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Abstract: A good AI algorithm can make accurate predictions and provide reasonable explanations for the
field in which it is applied. However, the application of deep models makes the black box problem, i.e., the
lack of interpretability of a model, more prominent. In particular, when there are multiple features in an
application domain and complex interactions between these features, it is difficult for a deep model to
intuitively explain its prediction results. Moreover, in practical applications, multiorder feature interactions
are ubiquitous. To break the interpretation limitations of deep models, we argue that a multiorder linearly
separable deep model can be divided into different orders to explain its prediction results. Inspired by the
interpretability advantage of tree models, we design a feature representation mechanism that can consis-
tently represent the features of both trees and deep models. Based on the consistent representation, we
propose a multiorder feature-tracking strategy to provide a prediction-oriented multiorder explanation for a
linearly separable deep model. In experiments, we have empirically verified the effectiveness of our
approach in two binary classification application scenarios: education and marketing. Experimental results
show that our model can intuitively represent complex relationships between features through diversified
multiorder explanations.

Keywords:model interpretability, multiorder feature interaction, deep model explanation, feature-tracking
strategy, multiorder explanation
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1 Introduction

Currently, in the era where more data are easily accessible, the exploration and prediction of many fields
can be completed by computers, thereby reducing the burden on human beings. In this process, machine
learning (ML) algorithms try to predict results or provide decisions by learning from large amounts of
information [1,2]. However, unlike humans, most ML algorithms cannot explain the reason for predictions
or decisions, which is often mentioned as a black box problem [3] in the ML field. The black box problem
refers to a model’s lack of interpretability [4], meaning that we cannot understand the model’s internal
mechanisms by only observing its parameters [5]. To address the lack of interpretability, [3,6] propose
delving into a black box model in three ways: model explanation, outcome explanation, and model inspec-
tion. Different approaches can start from features, also known as feature attribution or a feature-based
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explanation [7]. For example, the Shapley additive explanation (SHAP) approach [8] is a well-known
additive feature attribution method that can intuitively quantify the importance of features. Moreover,
applying the SHAP approach to tree-based models can further explain the contributions of feature inter-
actions [9,10], which are attributed to the naturally interpretable characteristics of tree-based models,
especially methods such as decision trees [3,11].

In particular, gradient-boosting decision trees (GBDTs) [12] are not only effective in automatic feature
selection and model prediction [13] but also prove to have reliable interpretability in many application
fields [14,15]. In a GBDT approach, important features can be found through a prediction optimization
process based on gradient boosting [16,17]. Based on this, researchers found that there exists a smallest
subset of features, which is sufficient to explain the prediction results [18,19]. In traditional ML models,
GBDTs are utilized to simulate the behavior of the original approach to achieve model explanations or
directly employ the path in the tree to intuitively present feature relations [18].

With the development of deep learning, however, it becomes more difficult for GBDTs to simulate model
behavior. For instance, some deep models add a multilayer perceptron [20] or an attention mechanism [21]
to the original factorization model [22] except for feature interactions, making the calculation of feature
importance (FI)more complicated [23,24]. Therefore, some researchers try to make use of the tree structure
to extract rules and interpret the deep neural network (DNN) [25] or to replace the last layer of the neural
network with a decision tree to achieve interpretability [26]. Compared with changing the structure of
DNNs, other scholars adopt a loosely coupled mode when using GBDTs. This method is named tree-
enhanced embedding model (TEM), and it uses trees to select cross-features as the input of a neural
network [27]. Initializing the DNN with a tree can ensure feature tracking from input to prediction and
explanation [28].

However, trees and DNNs have different feature representations. Trees are generally accustomed to
using feature values to represent features, while deep models are usually trained with feature embedding
vectors [29,30]. Specifically, a GBDT selects those features that it considers to be beneficial for prediction
based on the original feature values; but embedding vectors provide richer feature semantics from a higher
dimension [31,32]. Nevertheless, the selected features are no longer represented by their original values
after being sent to a deep model, resulting in: (1) the tree model and the deep model are inconsistent in terms
of feature representation. On the other hand, (2) the inconsistency of feature representations makes feature
interactions more difficult to understand. The existing tree-based approaches [9,10] that explain feature
interactions by their values cannot be directly applied to explain the interactions between two vectors,
meaning that the interpretability of trees cannot be taken advantage of. Furthermore, when more than two
feature vectors interact in a deep model and (3) the deep model has higher-order interactions, traditional
tree-based explainable approaches are no longer applicable.

Themain challenge in addressing the above limitations is finding a way to track features from a tree to a
deep model without harming the interpretability of the tree or the performance of the deep model. This
requires us to make the tree-based explanation consistent with the prediction of the deep model without
modifying their model structures. As a result, we need to design an effective feature-tracking strategy that
ensures that the model prediction and the interpretation mechanisms are relatively independent. Inspired
by the research of natural language processing, we believe that the memory mechanism [33,34] is an
effective way to provide independent storage for features. Such an independent feature storage method
can provide consistent representations for features, but the memory mechanism is powerless for high-order
feature interactions.

In this work, we adopt the explanation in the literature [35] to term the high-order feature interaction as
interaction modeling that combines more than or equal to two features. This is common in deep models
such as neural factorization machines (NFM) [20] and neural tensor networks [31,32]. For example, in NFM,
the bi-interaction layer acts as a high-order feature interaction of order 2, the second-order feature inter-
action. Furthermore, NFM is amultiordermodel because it has a second-order component of bi-interaction,
and includes a first-order linear part.

There are two difficulties in utilizing memory-based feature representations to track multiorder inter-
actions: the multiple orders of some models are not linearly separable and the modeling of each order is
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mostly different for a certain model. Fortunately, existing studies have shown that Taylor expansions are
applicable to most DNNs [36,37], that is, most DNNs can be approximately expanded into several linearly
addable parts with different orders. Furthermore, Taylor expansions can be applied to explain different
orders of network layers. Motivated by an extension of Taylor’s theorem in neural networks, we speculate
that the different order parts of a deep model can be leveraged to explain its prediction outcomes separately
if that deep model is linearly separable or approximately linearly separable. Under this assumption, as long
as the methods of feature combination are different, explanations of different orders can be achieved by
consistent features, thus solving the second problem. Therefore, we propose a GBDT-based interpretable
strategy for deep models named multiorder feature-tracking explanation (MFTE), which employs consistent
memory representations to track features from GBDTs to a multiorder deep model and produce prediction-
oriented explanations. The detailed contributions of our work are summarized as follows:
– Novelty: Different from existing methods that explain features directly, we design a novel memory

representation to make feature consistent for the explanation.
– Diversity: We contribute a diverse and clear way of explaining prediction results according to different

feature orders by a multiorder constraint strategy.
– Usability: We have experimentally verified the usability of MFTE and the intuitiveness of its explana-

tions in two application domains: education and marketing.
– Efficiency: Experimental results show that the deep model equipped with MFTE can show multiorder

explanations while maintaining performance advantages.

The remaining contents of the article are organized as follows. In Section 2, we discuss some research
work related to the proposed approach. Then, the framework and details of our strategy are introduced in
Section 3 and instantiated in Section 4, respectively. In Section 5, we did a wealth of experiments in the
fields of education and marketing to verify the interpretability of MFTE; subsequently, the experimental
results are discussed and summarized. Finally, we make conclusions of our work and further provide a
future perspective in Section 6.

2 Related work

In this section, we first introduce feature attribution approaches for solving black box problems. Then, we
study tree-based explanation methods in ML, and finally, we discuss existing explainable approaches
based on both trees and deep models.

2.1 Feature attribution for black box problems

In ML, the black box problem does not have a standardized definition. However, scholars generally believe
that the black box problem is caused by a model’s lack of interpretability [3,4]. Molnar [5] argues that
interpretability is the degree to which a human can understand the cause of a decision or a prediction.
Lipton and Guidotti et al. [3,6] proposed achieving interpretability by using different explanation methods,
such as model explanation, outcome explanation, and model inspection. The feature-based explanation [7]
can be considered a model-oriented explanation or an outcome-/prediction-oriented explanation, which is
formally terminized as a feature attribution because it directly captures the importance of the features
[38,39]. In addition to eliminating redundant features in the data preprocessing stage, feature selection
methods analyze the impact of features on the results and mine behavior information. For example, Kim
et al. [40] proposed a model-based feature selection method to explain the importance of features in
malware classification. The typical feature attribution method is the SHAP approach [8], which implements
a feature-based explanation through the additive nature of FI. SHAP can calculate the local contribution of
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features. Moreover, its combination with trees can reduce computational complexity [41]. A tree-based
SHAP can further calculate the importance of feature interactions [11], because the interpretable nature of
the tree structure allows decision trees to automatically mine the relationships between features [9,10].
Therefore, maximizing the interpretable advantages of decision trees and allocating values for features is a
valuable research problem in the field of interpretable ML.

2.2 Tree-based explanation

Among various decision trees, GBDTs [12] have been widely used because of their automatic feature select
ability and excellent prediction effect [13,42,43]. The gradient boosting process of GBDTs ensures consis-
tency in the feature selection and prediction result explanations [16,17]. For instance, Stojić et al. [14]
applied extreme gradient boosting (XGBoost) [13] to predict the distribution and migration of chemical
substances in the environment and generate SHAP values to explain important features; Fernández [15]
adopted random forests to monitor bank stability in the United States and make multiway interpretations of
important variables. Consequently, GBDTs have inherent advantages in selecting necessary features for
prediction. Nevertheless, Shih et al. [18] proposed the concept of prime implicant (PI), i.e., explanations
based on the tree structure. They believe that there are the smallest feature subsets related to the prediction
results, and these subsets are sufficient for prediction and interpretation. Furthermore, [19] standardize the
definition of necessary feature subsets. Izz et al. [44] propose a way to calculate PI explanations in decision
tree learning. In addition to explaining with features, GBDTs can also explain the original model by
simulating the behavior of that model [3]. In particular, the path in the tree is an important explanatory
tool to visually show the logical relationship between features [18]. In this work, we will make full use of the
interpretable advantages of GBDTs to explain deep models. The following subsection introduces the
research progress on trees and deep models.

2.3 Explanation based on trees and deep models

The main difference between deep models and traditional ML models is the representation of features.
Traditional models generally adopt feature values to represent features, while deep models often use
feature embedding vectors to train the model [29,32]. However, the structure of a deep model [20] is usually
more complicated than a traditional feature interaction model [22]. For example, the nonlinear feature
relations in a multilayer perceptron or in an attention mechanism [21] are difficult to capture by GBDTs.
Therefore, to avoid direct tracking and explanation of feature interactions, Zilke et al. [25] utilized the
advantages of the tree structure to extract rules from DNNs. Other researchers argue that the tree structure
has limitations for understanding a deep model, so they try to achieve interpretability by replacing the last
layer of the neural network with a decision tree [26]. However, these methods have changed the original
model structure to varying degrees and cannot allow the deep model to take advantage of the tree-selected
features. Existing studies have demonstrated that decision trees can initialize neural networks and improve
performance [28], which encourages researchers to use tree-selected features as input for a deep model. For
example, TEM [27] is a loosely coupled model that uses GBDTs to choose important cross-features as the
input of a neural network and explain feature interaction via attention weights [45]. TEM ensures the
interpretability and completeness of the feature attribution process, meaning that it achieves feature
tracking from input to prediction. However, it still cannot solve the problem of inconsistent feature repre-
sentation, and the cross-features are fixed; thus, it cannot continue to learn feature interactions in the
following deep model. In recent years, some progress has been made in capturing feature interactions of
deep models. Researchers have shown that Taylor expansions are applicable to most deep models [36,37],
which allow the multiple orders of feature interactions to be represented separately. In this work, we mainly
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study how to improve external feature representations such as memory [33,34] to capture the semantics of
feature interactions and then cooperate with GBDTs to explain the prediction results of a deep model in a
different way.

3 The MFTE strategy

This section mainly introduces the framework of the MFTE strategy in Section 3.1 and the detailed design of
the model in Section 3.2.

3.1 The framework of MFTE

In Figure 1, we illustrate the entire training process of MFTE, including feature selection and consistent
representation, collaborative training between a deep model (on the right), relevant explainable constraints
(on the left), and the generation of explanations.

First, one of the important functions of GBDTs is feature selection, which is the basis for GBDTs’
interpretability. On the other hand, deep models generally take features as input. Therefore, MFTE takes
advantage of GBDTs by adopting the features that trees select to benefit prediction as the input of a deep

Figure 1: The framework of MFTE.
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model. To ensure a distinct input, MFTE employs multiple trees to select important features from all
features of the original data. These diverse features are responsible for both prediction and interpretation;
they run through the entire process of model training, prediction, and result explanation. Consequently, we
design an independent feature representation method based on the memory mechanism [33,34] to achieve
the full tracking of various features. In particular, we allocate an independent feature memory MG for
diverse features to support explainable storage, encapsulation, and representation.

The left side of Figure 1 shows the explainable feature and consistent representation mechanism. We
borrow a feature-lookup operation to link the features selected from the trees with the memory and achieve

the independent representation of feature memory ( )xM̃G . However, purely independent representation
cannot keep track of feature changes, especially when the deep model has multiorder feature interactions.

To explore the explainable advantages of ( )xM̃G , we design an encapsulating process ϕ to reorganize ( )xM̃G

into a new explanation representation �. The purpose of encapsulation is to track and interpret the deep
model’s multiorder feature interactions, because the encapsulating process can functionalize the memory
features and uniformly represent the contribution of each order of the deep model. This kind of order-
separated interpretation design requires the deep model to be linearly separable, such as in NFM [20] and
attentional factorization machine (AFM) [21]. Specifically, assuming that the highest dimension of the input
features is n (for example, ∏ = xi

n
i1 ), a certain model can be expressed as a function � of n partial combina-

tions { }…� � �, , , n1 2 from the first-order features to the nth-order feature interactions [35], where �1 only
contains first-order features, �2 only contains second-order feature interactions, and so on. In this work, we
consider a type of model � that can be expressed or approximately expressed as a linear combination from
�1 to �n, namely = + + ⋯+� � � �n1 2 .

Intuitively, n-order feature interactions have n different contributions to the prediction results.
Therefore, we propose an explainable constraint method to quantify and explain the contribution of
each order separately according to a prediction result. In particular, the constraint method combines n
explanation representations � to generate an explainable constraint set { }…� � �, , , n1 2 . Each element in the
constraint set corresponds to and constrains a suborder function of model � . Motivated by the extension of
Taylor’s theorem in neural networks, we make a loosely coupled relationship between � and �. Thus, the
deep model can be expressed as an n-order linear combination under n explainable constraints. Compared
to the coefficients of Taylor expansions, our constraint coefficients are not derived from the original model
but are actually extended consistent feature representations to improve the interpretability of that model.
Therefore, through collaborative training between the explainable constraints and the deep model, n
explainable constraints can separately express the contributions of n suborder functions without exces-
sively interfering with � ’s prediction performance. The generation of the explainable constraint set and the
details of loose coupling are introduced in Section 3.2.

In the explanation stage, MFTE allows different constraints �i to explain the contributions of feature
modeling belonging to different �i in the predicted results. For example, �1 represents the contribution of a
single feature to the result; �2 represents the contribution of pairwise feature interactions to the result; and
�n can explain the contribution of high-order nonlinear feature interactions to the result. We store the
n-order explainable constraints in an explanation pool to allow MFTE to present different orders of explain-
able representation according to actual needs. For example, we can select only the first-order features, only
the second-order feature interactions, or both for explanation. In particular, according to different selected
features, we can retrieve the original GBDTs and visualize tree paths containing these features, thereby
implementing multiorder and diversified explanations. Thus, this kind of feature explanation based on tree
paths naturally achieves feature consistency between predictions and explanations.

3.2 The design of MFTE

In the part of generating diverse features, we define multiple GBDTs as { }= …G G G G, , , T
multi

1 2 , which
represents T trees. Consider a single tree ( )=G X V, with feature nodes { }= …X x x x, , , n1 2 and leaf nodes
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{ }= …V v v v, , , m1 2 . We train multiple trees by ensemble learning and use the following equation to select
features:

( )
⎧

⎨
⎩

=
∈

−
G x x x X, if

1, otherwise ,i
i i r (1)

where ⊂X Xr is a set recording the feature nodes that ultimately fall on the rth leaf node vr. The diverse
features are generated by the features selected byT trees, thus we haveT feature sets. The features in each
feature set are used as input to the deep model on one side and used to find explainable feature vectors

( )xM̃G from the feature memory MG on the other side. In particular, supposing that the feature memory MG

stores original vectors of all features, we select the explainable feature vectors according to the diverse
features via a feature-lookup process defined as follows:

( ) ( )= ⊓x G xM̃ M ,G G (2)

where ⊓ indicates the selection of the corresponding vector according to the feature identification number.
( )xM̃G is the selected explainable feature set, where ( )xM̃G

i denotes the ith feature vector with k dimensions.
To obtain the feature-related explanation representation, we apply ϕ to package the explainable features.
The encapsulating process is defined as follows:

( ( ))=� ϕ xM̃ .G (3)

Here, the encapsulation function ϕ can be different according to different order subfunctions. For the
first-order subfunction, ϕ can be a self-defined function. For subfunctions of order two or above, we need to
consider the combination operation when performing encapsulation to obtain n explainable constraints.
Since the explainable constraint of each order is related to T trees, we finally accumulate T -encapsulated
features from T trees to obtain a single constraint. In particular, let ( )G xt represent the features selected by

the tth tree. Thus, ( )( )ϕ xM̃Gt indicates the encapsulated features from the tth tree according to equation (3).
For n arbitrary combinations of explainable features { }…x x x, , ,i i in1 2 , we define the explainable constraints �

as follows:

( ( ( )))
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(4)

– ⊙: the combination operation that can be instantiated into specific operations

– = ∑ =� �t
T

i
t

1 1 1
: the first-order explainable constraint

– ( )= ∑ ⊙=� � �t
T

i
t

i
t

2 1 1 2
: the second-order explainable constraint

– ( )= ∑ ⊙ ⊙ ⋯ ⊙=� � � �n t
T

i
t

i
t

i
t

1 n1 2 : the nth-order explainable constraint

where { }∈ …i n1, 2, ,l and the combination operation ⊙ is instantiated as element-wise multiplication in our
experiments. Then, the n constraints are loosely coupled with the corresponding n-order subfunctions via a
constraint process. Without loss of generality, we define an n-order linearly separable deep model con-
taining a feature-independent variable �0 as follows:

= + + + ⋯+� � � � � .n
deep

0 1 2 (5)
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Let { }= …� � � �, , n1 2 represent the explainable constraints with respect to subfunctions { }…� � �, , , n1 2 .
The constraint process is defined as follows:

( ) ( ) ( )

( ( ( ))) ( ( ( ) ( )))
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(6)

– �̃ : the final prediction result
– �0: indicating variables that are feature-independent
– …� � �, , , n1 2 : subfunctions representing suborder feature interactions
– ⊗: the constraint operation that can be instantiated into specific functions.

It can be observed that the final prediction result �̃ is a linear combination of n subfunctions after being
constrained. In a simple case, the constraint operation ⊗ can be multiplication to achieve collaborative
training. Specifically, the constraint term and the subfunction become the gradient of each other during the
gradient optimization process. In this case, the nth-order constraint �n is naturally optimized as an explain-
able representation of the contribution of the nth-order function �n. The constraint operation is superior to
the cross-feature mechanism of TEM [27], because the cross-feature mechanism fuses multiorder feature
information before the deep model training, so that the information of each order feature cannot be tracked
separately. In addition to being consistent with each order of the deep model, MFTE does not need to modify
the original loss function during training. For example, in the two domain applications of this work, we
employ the binary cross-entropy of the original deep model as the MFTE loss function L to solve the binary
classification problem as follows:

( ) [ ( ) ( ) ( )]∑≜ − ⋅ + − ⋅ −
=

� �L
N

F F F F, ˜ 1 log ˜ 1 log 1 ˜ .
h

N

h h h h
1

(7)

Here, N denotes the number of samples in a training batch, Fh indicates a binary ground-truth value

that can be 1 or 0, and F̃h is the predicted value corresponding to Fh. By minimizing ( )� �L , ˜ , we can
complete the training of the entire model.

4 The instantiation of MFTE

Considering that MFTE can be applied to the n-order linearly separable deep model, we adopt NFM [20] to
instantiate our strategy. The difference between instantiated MFTE and NFM is that each order feature of
NFM is not constrained by the feature-tracking strategy available in MFTE. Because NFM is a general deep
version of factorization machines (FMs) [22,35] and is directly linearly separable, it is a multiorder feature
interaction model that contains first- and second-order subfunctions. Consequently, we employ the first two
orders of the constraints �1 and �2 to constrain the first- and second-order parts of NFM, respectively. Let

( )G x represent the union feature set selected byT trees. By using the tree-selected features ( )G xi in equation
(1) as input, the combined NFM model with explainable constraints is defined as follows:

8  Lin Zheng and Yixuan Lin



( )
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j i
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i i j jNFM 0 1 1 2 2 0
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1 1

2 deep
1 1

(8)

– w0: model bias that is feature-independent
– wi: model parameters of the first-order feature modeling
– fdeep: neural network with L deep layers for the second-order feature modeling
– v: model embedding vectors corresponding to features.

We specifically define the constraint operation ⊗ as feature corresponding multiplication. For example,

we multiply ( )w G xi i by �
i
1 and leverage �

ij
2 to multiply and constrain ( ( ) ( ) )⊙G x G xv vi i j j , where the formal

definitions of �
i
1 and �

ij
2 are provided in the following discussion.

First, based on the explainable feature memory ( )xM̃G , we specify the encapsulation function ϕ as
follows:

⎧

⎨
⎩

( ( ) )

( )

= ⋅ +

=�
ϕ e s x b

e
: ReLU W M̃

softmax

T G
(9)

where the explanation representation � is employed for encapsulating the explainable feature memory
( )xM̃G . �∈ ×W d k and �∈b d are the parameters of a Relu-activated dense layer; and �∈s d is used to adjust

the shape of the explanation representation to fit a specific feature. d indicates the dimension of hidden
layers and k denotes the dimension of features. For the ith feature memory ( )xM̃G

i , the corresponding first-
order explainable constraint is specified as follows:

( )

( )
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∑ ∑
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= =
= =
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e s x b

p p e

ReLU W M̃

softmax ,
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i
t

1
1 1

t

(10)

where p is a weight matrix that can change the shape of �
i
1 to adapt to the combination of subfunctions.

Furthermore, given the jth feature memory ( )xM̃G
j , we specify the second-order constraint �2 based on the

feature memory interaction as follows:
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The combination operation ⊙ denotes the elementwise multiplication to represent feature memory

interaction. q indicates a weight matrix that can transfer the shape of �
ij
2 to adapt to the combination of

subfunctions. After �
i
1 and �

ij
2 are trained, they can represent the contributions of the first-order features

and the second-order interactions to the prediction results, thus achieving diversification of explanations.
Furthermore, we will demonstrate the detailed advantages of this diversified and multiorder explanation in
the experiments section.

5 Experiments

To verify the interpretability of our strategy, we selected two datasets in different application fields (educa-
tion and marketing) for experiments. We conduct various experimental analyses on these two datasets to
try to answer the following research questions:
– RESEARCH QUESTION 1 (RQ1): Can MFTE achieve intuitive explanations without reducing the deep model’s

performance?
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– RESEARCH QUESTION 2 (RQ2): Can the explanations of MFTE maximize the explainable advantages of trees?
– RESEARCH QUESTION 3 (RQ3): What are the highlights of MFTE’s multiorder explanations, and can it achieve

diversified explanations?

To answer the above research questions, we first describe two datasets in Section 5.1. Then, Section 5.2
attempts to solve the performance maintenance problem in RQ1. Next, Section 5.3 answers both RQ2 and RQ3
through the experimental results and detailed analysis. Finally, we discuss the entire experiment in Section 5.4.

5.1 Data description

The education dataset¹ [46,47] collects students’ online learning behaviors in five online courses
launched by Harvard University on the EDX platform, covering the period from the autumn of 2012 to
the summer of 2013. The features in this dataset can be roughly divided into two categories. One is related to
the students themselves, including birth_year, gender, education, etc. The other represents the interactive
behaviors between students and courses, including total_events (total events in the server log file, including
the number of clicks), active_days (the days of a student participating in course activities), num_chapters
(the number of chapters a student learned), days (the number of days between a student’s registration and
the completion of a course), etc. We employ the dataset to predict and explain whether a student can obtain
course certification (ground truth = 1 means the student can obtain course certificates, ground truth = 0
means the student cannot obtain course certificates).

The marketing dataset² [48] implemented by the marketing team of the Bank of the Portugal
(2008–2015), stores information about the telemarketing business to attract clients to subscribe to term
deposits. This dataset is used to predict whether a client will subscribe (yes/no) a term deposit, where the
ground truths contain two variables: “Yes (ground truth = 1)” and “No (ground truth = 0).” There are four
categories of features. The first category is client information, including age and mortgage. The second
category is social and economic factors, including emp.var.rate (employment variation rate – quarterly
indicator), cons.price.idx (consumer price index – monthly indicator), euribor3m (euribor 3 month rate –
daily indicator), nr.employed (number of employees – quarterly indicator), etc. The third category is related
to the last contact of the current campaign, such asmonth (last contact month of year) and pdays (number of
days that passed by after the client was last contacted from a previous campaign). The final category
contains all other features, such as campaign.

5.2 Performance evaluations (RQ1)

We have instantiated MFTE (called MFTEN)with NFM in Section 4. In addition to NFM, other members of the
FM family such as the embedding version of FM [30] and AFM are also linearly separable. Therefore, in the
experiment, we also instantiated FM (named MFTEF) and AFM (called MFTEA), together with MFTEN as our
models. We compare the three instantiated MFTE approaches with FM, NFM, and AFM to evaluate whether
the MFTE strategy can maintain the same performance as the original models. In addition, XGBoost, an
advanced method representing GBDTs, is also employed for performance comparison, because we can
combine XGBoost and SHAP to implement feature-attribution explanations in subsequent experiments.
Finally, we introduce TEM as another comparison method, because it is an interpretable method, where a
deep model accepts tree-selected features as input and shows good performance and explanation effects.
All comparison methods are as follows:



1 https://doi.org/10.7910/DVN/26147.
2 http://archive.ics.uci.edu/ml/datasets/Bank+Marketing.
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– FM [22] – the embedding version [30] of Factorization Machine;
– NFM [20] – the Neural Factorization Machine;
– AFM [21] – the Attentional Factorization Machine;
– XGBoost [13] – A Scalable Tree Boosting System;
– TEM [27] – the Tree-enhanced Embedding Model;
– MFTEF – our multiorder feature-tracking explanation instantiated model for FM;
– MFTEN – our multiorder feature-tracking explanation instantiated model for NFM;
– MFTEA – our multiorder feature-tracking explanation instantiated model for AFM.

On the education dataset, we uniformly set the regularized terms of the XGBoost and TEM models to 0.01,
and the regularization values of the FM family models and the corresponding MFTE instantiated models are set
to 0.001. For optimal learning rates, FM/MFTEF are set to 0.00001; NFM/MFTEN and AFM/MFTEA are adjusted
to 0.000001 and 0.0001, respectively; XGBoost is set to 0.0001 and TEM is optimized to 0.00001. In our models,
to ensure the diversity of features, we set the number of GBDTs to 30 and the height of all trees to 4. Moreover,
XGBoost and the tree model part of the TEM maintain the same settings as our models. On the marketing
dataset, the setting of the learning rate and regularized value is consistent with that of the education dataset, but
the number of GBDTs and the height of the tree model are set to 38 and 5, respectively. For performance
evaluation, we adopt the widely accepted area under the receiver operating characteristic curve (AUC) and
F1-measure as metrics. The performance comparison results of all models are shown in Tables 1 and 2.

It can be observed that the two explainable models MFTEF and MFTEA achieve the best performance on
F1 and AUC, respectively, with the education dataset. Besides the AUC value of the MFTEF being slightly
weaker than that of the FM, both MFTEN and MFTEA have improved performance over their original models.
On the marketing dataset, MFTEA and MFTEN outperform other models on F1 and AUC. The comparison
results show that although MFTE is designed for explanation, it can maintain the performance of the
original deep models, which provides a positive answer to RQ1. In subsequent experiments, we focus on
the explanation comparison of MFTE with other methods.

5.3 Explanation comparison (RQ2 and RQ3)

The explainable effect is mainly reflected in whether the model properly shows the contribution of features.
General tree models (such as XGBoost) directly employ FI [13,38] to explain the contribution of each feature.
SHAP provides both first- and second-order explanation tools for trees to calculate diverse contribution

Table 1: The performance comparison results on the education dataset

Methods FM MFTEF NFM MFTEN AFM MFTEA XGBoost TEM

AUC 0.9768 0.9599 0.9416 0.9515 0.9744 0.9770 0.9364 0.9356
F1-measure 0.3957 0.4133 0.3729 0.3978 0.3950 0.4076 0.2423 0.3583

The bold values indicate the best performance on AUC or F1-measure.

Table 2: The performance comparison results on the marketing dataset

Methods FM MFTEF NFM MFTEN AFM MFTEA XGBoost TEM

AUC 0.7213 0.7416 0.7583 0.7725 0.7625 0.7673 0.7657 0.7657
F1-measure 0.3411 0.3958 0.4061 0.4192 0.3906 0.4215 0.4131 0.3694

The bold values indicate the best performance on AUC or F1-measure.
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values. TEM is a typical method combining trees and a deep network. It uses the cross-features selected by
the trees as the input of the deep model and leverages the attention of the cross-features to explain the
results. In contrast, our model achieves diverse explanation effects through multiorder feature tracking.
Specifically, the comparable explanation methods in this section are summarized as follows:
– FI – a traditional explainable approach based on XGBoost [13,38].
– SHAP – a representative FI explanation method, including first- and second-order explanations. We

employ the tree-version SHAP [10].
– TEM – an explainable method based on tree and only provides cross-feature explanation extracted from

tree components [27].
– MFTE – our approach that supports multiorder explanations. We employ the MFTEN version to provide

first- and second-order explanations.

To better compare the explanation effects, we separately analyze the explanation results of the two
fields in Sections 5.3.1 and 5.3.2, respectively. In each section, we separate the first- and second-order
explanations and compare them to better present the experimental results.

5.3.1 Evaluation in the education field

5.3.1.1 Statistical analysis
First, we provide a simple statistical feature correlation analysis. The result shows that if a student certified
in the course has the greatest correlation with the explored feature, then the correlation value is 0.5. In
addition, when ground truth = 0, more than half of the active_days values are concentrated in the range of
[ ]0, 15 . For over 60% of the students, the corresponding active_days values are located in [15,50], when
ground truth = 1.

5.3.1.2 The first-order explanations
Statistical analysis mainly describes the distribution of feature values, but it is impossible to know the exact
feature contributions to the prediction. Tree-based models can calculate the FI of the whole model and
regard it as the model explanation. We apply FI-based XGBoost to the education dataset and obtain FI
rankings from largest to smallest: total_events, num_chapters, days, active_days. The higher the importance
of the feature, the greater its contribution to the prediction result. However, like statistical analysis, FI
reflects the global contribution of all the features, so there is only one sort of FI and it is fixed. Compared
with FI, SHAP can flexibly calculate the contribution value of each feature to the prediction result of a single
sample. To evaluate SHAP’s explanation toward individuals, we randomly selected two students, repre-
senting those who obtained a certificate and those who did not and listed the relevant feature values and
ground truths in Table 3. Correspondingly, Figures 2 and 3 show the SHAP values of the two samples.

The red values represent that the features play positive roles in predicting that the student can obtain
the certificate, whereas the blue ones play negative roles. In particular, the longer the length of the color
bar, the greater the absolute value of the feature’s contribution. Therefore, the most contributing feature is
num_chapters in Figure 2. By searching the relevant feature values in Table 3, we observe that num_chapters

Table 3: The relevant feature values of the two samples on education dataset

stu_id explored days total_events active_days num_chapters ground truth

1571 0 216 8 1 1 0 (uncertified)
2264 1 239 2707 50 10 1 (certified)
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= 1, indicating that the student with id = 1571 has only read one chapter. The salient feature of Figure 3 is
explored (explored = 1), indicating that the student (id = 2264) has explored the whole course. Although the
predictions of the two students are consistent with the ground truths, the tree-based SHAP value depends
on the original feature value. When the original feature value is relatively small, it will affect its feature
contribution value.

For MFTE, the first-order explanation values corresponding to the two samples are shown in Table 4. It
can be observed that the first-order explanation of each feature has multiple values corresponding to
multiple trees, meaning that MFTE achieves the first-order diversified explanations. The order of average
feature contributions of the student with id = 1571 is: explored> active_days> days and the order of average
feature contributions of the student with id = 2264 is: active_days > num_chapters > total_events.

According to the feature values in Table 3, the values of active_days and num_chapters of the student
with id = 2264 is 50 and 10, respectively (the total number of days is 71 and the total number of chapters is
11). Thus, the first-order explanation of MFTE makes sense and MFTE further provides more diversified
explanations.

5.3.1.3 The high-order explanations
Figure 4 shows the second-order SHAP explanation heatmap corresponding to the two samples, where we
only select the features with large SHAP values and visualize their second-order contributions. The second-
order feature explanations mainly indicate the contributions of the feature interactions to the predictions.
Consequently, we do not consider the interaction value between the feature and itself, that is, the con-
tribution value on the diagonal. In this case, for the student with id = 1571, the course_id-total_events
feature interaction has the largest negative contribution (−0.00064) to the prediction. In contrast, for the
student with id = 2264, the course_id-viewed and num_chapters-course_id feature interactions both have the
largest positive contributions (0.00019) to the prediction.

Although the SHAP values are calculated by training the XGBoost approach, the second-order explana-
tions of SHAP do not reflect the relationship of features in the trees. In contrast, the TEM model introduces
“cross features” in the trees and takes the cross-feature embeddings as the input to a deep attention model.
Figure 5 shows the attention values of the features included on the cross-feature paths (e.g., v66) and uses
them as an explanation.

Table 5 lists the relevant cross-feature paths corresponding to Figure 5. For example, path v23 contains
cross-features explored, num_chapters, active_days and days, meaning that they are on the same tree.
However, these cross feature paths in the trees are fixed, and these features cannot be tracked continuously
in the subsequent deep model training, causing the trees to be out of touch with the deep model.

In Figure 6, we illustrate both the first-order explanations (represented by rectangular boxes) and the
second-order explanations (represented by ellipses) of MFTE. The greater the absolute value of the expla-
nation, the greater its contribution to the result. Thus, the five features in the figure are the important
features that contribute massively to the results. Moreover, the feature selection paths containing these

Figure 2: The first-order explanation of SHAP for an uncertified student with id = 1571.

Figure 3: The first-order explanation of SHAP for a certified student with id = 2264.
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Figure 4: The second-order explanations of the uncertified & certified predictions in SHAP.

Figure 5: The attention explanations of the uncertified and certified predictions in TEM.

Table 5: The tree paths of the uncertified and certified predictions in TEM

tree_path Details of the cross-features on the paths

v23 [explored = 1] & [num_chapters = 10] & [active_days = 50] &[days = 239]
v42 [total_events = 8] & [active_days = 1] & [days = 216]
v48 [total_events = 2707] & [active_days = 50] & [days = 239] & [num_chapters = 10]
v66 [explored = 0] & [total_events = 8] & [active_days = 1]
v76 [explored = 1] & [active_days = 50] & [num_chapters = 10]
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Figure 6: The first- and second-order explanations of the uncertified & certified predictions in MFTE. (a) A multiorder expla-
nation for predicting uncertified with stu_id = 1571, and (b) a multiorder explanation for predicting certified with stu_id = 2264.
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features in the original four trees are randomly retrieved and displayed in Figure 6. We employ straight lines
with arrows to represent the optimal feature selection path from the root of the tree to its leaf nodes and
adopt different colors to represent the different trees. The first-order explanation in the figure corresponds
to the tree nodes, and the second-order explanation corresponds to directed edges. The positive or negative
explainable values denote the positive or negative contribution of the tree features to the predicted results.
In this way, the total contribution of the tree can be obtained by combining the contributions of the tree
nodes and edges. If the overall contribution is greater than 0, it indicates that a tree predicts that the
student will obtain a course certificate.

The explanation characteristic of MFTE is that it can illustrate the feature selection path in trees,
making the relationship between first- and second-order explanations clear. Moving forward, the multi-
order explanations are less disturbed by the original feature values. For example, take the student with id =
1571. Figure 6(a) shows that the feature days in different trees have both a large positive and negative impact
on the predicted results. Table 3 shows that the feature value of days is 216, which may make people think
that the student has been studying for a long time. In this case, we need to further investigate the second-
order explanations to analyze the impact of days. It can be found that the interactions of the three pairs of
features: num_chapters-days, active_days-days, and explored-days, all contribute negatively to the results,
because the original values of these three features interacting with days are very small. In addition, MFTE
believes that the largest negative second-order contribution comes from the feature interaction of explored-
total_events. Combining these two conditions (explored = 0 and total_events = 8) greatly increases the
probability that the student will not be able to obtain course certification. For the student with id = 2264
in Figure 6(b), MFTE automatically learns two second-order feature interaction pairs that contribute mas-
sively: active_days-num_chapters and total_events-active_days. Table 3 shows that total_events (i.e., the
number of clicks) of the student with id = 2264 is as high as 2707. Therefore, the multiorder explanations of
MFTE can complement each other to better understand the students’ certification results.

5.3.2 Evaluation in the marketing field

5.3.2.1 Statistical analysis
According to the correlation analysis, the correlations between marketing result (ground truth) and features
emp.var.rate, cons.price.idx, euribor3m, nr.employed and campaign are −0.3, −0.14, −0.31, −0.35, and
−0.066, respectively. The smaller the negative correlation values of these four features, the more likely
the marketing result is to be successful (ground truth = 1), otherwise it may be fail (ground truth = 0). For
clients with successful marketing result, the corresponding euribor3m values are mainly distributed in
[ ]0.68, 1.4 , while for most clients with failed marketing results, the euribor3m values are around 5.

5.3.2.2 The first-order explanations
We apply FI-based XGBoost to the marketing dataset and obtain the important “weight” of all the features,
whereas the top-3 important features are: euribor3m, month and pdays. To compare with tree-based SHAP,
we randomly select a sample of failed marketing (client_id = 2556) and a sample of successful marketing
(client_id = 1666) as examples. The first-order SHAP contribution values of the two samples are shown in
Figures 7 and 8, respectively. Table 6 lists the relevant and important feature values according to the SHAP
results.

Figure 7: The first-order SHAP explanation of a failed marketing sample with id = 2556.
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For the sample with id = 2556, the feature nr.employed has the largest contribution value and the
relevant feature value is 5195.8. In our correlation analysis results, the correlation value between nr.em-
ployed and the ground truth is −0.31, meaning that the smaller the feature value of nr.employed, the more
likely the marketing is to succeed. In this case, the feature value 5195.8 is higher than the average value
5167, which indicates that the first-order SHAP explanation is consistent with the correlation analysis
results. For the successful sample with id = 1666, the feature with the largest contribution value is emp.-
var.rate and its SHAP value is 0.002.

Table 7 lists the first-order explanations of MFTE. For the sample with id = 2556, the top-3 important features
are: emp.var.rate, euribor3m, and nr.employed. For the sample with id = 1666, its top-3 important features are:
nr.employed, euribor3m, and emp.var.rate. The contribution values of two samples can be compared with feature
values to explain the results. In addition, the feature emp.var.rate is important in both samples because it
appears three times on four trees. Therefore, the first-order explanations of MFTE can intuitively reflect the
importance of features through the number of contributions and their specific values.

5.3.2.3 The high-order explanations
Figure 9 shows the second-order explanations of SHAP for the two samples. Their most important con-
tributions of feature interaction are both euribor3m-emp.var.rate. In particular, the second-order SHAP
values of euribor3m-emp.var.rate of the sample with id = 2556 and id = 1666 are −0.00019 and 0.00064,
respectively. Through the color of the contribution values, we can intuitively see that the second-order
explanations of SHAP are reasonable.

In contrast, the explanations of TEM in Figure 10 can provide more details for the predictions with the
help of the tree paths in Table 8. For the sample with id = 2556, the highest attention value comes from the
feature emp.var.rate on the path v135. The other two features that have massive contributions on the path
v135 are month and nr.employed. It indicates that the three features interact on the same tree and have an
important impact on the prediction. Similarly, for the sample with id = 1666, the key path is v83 because it
contains four important cross-features, whereas one of them has the highest attention value.

The symbol in Figure 11 is consistent with Figure 6. It can be observed that the first-order explanations
of feature campaign includes both positive and negative contributions in both samples. In this case, by
further observing the interaction between feature campaign and feature euribo3m, it can be seen that

Figure 8: The first-order SHAP explanation of a successful marketing sample with id = 1666.

Table 6: The relevant feature values of the two samples on the marketing dataset

Client_id emp.var.rate cons.price.idx euribor3m nr.employed campaign ground truth

2556 −0.1 93.2 4.12 5195.8 1 0 (failure)
1666 −1.8 93.075 1.365 5099.1 1 1 (success)

Table 7: The first-order explanation values of the two samples in MFTE

Client_id emp.var.rate cons.price.idx euribor3m nr.employed campaign prediction

2556 (−0.62, −0.75, −0.043) (0.001) (−0.36) (−0.0214, −0.64) (0.051, −0.019) Failure
1666 (0.99, −0.12, 0.091) (−0.13) (1.6, −0.0011) (−0.051, 1.9) (0.38, 0.00013) Success
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Figure 10: The attention explanations of the failure and success predictions in TEM.

Table 8: The tree paths of the failure and success predictions in TEM

tree_path Details of the cross-features on the paths

v83 [nr.employed = 5099.1] & [emp.var.rate = -1.8] & [euribor3m = 1.365] &[default = no]
v85 [nr.employed = 5195.8] & [emp.var.rate = -0.1]
v133 [nr.employed = 5099.1] & [emp.var.rate = -1.8] & [euribor3m = 1.365]
v135 [nr.employed = 5195.8] & [emp.var.rate = -0.1] & [month = November]
v261 [nr.employed = 5099.1] & [month = April] & [euribor3m = 1.365]

Figure 9: The second-order explanations of the failure and success predictions in SHAP.
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Figure 11: The first- and second-order explanations of the failure and success predictions in MFTE. (a) A multiorder explanation
for predicting failure with client_id = 2556, and (b) a multiorder explanation for predicting success with client_id = 1666.
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feature campaign has an indirect contribution to the prediction of the result. Specifically, for the sample
with id = 2556 in Figure 11(a), the second-order explanation of campaign-euribo3m interaction has a
negative value. In contrast, for the sample with id = 1666 in Figure 11(b), the second-order explanation
of campaign-euribo3m interaction contributes positively to the prediction, which is consistent with the
ground truth. According to the marketing dataset, campaign means “number of contacts performed during
this campaign and for this client,”whereas euribo3m indicates “euribor 3 month rate – daily indicator.” The
corresponding feature values in Table 6 show that the campaign values of both samples is 1. The difference
is that the euribo3m value for the fail prediction is 4.12, while the euribo3m value for the success prediction
is 1.365. Consequently, the second-order contributions from campaign-euribo3m of both samples are con-
sistent with the original feature meanings, which means that the second-order explanations of MFTE are
appropriate. The experimental results in these two fields empirically answer RQ2 and RQ3. In the next
section, we will further answer the three research questions to summarize the experiments.

5.4 Experiment discussion

Our experiments evaluate the MFTE strategy in terms of performance and explanation. In the performance
comparisons, most of the deep models equipped with MFTE perform better than the original models.
Therefore, while MFTE provides explanations, it can also provide additional help for performance improve-
ment. In terms of explanation evaluation, MFTE can explain for a single sample, which is more advanta-
geous than the global explanation provided by the FI-based XGBoost. Moreover, another highlight of MFTE
is that the first- and second-order explanations can be displayed separately, which makes the explanation
effect clearer. Therefore, the experiment gave a positive answer to RQ1, meaning that MFTE can provide an
intuitive explanation without reducing the performance of the model.

In the explanation representations, the visualized tree paths make the relationship of multiorder explana-
tions clear, thereby maximizing the interpretable advantage of the trees. In contrast, although TEM can also
record the paths of the trees by cross-features, the paths are fixed during the training of the deep model. This
fixed method of cross-features cannot allow a single feature vector to be further trained, nor can it further take
advantage of the trees’ interpretation advantages. Moreover, MFTE is more personalized because each sample
has its own feature selection path, which has advantages over the second-order explanation based on global
feature interaction in SHAP and the fixed second-order explanation in TEM. Therefore, the experiments also
gave a positive answer to RQ2 to confirm that MFTE can maximize the interpretable advantages of the trees.

Furthermore, if a deep model has higher-order feature interactions, MFTE can also make corresponding
explanations. In contrast, although SHAP can also perform the first- and second-order explanations for
samples, it has higher computational complexity for higher-order interpretations, so the scalability of MFTE
is relatively better. The third highlight of MFTE is that we store multiorder explainable constraints in an
explanation pool to allowMFTE to present different orders of explainable representation according to actual
needs. Therefore, MFTE can show diversified representations for the feature contributions of the same
order. Because we utilize the memory mechanism to store the features selected by different trees and
achieve the consistency of features from selection to training, to explanation. The above three highlights
answered RQ3 and confirmed that the explanation of MFTE is diverse.

In general, the experiments empirically verified the applicability of MFTE in different fields, thereby
providing a practical approach for a prediction-oriented explanation.

6 Conclusion and future work

This work investigates a challenging problem in ML application – the black box problem. Our model mainly
solves the problem of inconsistent feature representation between the tree model and the deep model and
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exploits the feature-tracking strategy to track features from the beginning of the tree to the training of the
deep model and the explanation of the final result. It intuitively reflects the complex features interaction in
the deep model. The experiments verify that our model is not only better than the previous work in
performance but also provides more diversified explanations. In addition, we also prove that the feature-
tracking strategy is applicable to linear or approximate linear separable deep models and suitable in
different application fields.

In future work, we will further investigate our multiorder explanation framework. In particular, we
would compare the linearly separable and the approximate linearly separable deep model and try to
express their multiorder feature interactions in a unified way. Furthermore, we plan to design a more
automated multiorder explanation, so that the prediction and explanations of the results can be more
intuitively presented.
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