE 123-bus simulation system with five DGs.

Figure 9 shows the results from all the simulated algorithms in this study after running 100 iterations.
This study found that the best results were achieved within the first 10 iterations for all simulations. This
study takes into consideration DG units with a power factor. The IEEE test system runs various simulations
without reactive power (kVAr) and only active power (kW).

5 Conclusion

Different studies show that using distributed generation (DGs) units is the most successful approach to the
problem of distribution systems. The DG power supply network can be improved by applying some opti-
mization solutions. In this work, a novel SSA–GWO is suggested to solve multiple DGs’ best placement and

Figure 8: The voltage profile with SSA, GWO, and SSA–GWO on the IEEE 123-bus simulation system with five DGs.

Figure 9: The convergence with SSA, GWO, and SSA–GWO and five DGs on the IEEE 123-bus simulation system.
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capacity in the power radial distribution network. The proposed algorithm hybridizes two metaheuristic
optimizations, the SSA and GWO algorithm. Subsequently, SSA–GWO is applied as a hybrid optimization
algorithm to reduce total actual loss of power (kW) and solve voltage deviation by installation simulta-
neously in three-phase off-balance multi-DGs units from the IEEE 123-node simulation network. Hybrid
(SSA–GWO) succeeds in searching for a better position and volume of DGs units than SSA and GWO
implemented individually. Missing data or errors limitation should be considered when optimization per-
forms with the proposed method. The case study acquired better outcomes after five DGs were applied to the
IEEE 123-bus simulation system. In the simulation setting, the population is set to 30, and the number of
iterations in the IEEE 123-node is set to 100. This study found that the best results were achieved within the
first 10 iterations for all simulations. As a future study, we consider investigating new combinations of
algorithms to solve multiple DGs’ best placement and capacity in power radial distribution networks.
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