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Abstract: Deep learning techniques, which use a massive technology known as convolutional neural net-
works, have shown excellent results in a variety of areas, including image processing and interpretation.
However, as the depth of these networks grows, so does the demand for a large amount of labeled data
required to train these networks. In particular, the medical field suffers from a lack of images because the
procedure for obtaining labeled medical images in the healthcare field is difficult, expensive, and requires
specialized expertise to add labels to images. Moreover, the process may be prone to errors and time-
consuming. Current research has revealed transfer learning as a viable solution to this problem. Transfer
learning allows us to transfer knowledge gained from a previous process to improve and tackle a new
problem. This study aims to conduct a comprehensive survey of recent studies that dealt with solving
this problem and the most important metrics used to evaluate these methods. In addition, this study
identifies problems in transfer learning techniques and highlights the problems of the medical dataset
and potential problems that can be addressed in future research. According to our review, many researchers
use pre-trainedmodels on the Imagenet dataset (VGG16, ResNet, Inception v3) in many applications such as
skin cancer, breast cancer, and diabetic retinopathy classification tasks. These techniques require further
investigation of these models, due to training them on natural, non-medical images. In addition, many
researchers use data augmentation techniques to expand their dataset and avoid overfitting. However, not
enough studies have shown the effect of performance with or without data augmentation. Accuracy, recall,
precision, F1 score, receiver operator characteristic curve, and area under the curve (AUC) were the most
widely used measures in these studies. Furthermore, we identified problems in the datasets for melanoma
and breast cancer and suggested corresponding solutions.

Keywords: transfer learning techniques, medical images, data augmentation, convolutional neural net-
work, deep learning, imbalanced datasets, breast cancer, skin cancer

1 Introduction

The use of powerful computers and diverse intelligent algorithms has opened a new world full of possibi-
lities and challenges [1]. In medicine and healthcare, the automation of tasks and processes that were
previously performed manually has made technology indispensable. Not only does technology save time,
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but it also improves the understanding of complex diseases and has the potential to reduce the overall cost
of medical care. Over the past few decades, medical image interpretation has been chiefly performed by
human experts such as radiologists and physicians. However, due to the wide differences in the pathology
and potential fatigue of human experts, researchers, and clinicians are beginning to benefit from computer-
assisted interventions [2].

The process of computer-assisted diagnostics and medical imaging analysis mainly relies on machine
learning. The classification task in traditional machine learning methods is carried out in a series of steps,
the most important of which are feature extraction, learning, preprocessing, accurate feature selection, and
classification. When the features chosen are the main objects that are relied upon for decision-making,
these features may be error-prone and unreliable in the process of distinguishing classes. Deep learning
allows feature extraction and classification in one shot in contrast to classical machine learning techniques
[3]. After the development of machine learning techniques and the emergence of the field of deep learning,
deep learning has become one of the adopted methods in the diagnostic process. Despite many machine
learning techniques that can be used to analyze medical images in various fields, deep learning has become
the state-of-the-art method to analyze and diagnose medical problems due to its accuracy. Deep learning is
a part of machine learning. It is based on artificial neural networks called “deep neural networks,” because
the structure of a neural network consists of multiple inputs, output, and hidden layers. Deep learning is
widely known for its application in many areas, most importantly in the analysis and interpretation of
medical images [4] such as breast and skin cancer classification tasks. However, these applications produce
low-level accuracy of classification with deep learning due to issues including a lack of training data and
model architecture [5]. Considering that deep learning models require a large amount of data to perform
well, which are costly and time-consuming to obtain, researchers in the field of medical image analysis
suffer because of the difficulty of collecting enough annotated images to train deep learning models [6].
Moreover, given that the majority of medical datasets have few samples, transfer learning is a viable
strategy for solving new tasks and making use of well-trained public domain models (e.g., LeNet, Alex-
Net, Vgg-16, and ResNet) [7,8], where the obtained knowledge is transferred from the source domain to the
target domain. To prevent data insufficiency, fine-tuning a pre-trained neural network on a targeted dataset
can substantially improve performance compared to training from scratch [9]. However, this approach has
limitations, because the features between the Imagenet source dataset and the target dataset do not match
[10]. Numerous obstacles can be encountered in the growth and enhancement of deep learning methods,
the most significant of which is imbalanced data, as well as varied types and sources of images. Hence, we
summarized studies that employed transfer learning approaches to analyze medical images and discussed
the advantages and disadvantages of the approaches used in these studies.

This study aims to review transfer learning approaches, their applications, and problems related to
their use. In addition to presenting the issues and challenges related to medical images, this study focuses
on future research objectives. This review will benefit new researchers in identifying better approaches to
their research. Below is a summary of the most important contributions of this study:
• This study focused on the impact of transfer learning methodologies in medical image classification.
• This study concentrated on transfer learning approaches using pre-trained models, and we showed the
performance of different models.

• This review discussed classic and recent convolutional neural network (CNN) models.
• This research identified the problems that have been identified in other studies that have been conducted
on medical image analysis and suggested remedies for such problems.

The remainder of this work is organized as follows. In Section 2, we conduct a literature evaluation of
transfer learning approaches. Pre-trained CNN models are then presented, and their performance is eval-
uated for transfer learning. In subsection one, we discuss methods for dataset augmentation and data size
techniques. In subsection two, we discuss classifier performance and visualization. In Section 3, we discuss
the different imaging methods and the problems and limitations of some of them. In Section 4, we show
some datasets for several diseases and their details. In Section 5, we identify challenges and issues involved
in medical images. In Section 6, we offer suggestions for a possible future direction of research for
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the challenges that researchers encountered during their study. Finally, in Section 7, we present the
conclusions.

2 Transfer learning approaches

In training deep learning models, a shortage of significant volumes of annotated medical images is a major
obstacle [7]. Several research studies have used a transfer-learning approach that transfers knowledge from
CNN models trained on a large number of images, such as ImageNet, to overcome this challenge. The first
layers of the model are locked or adjusted, whereas the last layers are trained on the target dataset.
Although the source and target datasets differ, the model extracts low-level features that are often the
same when evaluating any image, thus eliminating the requirement for a large dataset to train the model
and extract additional features. This technique decreases training time and cost. Transfer learning can be
approached in two ways: feature extraction and fine-tuning [11].

2.1 Feature-extracting

This strategy leverages a pre-trained CNN model on a large dataset such as ImageNet as a feature extract for
the target task by freezing all layers of the model and replacing the fully connected layers to fit the new task.
The feature is extracted using convolutional layers. The data are then passed to the classifier, which
consists of fully connected layers replaced by a new task or one of the machine learning classifiers
(SVM, K-NN, etc.). Only the new classifier is trained, rather than retraining the entire model [12] (Figure 1).
The main advantage of this approach is running the pre-trained model only once on the new data instead
of running it once in each training period, so it is much faster. However, this approach does not allow
dynamically adjusting the new input data during the training.

2.2 Fine-tuning

This method works by taking a pre-trained CNN model to unfreeze all or a part of the layers and retraining
them on new data [13]. This method can bring improvements to the model by gradually adapting predefined
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features to new data (Figure 1). This approach allows dynamically adjusting new input data during training,
which is required when increasing data through the data augmentation technique (to be discussed in
Section 2.1) that we need to solve the problem of lack of training data.

We define several pre-trained CNN models and analyze their structure and performance to determine
the best strategy. This component of investigation is critical in the field of medical image interpretation.
Models with several layers can be an obstacle in mobile applications, as they require many computational
resources and take a long time to train [14]. Such models include AlexNet, VGG Net, GoogLeNet, Dense CNN,
and all convolutional models.

All convolutional models are the most widely used DCNN architectures owing to their good perfor-
mance in many image interpretation and stuff recognition applications. Some designs (such as GoogLeNet
and ResNet) were created with large-scale data processing in mind [15]. The following subsections provide
an overview of these models:

1. LeNet (1998): LeCun proposed back-propagation-trained CNNs in 1989, with the goal of recognizing
handwritten numerals. The structure is known as LeNet5. The LeNet-5 architecture consists of three convolu-
tional layers, two sub-sampling layers, and two fully connected layers. It has 431 Kweights and 2.3MMACs [16].

2. AlexNet (2012): Krizhevsky et al. [17] created AlexNet, a CNN model that was more thorough than its
predecessor, LeNet, in 2012. On the ImageNet LSVRC-2010 dataset, this model classified 1,000 picture
classes and produced promising results at that time. This model has eight layers: five convolutional layers
and three fully connected layers. They have 60m parameters and 650 k neurons.

3. ZFNet (2013): Zeiler and Fergus created a CNN architecture named ZFNet, which received the 2013
ILSVRC Prize [18]. The ZFNet architecture is a modification of AlexNet because it changes several of its
features. To lower the number of weights, ZFNet uses a 7 × 7 size filter instead of an 11 × 11 filter, thereby
decreasing the number of network parameters and increasing accuracy.

4. VGGNET (2014): This model was one of the most popular models submitted to ILSVRC-2014 [19]. The
models are VGG11, VGG-16, and VGG-19, which have 11, 16, and 19 layers, respectively. The major purpose of
varying the number of conv2d layers is to understand better how the depth of convolutional networks
affects picture categorization accuracy. VGG-19 is the most computationally intensive, with 138m weights.

5. GoogLeNet (2014): This network won the ILSVRC 2014 challenge [20]. GoogLeNet featured a total of
22 layers, which is far more than what any other predecessor has. In comparison to its predecessors AlexNet
and VGG, GoogLeNet used considerably fewer network parameters. GoogLeNet has 7 m parameters,
whereas AlexNet has 60m and VGG-19 has 138 m. According to GoogLeNet’s estimations, 1.53 G MACs exist.

6. Residual Network (ResNet in 2015): ResNet achieved first place in the 2015 ILSVRC challenge [21].
Kaiming designed ResNet with the goal of establishing a deep network that could solve the vanishing scale
problem that plagued prior networks. ResNet is made up of a variety of layers (ResNet34, 50, 101, 152, and
1202). At the end of the ResNet50 network are 49 conv2d layers and one fully connected layer. The total
network weights are 25.5 M, with a MAC weight of 3.9 M.

7. DenseNet: In 2017, Gao Huang et al. [15] created the DenseNet, which contains densely connected
layers, all of which are associated with one another. As a result, it is known as DenseNet. Given that each
layer obtains input from all prior levels and produces its feature mappings as input to all subsequent layers,
this method is helpful for feature reuse. DenseNet is made up of two dense blocks and two transition blocks
between them.

We report in Table 1 the findings of some researchers who used transfer learning. The VGGNet model
was used by many researchers [22–28], ResNet was used by [24,26,29–31], and Inception v3 model was used
by ref. [32–35]. Transfer learning reduces the need for interpretation procedures by transferring deep
learning methods with data from a previous process and then fine-tunes them to small data groups for
the current task. Most images classification curricula transfer learning from previously trainedmodels (such
as LeNet, AlexNet, VGG-16, and ResNet) on Imagenet, which consists of natural images with large numbers
of more than 14 million images distributed to 1,000 classes [36], such as objects, animals, and humans to
solve Many of the tasks to identify patterns and vision of the computer. For example, applying transfer
learning on the Imagenet can improve the performance of these tasks (discover the face, distinguish
between animal types, or distinction between the types of flowers), because its features are similar to those
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Table 1: Authors’ findings when using transfer learning techniques with pre-trained CNN models

Ref. Method Dataset Results

Chang et al. [32] They applied transfer learning
to the pre-trained model
Inception v3

BreaKHis 83% Accuracy for benign and 89%
accuracy for malignant

Prajapati et al. [25] They applied transfer learning
to the pre-trained model
VGG16

(RVG) X-ray images 88.4% Accuracy

Krishnan et al. [37] They applied transfer learning
to the pre-trained model
Inception-ResNet-v2

Kaggle dataset The proposed model achieves a
kappa score of 76%

Liu et al. [35] They applied transfer learning
to the pre-trained model
InceptionV3

M-NBI Accuracy, sensitivity, and
specificity are 98.5, 98.1, and
98.9%, respectively

Alsabahi et al. [34] They applied transfer learning
to the pre-trained model
Inception V3.

They have 80 DR chest
images categorized as
normal and 57 DR chest
images categorized as
abnormal.

83.3% Accuracy

Vesal et al. [33] They applied transfer learning
to the pre-trained model
Inception V3

BACH 2018 97.08% Accuracy for four classes

Khan et al. [29] They applied transfer learning
to the pre-trained models
(GoogLeNet, VGGNet, and
ResNet)

Breast microscopic image 97.52% Accuracy

Younis et al. [38] They applied transfer learning
to the pre-trained model
MobileNet

HAM10000 97% Accuracy, 90% precision, and
91% recall

Khalifa et al. [39] They applied transfer learning
to the pre-trained model
AlexNet

APTOS 2019 97.9% Accuracy

Hosny et al. [40] They applied transfer learning
to the pre-trained model
Alex-net

MED-NODE 96.86% Accuracy

Hosny et al. [40] They applied transfer learning
to the pre-trained model
Alex-net

Derm (IS & Quest) 97.70% Accuracy

Hosny et al. [40] They applied transfer learning
to the pre-trained model
Alex-net

ISIC 95.91% Accuracy

Janoria et al. [27] They applied transfer learning
to the pre-trained model VGG-
16 with the K-NN algorithm

ISIC 99% Accuracy

Le et al. [30] They applied transfer learning
to the pre-trained model
ResNet50

HAM10000 The model achieved 93% average
accuracy and precision in the range
[0.7, 0.94], which outperformed
dermatologists’ accuracy of 84%

Rocheteau and
Kim [41]

They applied transfer learning
to the pre-trained model
EfficientNet

ISIC 2020 AUROC 0.931 and AUPRC 0.84

Sasikala [26] CNN algorithm with four
different transfer learning
techniques: AlexNet, VGG16,
ResNet50, and ResNet34

Clinical images collected
from Kaggle

Accuracy of 90.12% is achieved
when the Lr is decreased to 1 × 10−6

after 10 epochs

Kassem et al. [42] They applied transfer learning
to the pre-trained model
GoogleNet

ISIC 2019 Accuracy 94.92%, sensitivity
79.8%, specificity 97%, and
precision 80.36%

(Continued)
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in the Imagenet dataset. However, the Imagenet dataset does not contain medical images. Despite the good
results in applications for detection and classification of melanoma, breast cancer, and diabetic retino-
pathy, unverified issues such as the difference in features between the Imagenet source domain and the
target domain require further investigation.

2.3 Data augmentation and data size techniques

Deep learning models require an enormous amount of data for the purpose of training the network and
producing good results in the classification process, detecting objects, or any task of deep learning applica-
tions. This challenge is magnified in the health care field, where the process of collecting images and
labeling takes a long time and effort and is sometimes prone to errors. Thus, data augmentation is a great
approach to increasing the number of samples in the dataset while preventing overfitting, which is common
when training on a model that has a small set of samples [23]. Overfitting is one of the difficulties that affect
classification accuracy. By increasing the data, the impact of overfitting can be decreased. Rotating, flip-
ping, cropping, adding noise, and modifying colors are some of the data augmentation techniques [12].
Given the possibility of evaluating the microscopic images of breast cancer from different angles of view
without affecting the diagnosis, the data augmentation technique is useful in this case. Data augmentation
has been employed in several research studies. As shown in Table 2, several techniques (e.g., rotate, flip,
scale, add noise, and modify color) were used to increase the number of their samples in the dataset and
overcome overfitting. Moreover, researchers like [38] used data augmentation to balance the dataset. They
employed data augmentation for classes with smaller samples than other classes. Furthermore, to generate
fresh data, only image alteration (such as flipping, scaling, and rotation) was used, that is, the model trains
on the same images, but at a different angle. New images that are different from the original images must be
generated to ensure that the model learns new features. This can be done by using generative adversarial
network technology [44], which generates fake images that are more like the real ones that are difficult for
humans and machines to distinguish between them.

Table 1: Continued

Ref. Method Dataset Results

Kondaveeti and
Edupuganti [31]

They applied transfer learning
to the pre-trained model
ResNet50

HAM10000 Accuracy 90%, precision 89%, and
recall 90%

Jasil and
Ulagamuthalvi [22]

They applied transfer learning
to the pre-trained models
(InceptionV3, VGG16, and
VGG19)

ISIC Accuracy 74% for Inception V3, 77%
for VGG16, and 76% for VGG19

El Houby [28] They applied transfer learning
to the pre-trained model
VGG16

Kaggle dataset Accuracy 86.5% for 2-class, 80.5%
for 3-class, 63.5% for 4-class, and
73.7% for 5-class

Saber et al. [23] They applied transfer learning
to the pre-trained model
VGG16

MIAS Specificity 98%, accuracy 96.8%,
sensitivity 96%, and area under the
curve (AUC) 0.99

Munien and
Viriri [43]

They applied transfer learning
to the pre-trained model
EfficientNet-B2

ICIAR2018 Accuracy and sensitivity 98.33%
with Reinhard stain normalization
and 96.67% with Macenko stain
normalization

Sellabaskaran
et al. [24]

They applied transfer learning
to the pre-trained models
(VGG19 and ResNet50)

MRI Accuracy 98% with VGG19 and
ResNet50 and 96% with Xception
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Few published studies have compared performance results while employing different data sizes with and
without data augmentation technology such as ref. [45]. As a result, no research has been done to see how
the size of the dataset used in several studies affects the outcomes such as ref. [46].

2.4 Classifier performance evaluation and visualization

In this section, we will discuss the measures most commonly used in the current studies to evaluate trained
models such as accuracy, recall, precision, F1 score, receiver operator characteristic (ROC) curve, and AUC.

Confusion Matrices: Also known as the error matrix [47], a confusion matrix is a special table-shaped
structure that allows the assessment of algorithm performance. Actual cases are represented in each row of
the matrix, whereas expected cases are represented in each column. Sometimes, the representation is
reversed. Figure 2 shows an example of the basic binary classification confusion matrix. For example,
our cases here are positive or negative, where class1 represents positive cases and class2 represents negative
cases. Each element of the matrix represents the following:
▪ True Positives (TP): Actual cases were positive, and the predicted cases were positive.
▪ True Negatives (TN): Actual cases were negative, and the predicted cases were negative.
▪ False Positives (FP): Actual cases were negative, and the predicted cases were positive.
▪ False Negatives (FN): Actual cases were positive, and the predicted cases were negative.

The diagonal elements represent the number of actual cases that were correctly forecast, whereas off-
diagonal elements are those that have been erroneously predicted by the classifier. The higher the values in
the diagonal elements of the confusion matrix, the better, because they indicate many correct predictions
[48]. Through the elements of this matrix, the performance measures in deep learning, namely, accuracy,
precision, recall (sensitivity), specificity, and F1 score can be determined to evaluate model performance.

Accuracy is calculated by dividing the number of correctly predicted cases by the total number of
samples.

=

+

+ + +

Accuracy TP TN
TP TN FP FN

.

Precision is calculated by dividing the number of the cases positive that were correctly predicted by the
total of the cases positive that were correctly predicted and the number of the cases positive that were
incorrectly predicted. Precision is a useful statistic when a false positive is more of a concern than a false
negative.

=

+

Precision TP
TP FP

.

Recall (Sensitivity) is calculated by dividing the number of the cases positive that were correctly pre-
dicted by the total of the cases positive that were correctly predicted and the number of the cases negative

TP FP
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Figure 2: Confusion matrix for two classes [49].
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that were incorrectly predicted. Recall is a useful statistic when a false negative is more of a concern than a
false positive.

=

+

Recall TP
TP FN

.

Specificity is the ability of the model to identify the negative cases correctly. When all actual negative
cases are identified, a model is ideal because it produces no sudden results.

=

+

Specificity TN
TN FP

.

F1 score: When we try to increase the model’s precision, the recall decreases, and vice versa. This
measure can be interpreted as an accordant mean of precision and recall, giving an extensive depiction of
these two measurements, where an F1 score reaches its best value at 1 and worst at 0.

( )

( )
- = ×

×

+

F1 score 2 Precision Recall
Precision Recall

.

ROC curve is an evaluation metric for binary classification tasks. It plots the True-Positive Rate against
the False-Positive Rate at various threshold settings [50]. The ROC curve measures how accurately the
model can distinguish between two things (e.g., whether a type of cancer is benign or malignant). AUC
measures the entire two-dimensional region under the ROC curve. This result gives a good idea of how well
the model is performing. The higher the AUC, the better the performance of the model (Figure 3).

=

+

FPR FP
FP TN

,

=

+

TPR TP
TP FN

.

The confusion matrix is the most extensively used technique in evaluating the effectiveness of classi-
fiers, per our survey of previous research in the field of medical image classification. In melanoma cancer
classification, Kassem et al. [42] proposed a deep pre-trained model of unclassified skin cancer images and
retrained the last layers of the proposed model on a small number of foot skin images. They obtained
99.03% accuracy, 99.81% recall, 98.7% precision, and a 99.25% F-score. Kondaveeti and Edupuganti [31]
used ResNet50, InceptionV3, Xception, and MobileNet models and then trained each neural network for 30
epochs. With ResNet50, they were able to obtain 90% accuracy, 90% recall, and 89% precision. Kassem
et al. [42] used transfer learning with the GoogleNet model and used dual learning transfer technology for
multi-class classification of skin cancer. They obtained 94.92% accuracy, 79.8% recall, 80.36% precision,
and an F1 value of 80.07%. Table 3 reports the results of the classification task for skin cancer. In breast
cancer classification, Saber et al. [23] categorized MIAS images into benign, malignant, and normal cases.
They applied the freeze and fine-tune strategies to improve the model for the classification of mass lesions.
The accuracy of the VGG16 model was 98.96%, the recall was 97.83%, the precision was 97.35%, and the F1
was 97.66%. Sellabaskaran et al. [24] employed three pre-trained models for the classification procedure:
VGG19, ResNet50, and Xception. Their results were assessed separately. VGG19 and ResNet50 obtained a
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Figure 3: Described ROC curve and AUC [51].

An extensive review of state-of-the-art transfer learning techniques  1093



Ta
bl
e
3:

Re
su

lt
s
of

th
e
sk

in
ca
nc

er
cl
as

si
fi
ca
ti
on

ta
sk

A
ut
ho

r(s
)

M
et
ho

d
D
at
as

et
A
cc
ur
ac
y
(%

)
R
ec
al
l
(%

)
Pr
ec
is
io
n
(%

)
F1

(%
)

A
lz
ub

ai
di

et
al
.
[1
0
]

Th
ey

ap
pl
ie
d
tr
an

sf
er

le
ar
ni
ng

to
th
e
pr
e-
tr
ai
ne

d
m
od

el
D
C
N
N

D
FU

cl
as

si
fi
ca
ti
on

ta
sk

99
.0
3

99
.8
1

98
.7

99
.2
5

K
on

da
ve
et
i
an

d
Ed

up
ug

an
ti
[3
1 ]

Th
ey

ap
pl
ie
d
tr
an

sf
er

le
ar
ni
ng

to
th
e
pr
e-
tr
ai
ne

d
m
od

el
Re

sN
et
50

H
A
M
10

0
0
0

90
90

8
9

—

K
as

se
m

et
al
.
[4
2 ]

Th
ey

ap
pl
ie
d
tr
an

sf
er

le
ar
ni
ng

to
th
e
pr
e-
tr
ai
ne

d
m
od

el
G
oo

gl
eN

et
IS
IC

20
19

94
.9
2

79
.8

8
0
.3
6

8
0
.0
7

H
os

ny
et

al
.
[4
0
]

Th
ey

ap
pl
ie
d
tr
an

sf
er

le
ar
ni
ng

to
th
e
pr
e-
tr
ai
ne

d
m
od

el
A
le
x-
ne

t
w
it
h
da

ta
au

gm
en

ta
ti
on

D
er
m
IS

D
er
m
Q
ue

st
96

.8
6

96
.9
0

96
.9
2

—

H
os

ny
et

al
.
[4
0
]

Th
ey

ap
pl
ie
d
tr
an

sf
er

le
ar
ni
ng

to
th
e
pr
e-
tr
ai
ne

d
m
od

el
A
le
x-
ne

t
w
it
h
da

ta
au

gm
en

ta
ti
on

M
ED

-N
O
D
E

97
.7
0

97
.3
4

97
.9
3

—

H
os

ny
et

al
.
[4
0
]

Th
ey

ap
pl
ie
d
tr
an

sf
er

le
ar
ni
ng

to
th
e
pr
e-
tr
ai
ne

d
m
od

el
A
le
x-
ne

t
w
it
h
da

ta
au

gm
en

ta
ti
on

IS
IC

95
.9
1

8
8
.4
7

92
.3
4

—

Le
et

al
.
[3
0
]

Th
ey

ap
pl
ie
d
tr
an

sf
er

le
ar
ni
ng

to
th
e
pr
e-
tr
ai
ne

d
m
od

el
Re

sN
et
50

H
A
M
10

0
0
0

93
.0
0

8
6

8
8

8
4

Ja
no

ri
a
et

al
.
[2
7 ]

Th
ey

ap
pl
ie
d
tr
an

sf
er

le
ar
ni
ng

to
th
e
pr
e-
tr
ai
ne

d
m
od

el
V
G
G
16

+
K
N
N

IS
IC

99
.9

—
—

—

1094  Abdulrahman Abbas Mukhlif et al.



higher accuracy of 98%, recall of 98%, precision of 98%, and F1 value of 98%. Munien and Viriri [45] tested
seven EfficientNets to see how well they could identify breast cancer photos into four categories. Effi-
cientNet-B2 and Reinhard obtained a higher accuracy of 98.33%, recall of 98.33%, precision of 98.44%,
and an F1 value of 98.33%. Table 4 lists all of the outcomes from the breast cancer classification task.

DeVries et al. [52] conducted a recent study that proved using the AUC when evaluating the perfor-
mance of a model trained on an imbalanced dataset was useless due to bias. Instead, they concluded that
the use of the F1 score for imbalanced datasets with a higher percentage of true negative cases compared to
positive cases, as it is likely to provide a reliable performance assessment given their reliance on the
positive forecast ratio. Future work can examine previously published models that use the AUC and assess
their efficiency by comparing the model’s performance with an F1 score.

The studies we surveyed contained only a few attempts to investigate the visualization of the CNN
model and to understand how CNN operates and makes predictions and decisions; this is an important
research gap that deserves attention. Borjali et al. [53] used two different methods of visualization to
represent the two basic levels of the network (CNN classification and CNN feature extraction). Convolution
layer filters using the maximum activation approach show the workings of the CNN architecture to gain a
better visualization and understanding of the CNN. By visualizing these filters, we can explain whether CNN
is looking for good features. Unrecognizable filters indicate problems with CNN’s structure or that training
was poorly done.

3 Medical images

A series of scales are used to obtain an image. Radiation absorption in X-ray imaging, sound pressure in
ultrasound, and radio frequency signal capacity in magnetic resonance imaging are examples of these
scales. Each image point is measured in a digital image by one measurement, and multiple measurements
are collected in multi-channel images [57]. Many imaging techniques are used to produce medical images,
such as X-rays, computed tomography, magnetic resonance imaging, ultrasound, flexible imaging, and
optical imaging [58].

The type of technique used in imaging a specific disease is determined by the location of the disease in
relation to the patient’s body that the doctor or radiologist needs to show on the image, the accuracy of the
type of imaging used to produce accurate results for disease detection and classification, and the type of
imaging that is comfortable for the patient (e.g., non-surgical intervention and an inexpensive type of
imaging). Medical imaging techniques are of great importance in early diagnosis, as medical imaging is
sometimes the main step in preventing the spread of disease through advanced imaging techniques.
Moreover, early diagnosis helps treat or eliminate many disease conditions.

We noted in our study that digital dermoscopy is the dominant type and the most commonly used
technique for imaging skin disease. It is among the most successful methods for classifying malignant
skin tumors, according to our review of previous studies (Figure 4) [10,22,26,27,30,31,38,40–42,59,60].
Researchers have faced many issues and challenges in the imaging of skin debridement, such as light
reflections on the disease area, lighting contrast, different skin tone of the skin, as well as hair coverage
of the disease area [59]. These challenges require the selection of good methods for pre-processing the
image. For imaging breast cancer, microscopy has been the common type of imaging in many studies
[10,29,32,33,43,61,62]. Challenges have been encountered with histological images, such as the large varia-
bility between histological images of the same cancer subtype. Such variability can lead to inaccurate
results when using traditional algorithms like machine learning algorithms for multi-classification, which
require advanced methods and significant computing power [63]. Some studies have used chest X-rays [23],
although experts have recommended limiting the use of chest X-rays, according to the National Compre-
hensive Cancer Network guidelines [64]. Some studies have used MRI as a non-invasive and low-contrast
tool [24], although it is not generally recommended for pregnant women [65]. Iranmakani et al. [66]
summarized the imaging techniques used for the detection task of breast cancer. However, they did not
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highlight microscopic imaging despite its popularity in several recent studies. Phankokkruad utilized
microscopy images to classify lung cancer [67], whereas computed tomography (CT) imaging technology
was employed in several studies [68–70]. To classify gastric cancer, endoscopy was the most common
imaging technique according to our survey [71,72]. To classify diabetic retinopathy, fundus imaging was
used [28,39,37,73]. For the classification of brain tumors, MRI was the most frequently used tech-
nique [74–76].

4 Datasets

Oxford Dictionary [77] defines dataset as a collection of data that a computer treats as a single entity. Thus,
a dataset can include many different types of data and still be utilized to train a method to identify
predictable patterns throughout the entire dataset. Data comprise a major element of any artificial intelli-
gence system. In many ways, data are the real reason for machine learning’s popularity. We can examine
patterns and discover trends and make judgments on the basis of a dataset if the amount of data is enough.

A pre-processed dataset is separated into several parts of data for training, testing, and validation (Figure 5).
These steps are necessary to assess the quality of the model. Hence, the test dataset is kept separate from the
rest of the data. Although validation data are not mandatory, validation data help prevent the model from
being trained on the same type of data, which causes biased predictions. To train the model effectively, a
massive amount of data are necessary. However, the model may become over-trained (overfitting) [78].

This section includes details of some of the different pathological datasets used in the classification
studies of skin cancer, breast cancer, and diabetic retinopathy. The “HAM10000,” “ISIC,” “Derm Quest,”
“DermIS,” and “MED-NODE” datasets were among the available datasets used to classify melanoma, as
shown in Table 5. Several datasets have been used for breast cancer classification, including “ICIAR 2018,”

0

5

10

15

Common imaging modali�es for disease imaging in 
previous studies

breast cancer

skin cancer

lung cancer

Gastric cancer

Diabe�c Re�nopathy

Brain Tumors

Figure 4: Common imaging modalities for disease imaging in previous studies.

Table 5: Skin cancer datasets

Dataset No. of samples No. of classes Used by Reference

HAM10000 10,015 Seven [30,31,38,59,60] [86]
ISIC2016 1,279 Two — [87]
ISIC2017 2,750 Three [27] [87]
ISIC2018 12,594 Seven [22] [87]
ISIC2019 25,331 Eight [42] [87]
ISIC2020 33,126 Two [41] [87]
DermQuest 137 Two [40] [88]
DermIS 206 Two [40] [89]
MED-NODE 170 Two [40] [90]
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“BreakHis,” “MIAS,” “IDC,” and “BreCaHAD” (Table 7). The “APTOS 2019” and “EyePACS” datasets were
utilized to classify diabetic retinopathy (Table 8).

4.1 HAM10000 dataset

This dataset [79] contained 10,015 dermatoscopic images collected from two different locations over 20
years: the Department of Dermatology at the Medical University of Vienna, Austria, and Cliff Rosendahl’s

Table 7: Breast cancer datasets

Dataset No. of samples No. of classes Used by Reference

BACH2018 400 Four [32,33,43,61] [95]
BreakHis 7,909 Eight [62,96,97] [98]
MIAS 322 — [23] [99]
IDC 277,524 Two [10] [100]
BreCaHAD 162 Six [10] [101]

Table 8: Datasets for diabetic retinopathy

Dataset No. of samples No. of classes Used by Reference

APTOS 2019 3,662 Five [39] [104]
EyePACS 88,702 Five [28,37,73] [105]

Table 6: Distribution of the BreaKHis dataset by class and magnification factor [92]

Classes Subclasses Number of patients Magnification factors Total

40× 100× 200× 400×

Benign A 4 114 113 111 106 444
F 10 253 260 264 237 1,014
TA 3 109 121 108 115 453
PT 7 149 150 140 130 569

Malignant DC 38 864 903 896 788 3,451
LC 5 156 170 163 137 626
MC 9 205 222 196 169 792
PC 6 145 142 135 138 560

Total 82 1,995 2,081 2,013 1,820 7,909

Full Dataset

Training Set Testing Set

Testing SetTraining Set
Validation 

Set

Figure 5: Splitting the entire dataset into training, validation, and test sets [78].
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skin cancer practice in Queensland, Australia. This dataset included 6,705 images for melanocytic nevi,
1,113 images for melanoma, 1,099 images for benign keratosis-like lesions, 514 images for basal cell carci-
noma, 327 images for actinic keratoses, 142 images for vascular lesions, and 115 images for dermatofibroma.
This dataset suffers from imbalanced classes, as some classes contain very few images compared with the
rest of the classes [80] (Figure 6). Hence, the researchers solved this problem by using data augmentation,
and a few of them balanced datasets according to the minimum number of classes. However, this technique
is not ideal, because many images are discarded in the training process.

4.2 ISIC archive datasets

The ISIC archive [81] is a dataset of skin cancer images from over the world. The International Skin Imaging
Collaboration first posted the ISIC dataset (called ISIC2016) during the International Symposium on Bio-
medical Imaging venture 2016 [82]. Training and testing are the two components in the ISIC2016 dataset.
This dataset contains 900 images for training and 379 images for testing, including two classes: malignant
and benign nevi. Malignant lesions make up about 30% of all the images in the collection, and the rest fall
under the benign nevi class. ISIC2017 dataset includes three classes of images: melanomas, seborrheic
keratoses (SK), and benign nevi. This dataset contained 2,000 training images split into 374 melanomas,
254 SK images, and 1,372 benign nevi images; 150 validation images split into 30 melanoma images, 42 SK
images, and 78 benign nevi images; and 600 testing images split into 117 melanoma images, 90 SK images,
and 393 benign nevi images. ISIC2018 database is a large-scale dataset of dermoscopy images that contain
2,594 training images for task1 and 10,015 training images for task3. ISIC2019 dataset contains 25,331
training images of dermoscopy images divided into eight classes such as melanoma, melanocytic nevus,
BCC, AK, benign keratosis, dermatofibroma, vascular lesion, and SCC. ISIC2020 dataset consists of 33,126
samples of dermatoscopy benign and malignant skin lesions gathered from over 2,000 patients. The ISIC
archive dataset has limitations such as noise, color labels on the skin, blurred images, and the presence of
moles or hair adjacent to the area of disease. Moreover, most cases in datasets belong to light-skinned
individuals rather than dark-skinned people (Figure 7).

4.3 DermQuest dataset

This dataset [82] contains 137 dermoscopy images divided into two classes: melanoma class contains 76
images and nevus class contains 61 images. The limitation of this dataset is the presence of low-quality
images in the two classes [83]. In 2018, this dataset was redirected to Derm101. However, on December 31,
2019, this dataset was disabled.

NV MEL BKL BCC AKIEC VASC DF
Number of images 6705 1113 1099 514 327 142 115

0

2000

4000

6000

8000

Distribu�on of images between classes

Figure 6: Distribution images of HAM10000 between classes.
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4.4 DermIS dataset

This dataset [84] consists of 206 dermoscopic images split into two classes: melanoma class which includes
119 images and non-melanoma class which includes 87 images. The images are in the RGB color system.
The limitation of this dataset is that the dataset size is very small and contains multiple image sizes.

4.5 MED-NODE dataset

This dataset [85] contains 170 dermoscopic images from the digital image archive of the Department of
Dermatology of the University Medical Center Groningen. It is split into two classes: melanoma class which
includes 70 images and nevus class which includes 100 images. The limitation in this dataset is the
small number of images as well as their imbalance.

4.6 BACH2018 dataset

The BACH2018 Challenge has made two labeled training datasets accessible to registered participants.
The first dataset includes microscope images that have been annotated by two expert pathologists from
IPATTIMUP and IPATTIMUP (I3S). The second set of images includes both annotated and unannotated
WSI images. Annotations were completed by a pathologist for the WSI and then corrected by a second
expert. The microscope dataset includes 400 training and 100 test images, which are equally divided
into four types: 100 images for normal, 100 images for benign, 100 images for in situ carcinoma, and
100 images for invasive carcinoma (Figure 8) [91]. The images are uncompressed and in high-resolution
mode (2,040 × 1,536 pixels) in addition to the variety of colors in the images.

Figure 8: Samples from the BACH2018 dataset [91]. (a) Normal, (b) benign, (c) in situ, and (d) invasive.

Figure 7: Examples of limitations in the ISIC archive dataset.

1100  Abdulrahman Abbas Mukhlif et al.



4.7 BreakHis dataset

This dataset contains 7,909 images split into two classes: benign class which includes 2,440 images and
malignant class which includes 5,429 images. The images were collected from 82 patients and magnified
40×, 100×, 200×, and 400×. Table 6 shows images with a magnification factor of 400×. Each class has four
subclasses: benign class includes Adenosis (A), Fibroadenoma (F), Tubular Adenoma (TA), and Phyllodes
Tumor (PT); and the malignant class includes Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mucinous
Carcinoma (MC), and Papillary Carcinoma [92]. This dataset suffers from imbalanced classes.

4.8 MIAS dataset

This is a digitized mammography dataset that was created in 1994 by the Mammographic Image Analysis
society. The dataset contains 322 mammogram images. The size of all images is 1,024 × 1,024 (Figure 9) [93].
The dataset is small and features noise and low-resolution images.

4.9 IDC dataset

This dataset contains of 277,524 patches of size 50 × 50 derived from 162 H&E-stained breast histopathology
samples split into two classes: negative class includes 198,738 samples and positive class includes 78,786
samples. This dataset is highly imbalanced.

4.10 BreCaHAD dataset

This dataset contains 162 images of breast cancer histopathology images that each measures 1,360 × 1,024
pixels. The task of this dataset is to classify histological structures in this (H&E)-stained images into six
classes, namely, mitosis, apoptosis, tumor nuclei, non-tumor nuclei, tubule, and non-tubule [94]. This
dataset contains a very small amount of images.

Figure 9: Mammography images from the MIAS dataset [113].
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4.11 APTOS 2019 dataset

The Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 dataset for detecting Diabetic Retinopathy in
retinal images is now publically available on Kaggle. This picture collection contains 3,662 samples that
have been classified into five categories by specialist physicians at Aravind Eye Hospital in India: Negative
DR, Mild DR, Moderate DR, Proliferative DR, and Severe DR (Figure 10) [102]. This dataset has limitations
such as size difference, information redundancy, and data imbalance.

4.12 EyePACS dataset

EyePACS is the publicly available dataset for detecting diabetic retinopathy. This dataset contains 88,702
retinal fundus images and is approved by the California Healthcare Foundation. According to the severity of
DR, fundus images are graded as normal, mild non-proliferative DR, moderate non-proliferative DR, severe
non-proliferative DR, severe non-proliferative DR, and proliferative DR [103]. The images are from various
camera models and sizes, which can affect how the left and right sides appear. The dataset is imbalanced
because normal images with the label “0” represent a huge class, whereas PDR images only comprise a
small percentage of the images in the dataset.

In this review, the most commonly utilized dataset for skin cancer classification was HAM10000,
followed by SICI, DermQuest, DermIS, and MED-NODE (Figure 11). BACH2018 was the most widely used
dataset for breast cancer classification, with BreakHis coming in second followed by MIAS, IDC, and

Figure 10: Images from the APTOS 2019 dataset. (a) Normal image, (b) mild DR, (c) moderate DR, (d) severe DR, and
(e) proliferative DR.

42%
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8%

8%
8%

The most commonly used 
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DermIS

MED-NODE

Figure 11: Most commonly used datasets in this study for skin cancer classification.
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BreCaHAD (Figure 12). The APTOS 2019 dataset was the most commonly utilized dataset in prior studies to
classify diabetic retinopathy (Figure 13). The URL links for each set in the tables provide access to all of the
datasets indicated (Tables 5, 7 and 8).

5 Issues and challenges of medical images

Despite the positive findings of previous studies, deep learning approaches to the diagnosis and classifica-
tion of cancers continue to have difficulties, especially in medical imaging. This section identified a review
of some of the main issues and challenges of medical images:
(1) Large training datasets are required to train deep learning models [106], which is a huge difficulty,

especially in medical imaging. The strength of deep learning classifier performance depends on the
amount of training data, so lack of data is one of the major problems preventing deep learning models
from performing well in medical imaging.

(2) Labeling medical data takes a significant amount of time and work, especially if the amount of data is
large, making it prone to human mistakes [10]. As a result, collecting labeled medical images in large
numbers is a difficult task.

25%

75%

The most commonly used 
datasets in this research for 

diabe�c re�nopathy classifica�on

APTOS 2019

EyePACS

Figure 13: Most commonly used datasets in this research for diabetic retinopathy classification.
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Figure 12: Most commonly used datasets in this study for breast cancer classification.
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(3) The great diversity of data is one of the key challenges facing researchers in processing medical images
[107]. The greater the diversity of data, the greater the need for more such data to ensure that the model
learns well and avoids model bias.

(4) Unlike personally evaluating a place with a biopsy or another procedure, medical imaging is non-
invasive. Compared with manual verification procedures, imaging will always be less accurate in
detection. Something appearing benign may actually be malignant; something normal may appear
abnormal, and vice versa.

(5) Another difficulty in developing deep learning models is the imbalance between classes within a
dataset; thus, images in one class may not contain as many samples as images in other classes,
resulting in a bias toward one class over the other [108].

(6) Datasets containing dermoscopy images have disadvantages, and these defects can be attributed to the
diversity of images because of their collection from several sources and because of the poor use of
imaging. Other problems are the difference in the color of human skin, as well as the presence of
colorful labels on the body near the area of interest, the presence of dense hair, the variety of lighting,
and the reflection of light on the body [80]. These obstacles pose a challenge in determining the
location and type of disease.

Several attempts have been made to solve these challenges, and Table 9 summarizes them.

6 Research proposals for potential future directions

Many researchers have tried a variety of approaches to address these issues, but despite their promising
results, their works have limitations. Also, transfer learning techniques can be used for other medical
images such as CT and X-ray images in COVID cases [114–120]. Hence, we have proposed solutions for
future research directions, which we summarize in Table 9. These suggestions will be useful for new
researchers in determining the direction of their future works.
1. Several studies in the task of classifying breast cancer have sliced the images into patches of small sizes

as a way to augment the data, where some cells are split between adjacent patches, and these cut cells
cause misclassifications in the detection results. Also, there is no guarantee that the small patches
contain enough information for the correct class; therefore, we suggest just resizing the images and
using data augmentation technology for the purpose of increasing the amount of data and overcoming
the problem of data shortage.

2. Some studies did not address the problem of data imbalance, and others used under sampling, which
may cause the exclusion of some images that contain important information. This, we suggest using
the technique of data augmentation to apply it to the classes with a limited number for balancing the
classes.

3. During our review of previous studies, we found that all researchers using the transfer learning approach
used pre-trained models on the imagenet dataset as the source and performed micro-adjustment of the
classifier on the images of the target task. There are limitations in this approach due to the field mis-
match between the natural images from the imagenet and the medical images. So we suggest retraining
the last custom layers by extracting features specific to the target task and keeping the base layers as
generic feature extractors, to solve the domain mismatch problem.

4. During related works, we noted the use of pre-trained deep models such as (Inceptionv3,
InceptionResNetV2, and VGGnet) in many studies. It is not necessary for deep models to perform better;
light models can perform well if they are well-tuned (such as MobileNet, MobileNetV2, EfficientNetB0, and
Xception).

5. The data augmentation techniques were the common solution to the overfinding problem in many
previous studies. We suggest adding a dropout layer after the hidden layer and adjusting the learning
rate which can help avoid this problem.
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Table 9: Challenges and the research’s recommendations for future studies

Authors Problem Method used Challenge

Ahmad
et al. [109]

Despite the remarkable results of
deep learning models, it has
limitations because it needs huge
amounts of training data to
provide significant computational
power

With the advent of contemporary
GPUs, the issue of high computing
requirements has been largely
overcome. However, gathering
vast amounts of training data is
still time-consuming. This
problem was solved by using the
data augmentation party by
making duplicates of the image
through reflection and rotation

They cut images into patches at
small volumes as a way to
increase data. This process may
lose some important information
needed to diagnose the disease,
so we suggest changing the size of
images only and using data
augmentation technology for the
purpose of increasing the amount
of data and overcoming data
shortage

Kassani and
Kassani
[110]

The first challenge was to
contradict the color variation of
the images in the dataset
they used

They normalized all images in the
dataset that they used to improve
color variation. To solve the
problem of not having enough
training data, they used data
augmentation techniques

The accuracy of their model
classification can be increased by
using new ways to normalize spots
better

Second, the dataset used did not
contain sufficient images

Khan
et al. [29]

The complex structure of the
shape and appearance of cancer
cells made them difficult to
interpret and manually
understand microscopic images.
Hence, the interpretation takes a
significant amount of time and
requires advanced experience

They used three different CNN
structures such as GoogLeNet,
VGGNet, and ResNet to extract
features from tissue images of
breast cancer, which were then
combined using learning transfer
technology to increase
classification accuracy. They used
data augmentation techniques to
increase the number of
training data

They did not try to use the
handcrafted features as well as
the CNN features to further
improve the classifier

Singh
et al. [111]

The data were extremely
imbalanced

They used TL with VGG-19, and the
model was supplemented with
different classification methods in
the output layer by extracting the
features from each block and
inserting them through the
classifier

They did not try to use data
augmentation or different weights
for each class to solve the problem
of imbalance between classes

Munien and
Viriri [43]

The amount of labeled data to
train CNNs is not enough to
categorize medical images
because of the high expense of
labeling images and the
difficulties of doing so. Deep CNNs
that performed well in
applications like ImageNet
struggle to prevent overfitting on
these datasets

They employed “EfficientNet”
lightweight structures, which take
up much less space and training
time and prevent overfitting

To reduce the presence of large
numbers of classified images,
transport learning can be used by
conducting two-stage transport
learning. Many unlabeled medical
images can be utilized by
collecting large quantities of them
then training on these images as a
source domain, and re-training the
model on a few images classified
as a target domain

Hosny
et al. [40]

Researchers lacked annotated
medical images for training
purposes. Small amounts of
classified images can be found in
some databases, such as ISIC
2017, MED-NODE, and DermQuest

To increase the number of training
images required to train their
model, they used only data
augmentation strategies

A simpler, less complex model can
be tried and trained from scratch
on unlabeled medical images
available in large quantities in
many datasets, after which
transport learning is used to
adjust the model to the specific
dataset (target)

(Continued)
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6. Most studies use accuracy to evaluate their models, the accuracy scale alone is not sufficient to evaluate
the model, so other measures such as precision, recall, and F1 score, in addition to the specificity score,
can be used to evaluate models; because it is not feasible to use a low specificity for diagnosis, many
people without the disease will show positive results and potentially receive unnecessary diagnostic
procedures.

7 Conclusion

Medical image analysis is a wide and important field that requires substantial verification. The main
problem was the lack of labeled medical images where deep learning models require large numbers of
labeled images to train the model well. Therefore, in this study, we prepared a general review presenting the
methodologies used to analyze medical images. The concept of transfer learning from pre-trained models
such as VGGNet, ResNet, and Inception v3 has been used markedly in studies to overcome the problem of
lack of medical images where transfer learning requires limited amounts of medical data for training.
Despite the good results of previous studies, we have noted the selection of pre-trained CNN models on
ImageNet in many studies to solve the problem of lack of medical images. Nonetheless, many labeled
medical images can be used to train a lightweight model, and this model can be fine-tuned on the labeled
images available in limited quantities instead of using models trained on non-medical images. For data
augmentation methods, only the image modification methods (such as rotation, flipping, zooming, and
coloring) were used to generate images from the original image. This method was not very useful, because
the augmentation is done on the same original images; thus, the model will train on the same data. We also
identified imaging methods used for some diseases and explained some of the benefits and problems that
result from them. All datasets used in the research that we conducted the study were included, and we
showed the number of samples for each of them and the download location to download the dataset
directly. Finally, we have reviewed the current challenges in the field of analysis of medical images, the
ways used to solve them, and our own suggestions to solve such problems. We seek to make this study a
reference for new researchers in this field.

Table 9: Continued

Authors Problem Method used Challenge

Le et al. [30] They ran into the imbalance
challenge of the HAM10000
dataset

To address the imbalance between
classes, they give different
weights to each class by giving
high weights to the minority group
and less weight to the majority
group

This work is still limited in certain
ways. The model can be improved
by trying to remove artifacts that
cause data biases and
experimenting with expanding the
dataset to include both
dermoscopy and clinical imagery

Ali et al. [59] The HAM10000 dataset has
limitations such as noise, color
labels on the skin, blurred images,
poor image variation, and the
presence of moles or hair adjacent
to the area of disease

These images were manually
extracted from the dataset

Many images have such issues in
the dataset, so obtaining better
evaluation performance is a big
challenge. Pre-processing
methods for images that include
such problems can be used
instead of manually excluding
them from the dataset

Younis
et al. [38]

They experienced difficulty in
effectively training the model due
to the imbalanced distribution
among classes, as well as the
increased rate of loss

To balance the classes in the
dataset, they increased data for
minority groups

Their model requires further
improvement by adding a pre-
processing step for images before
training the model on them
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