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Abstract: The increase in the size of universities has greatly increased the number of teachers, students, and
courses and has also increased the difficulty of scheduling courses. This study used coevolution to improve
the genetic algorithm and applied it to solve the course scheduling problem in universities. Finally, simula-
tion experiments were conducted on the traditional and improved genetic algorithms in MATLAB software.
The results showed that the improved genetic algorithm converged faster and produced better solutions
than the traditional genetic algorithm under the same crossover and mutation probability. As the mutation
probability in the algorithm increased, the fitness values of both genetic algorithms gradually decreased,
and the computation time increased. With the increase in crossover probability in the algorithm, the fitness
value of the two genetic algorithms increased first and then decreased, and the computational time
decreased first and then increased.
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1 Introduction

With the development of the social economy and the introduction of compulsory education, more and more
people are able to receive education, the population base receiving basic education has increased, and the
number of people willing to receive higher education has also greatly increased [1]. As a result, the enroll-
ment scale of universities becomes increasingly larger, and the limited educational facilities and teachers’
resources on the campus can hardly meet the growing demand. Therefore, multi-campus operation and
sharing of educational facilities and faculty resources among different campuses have become a way to
solve the demand for education [2]. Although the sharing of teaching resources across multiple campuses
can meet the growing demand, the increased teaching resources also make the management more difficult
and require the coordinated adjustment of the sequence of course arrangements to maximize the use of
limited resources [3]. Hossain et al. [4] proposed a particle swarm algorithm to solve the highly constrained
university course scheduling problem and added a forceful swap operation with a repair mechanism to the
particle swarm algorithm. The experimental results showed the effectiveness of the proposed method.
Herawatie et al. [5] solved the course scheduling problem with a genetic algorithm and avoided local
optimum with a replacement policy. The experimental results showed that the algorithm functioned
well. Yang and Xie [6] proposed a course scheduling algorithm based on a particle swarm optimization
algorithm, designed a model of university ideological and political course scheduling system based on this
algorithm, and verified the effectiveness and usability of the system by experimental and test results. In this
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study, the course scheduling problem in universities was briefly introduced. A genetic algorithm was
proposed to optimize the scheduling scheme. The genetic algorithm was improved by using the principle
of coevolution. The novelty of this study is scheduling courses with a genetic algorithm instead of man-
power and using coevolution to improve the performance of the genetic algorithm in finding the best
solution. The advantage of using a genetic algorithm for scheduling courses is that it can give multiple
scheduling solutions more quickly and select the best solution from them.

2 Course scheduling problem in universities

Higher education institutions teach students according to a course schedule. A scientific and standardized
course schedule can maximize the mobilization and utilization of teaching resources, thus improving
teaching quality. After excluding various restrictions, the scheduling problem can be regarded as a problem
of arranging and combining different courses, and different arrangements and combinations will bring
different teaching qualities [7]. However, in the actual scheduling problem, the optimization of the sche-
duling scheme is subject to various constraints, including the type of courses, the number of classes
required for every course, the number of teachers, the size of classrooms, the number and size of classes,
and the duration of courses.

In addition to the various restrictions mentioned above, the difficulties of the scheduling problem also
include the large number of optional permutations and combinations caused by the large number of
courses, class time slots, and teachers. Some of these permutations and combinations violate the restric-
tions, but even for the remaining combinations, the huge number makes it difficult to find a suitable
scheduling solution by human effort. Therefore, this study uses a genetic algorithm to optimize the sche-
duling solution.

The factors involved in the mathematical description of the scheduling problem are:
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where Tt refers to the t-th period, T refers to the set of time periods, Mm refers to the m-th course (there are
zm classes for this course), M refers to the set of courses, Cc refers to the c-th class (this class includes kc
students), C refers to the set of classes, Rr refers to the r-th classroom (this class can tolerate yr people), R
refers to the set of classrooms, Pp refers to the p-th teacher (this teacher has xp courses to teach), and P is the
set of teachers [8].

In the actual scheduling problem, the values of the factors involved in equation (1)will be restricted. To
facilitate calculation, we default that every classroom can accommodate students in every class in equation (1).
Restrictions for the scheduling problem are:
(1) only one Mm can be taught by Pp at Tt;
(2) Cc can only take one Mm at Tt;
(3) only one Mm can be taught in Rr at Tt.

The above restrictions are converted into a mathematical form:
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where V is the set of allocation events with the teacher, student, and course bound in the scheduling
scheme, vq is the q-th allocation event with the teacher, student, and course bound (teacher is an element of
P, student is an element of C, and course is an element of M), T1, T2, and T3 are the judgment values for the
corresponding three restrictions (the value is 1 if the restriction is not met; otherwise, the value is 0), and f1,
f2, and f3 are the total judgement values of V for the above three restrictions. When the sum of f1, f2, and f3 is
0, it indicates that there is no scheduling conflict [9].

3 Scheduling optimization based on the improved genetic
algorithm

As we can see from Section 2, the goal of the course scheduling problem in universities is to make the
scheduling scheme more reasonable without scheduling conflicts. Traditionally, manual course scheduling
involves scheduling courses with high priorities or scheduling difficulty first, arrange time periods for every
course according to the course hours, and arrange courses with lower priorities in the same way, and the goal
of no conflict is eventually achieved through continuous backtracking and adjustment [10]. However, in
universities with a large number of faculty, students, and course programs, the workload of course scheduling
is heavy. Manual course scheduling for universities is tedious and more prone to scheduling conflicts. The
traditional genetic algorithm [11] uses a single population for evolution. Small population size is ineffective in
finding the optimal solution, while a large population size will lead to too much computation and difficult
convergence. In addition, although the iterative process of the genetic algorithm will increase the number of
solution candidates by mutation operation, it will still fall into the optimal local solution [12].

The traditional genetic algorithm was improved by multi-population coevolution, and the flow of the
improved genetic algorithm for scheduling is shown in Figure 1.

Three initial populations of the same size are generated through coding. Every chromosome in the
population represents one scheduling scheme. In general, the teaching schedule is based on a week-long
cycle, and Saturday and Sunday are holidays, so the scheduling scheme spans from Monday to Friday,
which means that the schemes represented by the chromosomes are for a week. The gene coding pattern of
the chromosome is “time period code + classroom code + course code + class code + teacher code,” and
non-conflicting plural segments following the above pattern constitute the scheduling scheme, i.e., a
chromosome. The choice of gene locus code is not random. There are 25 time periods, so the time period
code is chosen from “01, 02, 03, …, 25.” The classroom code is chosen from the classroom codes owned by
the school. The course code, class code, and teacher code are provided by the school [13]. The coding rules
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for chromosomes within the initial population are as described in Section 2. Under the premise of following
the coding rules, the initial population is generated according to the custom of manual course scheduling.
Step 1, the corresponding teacher codes of one class are added to fixed time periods. Then, the codes of
other teachers of that class are added to different time periods randomly to obtain the initial course
schedule of the class, and the initial class schedule of all classes is combined to form an initial chromo-
some. The plural chromosomes obtained as above constitute the initial population.

Step 2 The fitness of chromosomes in the population is calculated. Since the random generation of
chromosomes, i.e., scheduling schemes, has already taken into account the problem of course conflicts and
actively excluded conflicting schemes in the subsequent genetic operation, the main consideration in the
calculation of fitness is to make the existing conflict-free scheduling schemes better, so the calculation
formula of fitness is:
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where g is the chromosome fitness, g1, g2, and g3 are the course sequence priority, course duration discrete
uniformity, and classroom utilization, ω1, ω2, and ω3 are weights of g1, g2, and g3, αj is the weight value
(importance) of the j-th course, ti is the sequence weight of the i-th period, and dj is the schedule discrete
degree of the j-th course.

Step 3 Whether the predefined conditions (reaching the maximum number of iterations or population
fitness converging to stability) are met is determined based on the calculated population chromosome
fitness. If the predefined conditions are met, the optimal chromosome is selected, and the chromosome
is decoded to obtain the schedule. As shown in Figure 2, every row in this two-dimensional schedule
represents a classroom, every column represents a course time period, and the intersection of the rows
and columns is an array of courses, classes, and teachers, (Mm, Cc, Pp).

Figure 2: Two-dimensional course schedule.

Figure 1: The improved process.
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The genetic operation is conducted when the population chromosome fitness does not meet the pre-
defined conditions.

Step 4 In genetic iteration [14], crossover means randomly selecting two chromosomes according to the
crossover probability and exchanging the gene fragment of the same position. In this study, the single-point
crossover was used, i.e., only one gene at one gene locus was exchanged in one crossover. In addition, the
conflict between the two chromosomes after crossover is determined using equation (2), and if a conflict
occurs, another gene locus is randomly selected again for crossover until there is no conflict. Mutation
means randomly selecting a chromosome according to the mutation probability and exchanging genes at
the same type of gene locus until the mutated chromosome is conflict-free.

Step 5 After all three populations have undergone one genetic operation, the three populations are
subjected to a coevolutionary [15] operation, as shown in Figure 3. The updated populations are arranged in
ascending order by the value of the fitness function, and half of the worst chromosomes are replaced by half
of the best chromosomes in the other population (order: population 1 → population 2 → population 3 →
population 1). Then, the best and worst chromosomes in every population are selected, and the worst
chromosomes are replaced by the best chromosomes.

Step 6 Return to step 2 until one of the termination conditions is satisfied. There are two termination
conditions. The first termination condition is that the number of iterations reaches the preset maximum
number, avoiding the unnecessary computation time caused by difficult convergence. The second termina-
tion condition is that the fitness value of the algorithm converges to stable. The difference between the
fitness value after the current time of iteration and the fitness value after the last time of iteration is
calculated. The algorithm is considered as converging to stable when the difference reduces to within
the preset range and no longer exceeds the preset range in the following 100 times of iterations.

4 Simulation experiments

4.1 Experimental setup

The actual university scheduling data are huge. Not only the number of courses, teachers, and classes is
large [16], but also the variety of courses that teachers can teach is limited, which increases the difficulties
in practice. Therefore, in this study, some of the data were selected to facilitate simulation experiments. The
relevant experimental data were 20 classes, 25 classrooms, 27 teachers, 50 courses, 5 days a week, and 5
teaching time units per day.

Figure 3: The operation flow of coevolutionary operation of three populations.
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The relevant parameters of the traditional genetic algorithm are as follows: the population size was set
as 60, ω1 = 0.5, ω2 = 0.3, ω3 = 0.2, and the crossover and mutation probabilities were set as 0.6 and 0.1,
respectively.

The relevant parameters of the improved genetic algorithm are as follows: the size of all 3 populations
was 20, ω1 = 0.5, ω2 = 0.3, ω3 = 0.2, and the crossover and mutation probabilities were 0.6 and 0.1,
respectively. The crossover and mutation probabilities used in the above genetic algorithm are parameters
obtained through orthogonal experiments.

In addition to the above basic comparison experiments, this study also adjusted the crossover and
mutation probabilities of the two genetic algorithms and compared the performance under different cross-
over and mutation probabilities. When the mutation probability was fixed at 0.1, the crossover probabilities
were 0.4, 0.5, 0.6, 0.7, and 0.8, respectively; when the crossover probability was fixed at 0.6, the mutation
probabilities were 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.

4.2 Experimental results

Figure 4 shows the change in the average fitness value of population chromosomes during iterations of the
traditional genetic algorithm and the improved genetic algorithm. It is seen from Figure 4 that the average
fitness value of the populations of both genetic algorithms increased with the increase in the number of
iterations and converged gradually. The improved genetic algorithm converged to a stable fitness value (48)
after about 750 iterations, and the traditional genetic algorithm converged to a stable fitness value (44) after
about 900 iterations. It was found that the improved genetic algorithm converged faster and yielded better
chromosomes, i.e., better scheduling solutions.

Figure 5 shows the average population fitness values and computational time of the two genetic
algorithms under 0.4, 0.5, 0.6, 0.7, and 0.8 crossover probabilities when the mutation probability was
0.1. It is seen from Figure 5 that as the crossover probability increased from 0.4 to 0.8, the average fitness
value of the two genetic algorithms tended to increase and then decrease, and the computational time of
both algorithms tended to decrease and then increase. The comparison of the two genetic algorithms under
the same crossover probability showed that the improved genetic algorithm had a larger fitness value and
shorter computational time. The reason for the trend of the average fitness value and computational time of

Figure 4: Comparison of traditional and improved genetic algorithms.
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the two genetic algorithms with the crossover probability was that when the crossover probability was low,
fewer new chromosomes were generated, leading to a slow search, and when it was high, the excellent
chromosomes were easily split, leading to a slow search.

Figure 6 shows the average population fitness values and computational time of the two genetic
algorithms at 0.1, 0.2, 0.3, 0.4, and 0.5 mutation probabilities when the crossover probability was 0.6.
It is seen from Figure 6 that as the variation probability increased from 0.1 to 0.5, the average fitness value
of the two genetic algorithms tended to decrease and the detection time tended to increase. The improved
genetic algorithm showed a higher fitness value and shorter computational time than the traditional
algorithm under the same variance probability. The reason for the trend of the average fitness value and
computational time of the two genetic algorithms with the mutation probability was that the variation in
chromosomes generated new gene fragments to increase the diversity of population genes, and when the

Figure 5: Performance of two genetic algorithms under different crossover probabilities when the mutation probability is 0.1.

Figure 6: Performance of two genetic algorithms under different variation probabilities when the crossover probability is 0.6.
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variation probability increased, the diversity of population genes increased, but it also resulted in the
unstable inheritance of good genes.

Both Figures 5 and 6 reflect that the improved genetic algorithm outperformed the traditional genetic
algorithm in terms of average fitness value and computational time under the same crossover and mutation
probabilities. The reason for the above result was that the improved genetic algorithm used the principle of
multi-population coevolution to make the three populations evolve independently and replaced poor
chromosomes with excellent chromosomes to enhance the diversity of high-quality chromosomes and
jump out of the locally optimal solution.

5 Discussion

For higher education institutions, it is an important task to arrange courses for teachers and students in a
reasonable manner. A reasonable scheduling plan can effectively improve the teaching management effi-
ciency of colleges. As the education reform progresses and the importance of higher education is empha-
sized, the enrollment scale of colleges has increased. However, the teaching resources of universities are
limited, and a reasonable scheduling plan is needed to meet the growing demand of students. The increase
in the number of students makes the traditional manual scheduling methods increasingly difficult to cope
with more complex scheduling problems.

The optimization of the scheduling scheme can be regarded as the search for an optimal scheduling
scheme in different candidates, so this study used a genetic algorithm to optimize the scheduling scheme
and also used coevolution to improve the genetic algorithm. Finally, simulation experiments were con-
ducted to verify the performance difference between the traditional and improved genetic algorithms under
different mutation and crossover probabilities, and the final experimental results are shown above.

Under the same crossover and variation probabilities, the coevolution-improved genetic algorithm
converged to stability faster, and the corresponding scheduling scheme was better when convergence
was stable. In addition, under the samemutation probability, with the increase in the crossover probability,
the fitness values of the scheduling solutions of both traditional and improved genetic algorithms increased
first and then decreased, and the computation time decreased first and then increased. Under the same
crossover probability, with the increase in the mutation probability, the fitness values of the scheduling
schemes of both traditional and improved genetic algorithms tended to decrease, while the computational
time tended to increase. The reasons for these results are as follows. Under the same crossover and muta-
tion probabilities, due to the introduction of coevolution, the three populations executed crossover and
mutation operations independently and replaced poor chromosomes with excellent ones in turn. The
independent evolution of the three populations made it possible to get rid of one of the populations
even if it fell into a local optimum by the other population, and the parallel optimization search of the
three populations also accelerated the convergence. Therefore, the improved genetic algorithm not only
converged faster but also had a larger fitness value after the convergence was stable. Under a fixedmutation
probability, a low crossover probability might reduce the efficiency of optimization search due to insuffi-
cient chromosome “exchange” within the population, but a high crossover probability might result in too
much “exchange” and loss of good chromosomes, which would also reduce the efficiency of optimization
search. Therefore, increasing the crossover probability made the fitness value of the two genetic algorithms
increase first and then decrease and the computational time decrease first and then increase. If the cross-
over probability was fixed, the increase in mutation probability would make the chromosomes more likely
to produce new genes, but it would also lead to the unstable inheritance of good genes, which would
eventually result in slow convergence and lower fitness value in the iterative results.
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6 Conclusion

This study briefly introduced the course scheduling problem in universities, proposed the use of a genetic
algorithm to optimize the scheduling scheme, improved the genetic algorithm with the principle of coevo-
lution, and finally conducted simulation experiments on the traditional and improved genetic algorithms.
The results are as follows. The improved genetic algorithm converged to a stable fitness value (48) after
about 750 iterations, and the traditional genetic algorithm converged to a stable fitness value (44) after
about 900 iterations. When the mutation probability was fixed at 0.1 and the crossover probability was
between 0.4 and 0.8, the average fitness value of the two genetic algorithms tended to increase first and
then decrease, and the computation time tended to decrease first and then increase. When the crossover
probability was fixed at 0.6 and the crossover probability was between 0.1 and 0.5, the average fitness value
of the 2 genetic algorithms tended to decrease, and the detection time tended to increase. The improved
genetic algorithm had a higher average fitness value and shorter computation time than the traditional one
under the same crossover probability and mutation probability.
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