DE GRUYTER Journal of Intelligent Systems 2022; 31: 902-914 a

Research Article

Tameem Hameed Obaida* and Hanan Abbas Salman

A novel method to find the best path in SDN
using firefly algorithm

https://doi.org/10.1515/jisys-2022-0063
received February 16, 2022; accepted May 14, 2022

Abstract: Over the previous three decades, the area of computer networks has progressed significantly, from
traditional static networks to dynamically designed architecture. The primary purpose of software-defined
networking (SDN) is to create an open, programmable network. Conventional network devices, such as
routers and switches, may make routing decisions and forward packets; however, SDN divides these compo-
nents into the Data plane and the Control plane by splitting distinct features away. As a result, switches can
only forward packets and cannot make routing decisions; the controller makes routing decisions. OpenFlow is
the communication interface between the switches and the controller. It is a protocol that allows the controller
to identify the network packet’s path across the switches. This project uses the SDN environment to imple-
ment the firefly optimization algorithm to determine the shortest path between two nodes in a network. The
firefly optimization algorithm was implemented using Ryu control. The results reveal that using the firefly
optimization algorithm improves the selected short path between the source and destination.

Keywords: Mininet, firefly algorithm, path selection, software-defined networking, Ryu control

1 Introduction

Optimal path selection necessitates continuous evaluation to ensure that the topology’s linkages are pro-
mising quality pathways; besides, greater results are more likely to be used [1]. However, dynamic path
ranking utilizing end-to-end active measures in large-scale networks is not scalable and efficient [2].
Because software-defined networking (SDN) controllers have a global view of the topology and access to
a significant amount and diverse network data, a data-driven approach is worth investigating. According to
specific research, network controller data may be used to learn correlations, enhancing network perfor-
mance and resource allocation [3]. As a result, it is worth looking at a data-driven solution that uses data
from controllers to guide the choice of path [1].

SDN brings up new options for Internet packet forwarding and flexible routing [4]. Switch control
planes and forwarding planes are separated by SDN, enabling the establishment of forwarding tables to
be done remotely and dynamically; as a result, SDN accomplishes at least three key interdomain traffic
engineering objectives [5]: packet forwarding based on a variety of header attributes, remote forwarding
rule setup, and dynamic/programmatic packet forwarding rule configuration. The Firefly algorithm (FA) is a
meta-heuristic program that simulates firefly brood parasitism. The firefly’s glow symbolizes the potential
solutions. The algorithm gradually replaces the wrong solutions with new and better ones. The FA may be
used in various domains, including neural networks, job scheduling, and so on.

* Corresponding author: Tameem Hameed Obaida, Department of Computer Systems Techniques, Al-Furat Al-Awsat Technical
University, Najaf Technical Institute, Najaf, Irag, e-mail: tameem.daham@atu.edu.iq

Hanan Abbas Salman: Department of Computer Systems Techniques, Al-Furat Al-Awsat Technical University, Najaf Technical
Institute, Najaf, Iraq, e-mail: hananabbas@atu.edu.iq

a Open Access. © 2022 Tameem Hameed Obaida and Hanan Abbas Salman, published by De Gruyter. This work is licensed under
the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/jisys-2022-0063
mailto:tameem.daham@atu.edu.iq
mailto:hananabbas@atu.edu.iq

DE GRUYTER A novel method to find the best path in SDN using firefly algorithm = 903

The ability to locate other pathways and dynamically build routes depending on path attributes is
examined in this research to see if it may assist in increasing link usage and network performance. This
article explains how Ubuntu may increase bandwidth usage and decrease latencies by employing SDN-
based traffic engineering and network measurements to accomplish dynamic path selection. The research
also considers leveraging network data collected from probes between switches and an SDN controller to
apply the FA to path selection. Mininet is used to test an SDN-based network emulator, which uses fireflies
to disperse traffic over many forwarding connections to increase throughput and lower latency.

The following are the work’s key contributions:

e A description of the methods for calculating a packet’s predicted path in a given setup, recording the
authentic way, and comparing the two pathways to discover a point of divergence.

¢ The implementation of a system prototype.

¢ An experiment involving the insertion of persistent and transient defects into network components

The remainder of this article is structured in the following manner. Section 2 gives the related study on
power conservation and load balancing. We construct an SDN-based system and introduce its workflow in
Section 3. Section 4 outlines the model and formulates the problem, followed by Section V, which presents
our approach. Section 6 discusses performance evaluation. Finally, Section 7 brings this article to a close
and offers new areas for future research.

2 Related work

Our strategy for achieving the objectives outlined in Section 2 is based on concepts offered in prior work in
SDN network testing, verification, and debugging. Testing and verification methods aim to validate pro-
grams in terms of previously defined target invariants. Approaches to debugging are adapted to fix pro-
blems as they arise. We discuss relevant route optimization research. Routing optimization techniques for
typically dispersed networks, mostly Optimization of open shortest path first (OSPF) link weights, is the
main emphasis. Fortz and and Thorup [6] demonstrated a system for intra-domain routing optimization
based on IP. They used a revised tabu search heuristic method to find the best OSPF weight setting. Ericsson
et al. [7] presented a genetic approach to improve OSPF weight setting, while Srivastava et al. [8] offered a
Lagrangian relaxation-based technique to improve routing in conventional networks. On the other hand,
traditional dispersed networks force traffic to follow the shortest channels and offer no routing flexibility.

With the introduction of SDN, network operators may more easily operate the flow routing in their
networks and alter their path choice as needed. Google [9] and Microsoft [10] have previously created fully
SDN-enabled Inter-datacenter (Inter-DC) networks that can attain near-perfect by resolving a set of linear
programming issues. Previous research has concentrated on routing optimization in a complete SDN net-
work, which cannot be directly applied to hybrid SDN networks. Agarwal et al. [11] first addressed the route
optimization difficulties in a hybrid SDN. To improve the network’s flow splitting ratio routing and flow
balancing, they offered a fully polynomial time approximation scheme (FPTAS). Hu et al. [12] and Wang et
al. [13] created FPTAS to optimize traffic flows in a hybrid SDN, similar to ref. [11]. Guo et al. [14] offered
heuristic techniques that concurrently optimize OSPF weight and splitting ratio of SDN nodes to increase
network performance and decrease the MLU of the hybrid SDN. Hong et al. [15] presented a gradual hybrid
network deployment and routing optimization solution. The pick group table feature offers heuristic techni-
ques to send streams to the path with the least amount of traffic or numerous paths with varied possibilities.
Jin et al. [16] presented a network controller for hybrid networks that allows for unified, fine-grained routing
management. Chu et al. [17] presented a method for quickly reacting to single-link failure events in a mixed
network while avoiding congestion. However, in a hybrid SDN, these earlier routing optimization techniques
allow flows to route on any path from sources to destinations, regardless of path cardinality limitations. Caria
et al. [18] split OSPF domains into numerous sub-domains and implemented SDN at border routers to allow
for fine-grained traffic control across subdomains.

904 —— Tameem Hameed Obaida and Hanan Abbas Salman DE GRUYTER

He and Song [19] presented polynomial-time approximation approaches for traffic engineering issues in
two-hybrid modes, with an approximation of (1 + w). Xu et al. [20] optimized routing in a particular hybrid
SDN situation. In a hybrid network with SDN switches added to a standard IP network, they maximized
incremental SDN rollout and flow routing together. Xu et al. [21] investigated entire SDN networks with
conventional switching and SDN switching. Fibbing is a method proposed by Vissicchio et al. [22] for
centrally controlling link-state routing protocols by creating fictitious nodes to provide additional routing
flexibility. These hybrid network options differ from the hybrid SDN scenario we explored [23,24]. Other
researcher works on wireless network with small network are refs [25-27].

According to our deep investigations in the previous work, the literature review could not present a
sophisticated method for selecting short path from source to destination using firefly on SDN environment.
Therefore, constructing the Ryu control have high impact to discover all paths from source to destination
from manual method to an intelligent and automated method. To achieve that, the proposed method will be
able to work the different topologies and select short path. The novelty in the proposed method is how to
use FA to select short path based on SDN environment.

3 Background theory

3.1 Mininet

Mininet is a network emulator that precisely simulates the operation and performance of any sort of for-
warding element. SDN networks may be built to precise standards and tested on various network setups. We
may migrate the SDN solution to an existing physical network after completing the testing on Mininet [28].

3.2 FA

Yang created the Firefly method, a metaheuristic algorithm, in 2008 to solve optimization difficulties
[29,30]. The following three principles helped to shape FA’s configuration:

The light of one firefly attracts another. The fireflies with greater brightness levels have a higher level of
appeal to other fireflies, and the fireflies with lower brightness levels go to the fireflies with higher bright-
ness levels. Yang was motivated to create the FA by the three behaviors of natural fireflies. The actions of
the firefly and the creation of FA have a close relationship. In reality, the brightness of each firefly corre-
sponding to each ideal solution will be determined by the fitness function of the optimal solutions. The
search for and acquisition of other fireflies producing greater brightness levels by fireflies with darker
brightness levels is analogous to freshly created solutions depending on old solutions with a superior
fitness function. As a result, in the FA, any previous solution might be recreated multiple times depending
on how brilliant it is in contrast to others. As a consequence of the fitness function comparison, just one new
solution of every previous solution is maintained.

Assume that each answer (X;) represents a firefly i position at the present iteration. The distance
between the fireflies when the fitness function of solution i is higher than that of solution j, the following
equation is used to determine i and j.

nj= X - X)?, 1

The revised distance is then used to compute a new attractiveness by substituting it with another (2).
Then, corresponding to creating a new ith solution, a new location for the ith considered firefly may be
calculated. The technique for creating a new solution is implemented in the following manner (3):

B =PBoe’,)

DE GRUYTER A novel method to find the best path in SDN using firefly algorithm =— 905

Xij . =Xi+p-rand - AX;; + rand, 3)

sJnew

where rand is a random integer given to the solution, and i and O are the attractiveness at zero distance,
usually 1. X; is a solution with a lower fitness function than X;, and X;; is a step size computed using the
model below.

AXij = (X; - X), (4)

The equations (1)—(3) of the ith solution are determined until no more solutions with a lower fitness
function exist. In conclusion, we can have one, more than one, or no new solution for each solution
depending on the fitness comparison between solution and other solutions inside the current population.
The statement may be described using the following term.

X=X, ifX;is Xgbest XiGoests
if X; is Xgpest Xij " F Tohest> Otherwise,

©)

If the considered solution i is the global best solution, no new solution will be developed for the first
term in (5). In the second case, if the considered solution is the second-best solution, just one new solution,
X; Gbest"new, will be developed, and X; will be the population’s global best solution, X Guest. In other
cases, it means that X; is the third-best or worse than the third-best answer, and that even if it is the worst
choice, there will be two (N - 1) for new X; ; new options. In this situation, the fitness function values will be
used to compare the set of new solutions for solution i, and the best one with the lowest fitness FT Gbest will
be preserved, while the others will be deleted. Algorithm 1 may express the primary stages of the FA, which
are based on three concepts.

Algorithm 1: FA

1 Fitness function f(x) = (X, X2, X3, wy Xg)©
2 Initializing a population of n firefly, x;(i < n)
3 Randomly generate N initial solution

4 For iteration in MaxGen

5 Compute brightness i

6 Sort solution from min to max

7 Foriinn-1

8 Forjini+1

9 Ifj>i

10 Move firefly i towards firefly j

1 End if

12 End for

13 End for

14 Move firefly N, (x), randomly

15 End for

16 Final result output and presentation

The fitness function determines the best communication channel. The value of the fitness function is
affected by delay and distance. A path with the fewest node and the shortest distance is chosen as the best
way to communicate.

4 Proposed model

The suggested multipath selection paradigm for routing in SDN is discussed in this section. Because of the
advantages of the firefly search method, the suggested multipath routing selection surpasses the current

906 —— Tameem Hameed Obaida and Hanan Abbas Salman DE GRUYTER

routing path. The FA is based on the firefly species’ obligatory brood parasite habit combined with the
typical flying behavior of birds and flies. The route is found using the FA. The benefits of the firefly search
are considered while selecting the best path from the K paths identified during the path discovery phase.
The following are the benefits of the FA: compared to other metaheuristic methods, it is more versatile and
resilient for a wide range of optimization problems. It may readily be expanded to investigate multi-
objective optimization problems with various constraints, including NP-hard problems. The suggested
technique introduces a novel fitness function that considers several metrics such as distance and delay,
resulting in improved performance with minimal latency. Figure 1 shows the overall block design of the
proposed multipath selection method in SDN, based on the firefly search algorithm.

Figure 1: FA based on SDN.

This article presents a multipath technique for SDN networks based on the firefly search algorithm. The
following three phases make up the implementation process:
e The supplied dynamic environment is used to initialize the nodes.
¢ The pathways from source to destination nodes are found.
¢ The fitness function and the FA are used to choose multipath.

Figure 1 demonstrates how the application plane uses the firefly search technique to determine the
multipath topology and path status. The OpenFlow group table is installed in each path. The estimated
multiple performance factors are assigned to the bucket value in the OpenFlow select group table, ensuring
that network traffic is spread across all possible approaches based on the path value. Simulation findings
demonstrate that this technique may increase multipath resource usage in SDN networks, dramatically
improve traffic transmission efficiency, and accomplish multipath load balancing. In SDN, the firefly search
method is presented in Figure 1.

4.1 Node initialization

Because of its numerical control separation and programmability qualities, SDN technology allows the SDN
controller to acquire and handle global network topology information. The switches module in the SDN
controller implements the topology discovery and management mechanism by sending a packet out to the
underlying network that contains the link layer discovery protocol (LLDP) (OpenFlow switch). After
receiving the LLDP packet, the OpenFlow switch sends a packet to the controller carrying link information

DE GRUYTER A novel method to find the best path in SDN using firefly algorithm =— 907

between switches. The SDN controller then determines and maintains the network topology using the link
discovery protocol’s feedback information. A connection discovery approach like this consumes a lot of
communication traffic and causes a delay. The SDN nodes are set up in the dynamic environment that has
been selected. The nodes serve as both a router and a switch. In the network region, a link is established
between the nodes. The nodes’ coordinates are calculated, allowing them to be recognized in the future by
their location and velocity. The network topology has m nodes, as defined by 1 < i < m.

4.2 Path discovery

This work employs the firefly search method to accomplish multipath topology discovery, which reduces
communication usage and reduces the cost of delay. Consider the network topology G(H, S), where H
denotes the number of hosts and S denotes the number of OpenFlow switches handled by the SDN con-
troller. Let P represent the number of pathways that connect the source and destination nodes. 1 < j < P
provides the answer. The firefly search path method is given in algorithm 1 to locate every possible multi-
path between two hosts. We can utilize the SDN controller to precisely get the whole network topology and
link connection conditions by implementing this approach and giving usable information for future load
balancing. Figure 2 depicts the path identified from source to destination nodes in a network topology with
m =4 nodes. The nodes are 1, 2, 3, and 4. The communication from source to destination is accomplished
through numerous pathways. The path for data packet transmission is initially discovered depending on
the nodes’ connectivity. A link between Nodes 2 and 3 adds to the number of paths detected and the
immediate connectivity between nodes in the immediate vicinity. Four pathways are found between the
source and destination. 1-2-3-4, 1-3-2-4, 1-3-4, and 1-2-4 are the numbers. The suggested firefly search
technique selects multipaths appropriate for communication between the hosts from the path identified
utilizing an existing link between a node.

Destination

//i

Color Path Cost
1-2-4 3
— 1-2-3-4 4
S 1-3-2-4 4
— 1-3-4 3

Figure 2: Path discovery.

Multiple pathways exist in the communication channel from source to destination nodes in network
topology, depending on the link connected with the channel. The connection between the source and
destination takes place across many pathways. K is the number of ways detected for L connections in
the nodes linked with the communication channel from nodes between the source and destination.

908 —— Tameem Hameed Obaida and Hanan Abbas Salman DE GRUYTER

4.3 Implementing the firefly search algorithm

The suggested firefly search method and the fitness function are used in this section to choose multipath.
The firefly search algorithm’s steps are outlined below.

Step 1: Let us suppose the host’s nest is randomly initialized. The K-path detected is the size of a host
nest. The goal is to select the best path among K-paths that have been found. Let us say the n host nest’s
starting population is:

fY:fl’ f2’ f3:--" fg’ (6)

In addition to the host, the population count is assumed to be c. For consecutive iterations, the count
value gets incremented by 1.

Step 2: Using levy flight, generate a new solution (host nest) at random according to equation (1).

Step 3: Pick a nest at random. A solution is chosen randomly from the initialized host nest from
equation (6). Let us call the chosen random solution fj.

Step 4: Equation (7) used to feed fitness function in equation (3).

fa = min(pq), 7)

Assume f; is a fractional produced solution and f; is a solution picked at random from the nest as shown
in equations (8) and (9).

fitness (fa) = facsin> (8)
fitness (fy) = fy(siv)» 9)

where f; is the solution picked at random from the nest and fq is the fractional produced solution

Step 5: The worst nest solution is rejected based on the fitness function assessed in the worst-case
rejection. The solution with the lowest fitness function is picked as the best. The worst-case rejection in the
firefly search technique is determined by the discovery rate of the nest constructed using the proposed
firefly search algorithm. The best solution is determined by equation (10).

fit(fy) < fit(f,), (10)

Step 6: The design process includes iteration, ranking, and selection. Count c is increased until it
reaches its maximum value. The best solution from each worst-case rejection is ranked depending on an
introduced rank value. The solution with the highest rank chooses the optimal output solution for routing in
the SDN.

5 Experiment and analysis

This part conducts simulation tests on this method to verify the previously presented model. The operating
system in this experiment is Ubuntu 16.04, the network simulation software is Mininet, and the SDN
controller is Ryu software. Mininet and Ryu are installed on a PC with a 2.60 GHz Intel i7 9750 CPU,
16GB of RAM, and a 64-bit Linux operating system. The Ryu controller runs on 64-bit Python 3.7 as its
operating system. The suggested paradigm in this study is implemented using the Python programming
language to create Ryu controller application files. Different topologies are employed in the experimental
assessment to illustrate the performance of our suggested model. We will start with the environment setup
in this part.

Extensive tests are then used to establish route selection and the deployment percentage of SDN nodes.
After that, we show how well a suggested model performs in cost minimization using a predetermined path
selection and the placement percentage of SDN nodes. Finally, we show how long the proposed model takes
to compute. The criteria for firefly search are shown in Table 1.

DE GRUYTER A novel method to find the best path in SDN using firefly algorithm =— 909

Table 1: Firefly search parameters

Parameters Value
Iteration 30
Firefly 15
Alpha 0.1
Beta 1.5
Param 0.25

File Edit Run Help

/glen-

¥

Figure 3: Network topology 1.

sdn@sdn-virtual-machine: ~/Desktop/v1 Q =

sdn@sdn-virtual-machine: ~/Desktop/v1 sdn@sdn-virtual-machine: ~/Desktop/v1

S ryu-manager --observe-links app.py
loading app app.py
loading app ryu.controller.ofp_handler
loading app ryu.topology.switches
loading app ryu.controller.ofp_handler
instantiating app app.py of MPathApp
instantiating app ryu.controller.ofp_handler of OFPHandler
instantiating app ryu.topology.switches of Switches
switches [4, 6, 1, 2, 5, 3]

links [(6, 4, {'port': 2}), (4, 3, {'port': 1}), (4, 6, {'port': 2}), (6, 5, {'port': 3}),

(3, 4, {'port': 2}), (3, 1, {'port': 1}), (2, 1, {'port': 1}), (5, 1, {'port': 1}), (2, 6,

{'port': 2}), (5, 6, {'port': 2}), (6, 2, {'port': 1}), (1, 2, {'port': 1}), (1,
3}), (1, 3, {'port': 2})]

hosts [('00:00:00:00:00:03', 6, {'port': 4}), ('00:00:00:00:00:02', 1, {'port': 5}), ('006:0

0:00:00:00:01', 1, {'port': 4}), ('00:00:00:00:00:04', 6, {'port': 5})]

Figure 4: Running Ryu app.

5, {'port’

910 —— Tameem Hameed Obaida and Hanan Abbas Salman DE GRUYTER

sdn@sdn-virtual-machine: ~/Desktop/v1 O B=

sdn@sdn-virtual-machine: ~/Desktop/v1 sdn@sdn-virtual-machine: ~/Desktop/v1

**% Done
- $ sudo python topo.py
Connecting to remote controller at 127.0.0.1:6653
*** Creating network
*** Adding controller
*** Adding hosts:
h1 h2 h3 h4
*** Adding switches:
S1 s2 s3 s4 s5 s6
*** Adding links:
(h1, s1) (h2, s1) (h3, s6) (h4, s6) (s1, s2) (s1, s3) (s1, s5) (s2, s6) (s3, s4) (s4, s6) (
s5, s6)
*** Configuring hosts
h1 h2 h3 h4
*** Starting controller
cl
*** Starting 6 switches
S1 s2 s3 s4 s5 s6 ...
Generating sample ping packets
*** Starting CLI:
mininet> ||

Figure 5: Adding of switches and links.

sdn@sdn-virtual-machine: ~/Desktop/v1 Q =

sdn@sdn-virtual-machine: ~/Desktop/v1 sdn@sdn-virtual-machine: ~/Desktop/v1

hi h2 h3 h4

*** Starting controller

cl

*** Starting 6 switches

sl s2 s3 s4 s5 s6

Generating sample ping packets

*** Starting CLI:

mininet> h1 ping h3

PING 192.168.1.3 (192.168.1.3) 56(84) bytes of data.
bytes from 192.168.1.3: icmp_seq=1 ttl=64 time=417 ms
bytes from 192.168.1. icmp_seq=2 ttl=64 time=0.594
bytes from 192.168.1. icmp_seq=3 ttl=64 time=0.134
bytes from 192.168.1. icmp_seq=4 ttl=64 time=0.119
bytes from 192.168.1. icmp_seq=5 ttl=64 time=0.127
bytes from 192.168.1. icmp_seq=6 ttl=64 time=0.130
bytes from 192.168.1. icmp_seq=7 ttl=64 time=0.145
bytes from 192.168.1. icmp_seq=8 ttl=64 time=0.129
bytes from 192.168.1. icmp_seq=9 ttl=64 time=0.128
bytes from 192.168.1. icmp_seq=10 ttl=64 time=0.128
bytes from 192.168.1. icmp_seq=11 ttl=64 time=0.128
bytes from 192.168.1. icmp_seq=12 ttl=64 time=0.174
bytes from 192.168.1. icmp_seq=13 ttl=64 time=0.050
bytes from 192.168.1. icmp_seq=14 ttl=64 time=0.049
bytes from 192.168.1. icmp_seq=15 ttl=64 time=0.149
bytes from 192.168.1. icmp_seq=16 ttl=64 time=0.046
bytes from 192.168.1. icmp_seq=17 ttl=64 time=0.127
bytes from 192.168.1. icmp_seq=18 ttl=64 time=0.125
bytes from 192.168.1. icmp_seq=19 ttl=64 time=0.043
bytes from 192.168.1. icmp_seq=20 ttl=64 time=0.050
bytes from 192.168.1. icmp_seq=21 ttl=64 time=0.045
bytes from 192.168.1. icmp_seq=22 ttl=64 time=0.104
bytes from 192.168.1. icmp_seq=23 ttl=64 time=0.132
bytes from 192.168.1. icmp_seq=24 ttl=64 time=0.151
bytes from 192.168.1. icmp_seq=25 ttl=64 time=0.059
bytes from 192.168.1. icmp_seq=26 ttl=64 time=0.034
bytes from 192.168.1. icmp_seq=27 ttl=64 time=0.129
bytes from 192.168.1. icmp_seq=28 ttl=64 time=0.129
bytes from 192.168.1. icmp_seq=29 ttl=64 time=0.132

WWWWWWwWWwwwwwwuwwwuwwuwuwwuwwuwwwwwww

Figure 6: Ping from host 1 to host 3.

DE GRUYTER A novel method to find the best path in SDN using firefly algorithm =— 911

We must first establish the number and location of SDN nodes to acquire SDN. Mininet is used to build a
network architecture with two hosts, six switches, and a controller, as illustrated in Figure 3. Traffic is
routed with path selection limitations using the Firefly search algorithm.

When the SDN application “app” is started, it calls the launch function, which returns information
about the Ryu controller and whether it is running (Figure 4). It also receives requests from a python script
that constructs the network topology on port 6633 (which may be altered).

Figure 5 shows that anytime a switch is added to the network, it creates a “Switch connection event”
after running a python script named “topo.py” containing the network’s specifications. Additionally,
“Received Link Event” and “Remove Link Event” are generated when a new link is added or withdrawn.

After all the switches and connections have been identified, packet transmission may begin. The firefly
search method discovers the shortest channel for transmission when host “h1” pings “h3,” as seen in Figure 6.
One by one, the packets are transferred down the route. Initially, an ARP packet is sent to determine the IP
addresses of all network devices involved and the flow tables of the switches.

Table 2 depicts the path that was built using the topological one. This scenario involves sending a
message from Host 1 to Host 3 and deciding the best way to take it.

Table 2: Path discovery and selection

Path discovery Hops Path selection
51-s2-s6 3 v
$1-53-55-56 4 X
51-s4-s6 3 v

Figure 7 depicts two hosts, h1 and h2, and six switches (s1, s2, s3, s4, s5, and s6) and a controller. In the
diagram below, a new link is added between s2 and s3 and between s3 and s4.

Table 3 depicts the path chosen from topology 1 when it was formed. This scenario involves sending a
message from Host 1 to Host 3 and determining the optimum way.

File Edit Run Help

h3

h1

Figure 7: Network topology 2.

912 —— Tameem Hameed Obaida and Hanan Abbas Salman DE GRUYTER

Table 3: Path discovery and selection

Path discovery Path selection

=

o
o

(7]

s1-s2-s6
s1-s3-s5-56
sl-s4-s6
51-52-53-55-56
s1-s3-52-s6
s1-s4-s3-s5-56
s1-54-53-52-56
51-52-53-54-56

vi o o WS W
X X X X X 2 X 2

Figure 8: Path selection.

Figure 8 depicts the firefly search algorithm’s selection route. Figure 7 was utilized in the scenario to
show the optimum path choice.

As we can see in Figures 3 and 7, two different topologies were created. These topologies used to present
and apply our proposed method to select short path between source and destination. Figure 6 depicts the
ping request from host 1 to host 3 and the successful completion with the port, MAC address, and short path
as indicated in Figure 4. Table 2 shows that different paths were discovered but only the short path is
selected as best path from source to destination. Our proposed method achieved good result (short path).
The proposed method is applied only on Mininet server and used a SDN environment with Ryu.

6 Conclusion and future works

The firefly search method has been implemented using Mininet and Ryu in a SDN environment to illustrate
dynamic programmability utilizing controllers in this study. The SDN field is relatively new, yet it is rapidly
expanding. Significant research concerns must be addressed, such as security and load balancing. If a
company wants a specific network behavior, it can create or install an application to meet its needs. This
application might be a typical networking function like traffic engineering, policy routing, firewalling, or
security. SDN can improve the efficiency of deploying and managing network applications and services. Load
balancing and firewalling can be imitated in the future, depending on our campus needs. Because SDN allows
developers to create applications depending on particular campus requirements, such as during an online
examination at a university, priority and higher bandwidth may be given to Html sites during that hour.
Load balancing can also be done based on the link’s cost and the number of controllers in use. We plan
to extend this research with other optimization algorithms (PSO, cuckoo search, etc.) and compare
between them.

DE GRUYTER A novel method to find the best path in SDN using firefly algorithm =— 913

Conflict of interest: The authors declare no conflict of interest.

References

[1] YinH, Jiang Y, Lin C, Luo Y, Liu Y. Big data: transforming the design philosophy of future internet. IEEE Netw. 2014;
28(4):14-9.

[2] Jain A, Pasquale). Internet distance prediction using node-pair geography. 2012 IEEE 11th International Symposium on
Network Computing and Applications. IEEE; 2012. p. 71-8.

[3] Rouskas GN, Baldine I, Calvert K, Dutta R, Griffioen], Nagurney A, et al. Choicenet: Network innovation through choice.
2013 17th International Conference on Optical Networking Design and Modeling (ONDM). IEEE; 2013. p. 1-6.

[4] Rothenberg CE, Nascimento MR, Salvador MR, Corréa CN, Cunha de Lucena S, Raszuk R. Revisiting routing control
platforms with the eyes and muscles of software-defined networking. Proceedings of the first workshop on Hot topics in
software defined networks. 2012. p. 13-8.

[5] GuptaA, Vanbever L, Shahbaz M, Donovan SP, Schlinker B, Feamster N, et al. Sdx: A software defined internet exchange.
ACM SIGCOMM Computer Commun Rev. 2014;44(4):551-62.

[6] Fortz B, Thorup M. Internet traffic engineering by optimizing OSPF weights. Proceedings IEEE INFOCOM 2000. conference
on computer communications. Nineteenth annual joint conference of the IEEE computer and communications societies
(Cat. No. 00CH37064). Vol. 2. IEEE; 2000. p. 519-28.

[7] Ericsson M, Resende MGC, Pardalos PM. A genetic algorithm for the weight setting problem in OSPF routing.] Comb
Optim. 2002;6(3):299-333.

[8] Srivastava S, Agrawal G, Pioro M, Medhi D. Determining link weight system under various objectives for OSPF networks
using a Lagrangian relaxation-based approach. IEEE Trans Netw Serv Manag. 2005;2(1):9-18.

[9] JainS, Kumar A, Mandal S, Ong J, Poutievski L, Singh A, et al. B4: Experience with a globally-deployed software defined
WAN. ACM SIGCOMM Computer Commun Rev. 2013;43(4):3-14.

[10] Hong CY, Kandula S, Mahajan R, Zhang M, Gill V, Nanduri M, Wattenhofer R. Achieving high utilization with software-
driven WAN. Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. Vol. 5, 2013. p. 15-26.

[11] Agarwal S, Kodialam M, Lakshman T. Traffic engineering in software defined networks. 2013 Proceedings IEEE INFOCOM.
IEEE; 2013. p. 2211-9.

[12] HuY, Wang W, Gong X, Que X, Ma Y, Cheng S. Maximizing network utilization in hybrid software-defined networks. 2015
IEEE Global Communications Conference (GLOBECOM). IEEE; 2015. p. 1-6.

[13] Wang W, He W, Su). Boosting the benefits of hybrid SDN. 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS). IEEE; 2017. p. 2165-70.

[14] GuoY, Wang Z, Yin X, Shi X, Wu }. Traffic engineering in SDN/OSPF hybrid network. 2014 IEEE 22nd International
Conference on Network Protocols. IEEE; 2014. p. 563-8.

[15] Hong DK, MaY, Banerjee S, Mao ZM. Incremental deployment of SDN in hybrid enterprise and ISP networks. Proceedings
of the Symposium on SDN Research; 2016. p. 1-7.

[16] Jin C, Lumezanu C, Xu Q, Mekky H, Zhang Z-L, Jiang G. “Magneto: Unified fine-grained path control in legacy and openflow
hybrid networks. Proceedings of the Symposium on SDN Research; 2017. p. 75-87.

[17] Chu C-Y, Xi K, Luo M, Chao H). “Congestion-aware single link failure recovery in hybrid SDN networks. 2015 IEEE
Conference on Computer Communications (INFOCOM). IEEE; 2015. p. 1086-94.

[18] Caria M, Das T, Jukan A, Hoffmann . Divide and conquer: Partitioning OSPF networks with SDN. 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM). IEEE; 2015. p. 467-74.

[19] He), Song W. Achieving near-optimal traffic engineering in hybrid software defined networks. 2015 IFIP Networking
Conference (IFIP Networking). IEEE; 2015. p. 1-9.

[20] Xu H, Fan J, Wu], Qiao C, Huang L. Joint deployment and routing in hybrid SDNs. 2017 IEEE/ACM 25th International
Symposium on Quality of Service (IWQoS). IEEE; 2017. p. 1-10.

[21] Xu H, Huang H, Chen S, Zhao G. Scalable software-defined networking through hybrid switching. IEEE INFOCOM 2017-IEEE
Conference on Computer Communications. IEEE; 2017. p. 1-9.

[22] Vissicchio S, Vanbever L, Rexford J. Sweet little lies: Fake topologies for flexible routing. Proceedings of the 13th ACM
Workshop on Hot Topics in Networks; 2014. p. 1-7.

[23] Ghafori S, Gharehchopogh FS. Advances in spotted hyena optimizer: a comprehensive survey. Arch Computat Methods
Eng. 2021;29:1-22.

[24] Lantz B, Heller B, McKeown N. A network in a laptop: rapid prototyping for software-defined networks. Proceedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks; 2010. p. 1-6.

[25] Ozdemir S, Xiao Y. Secure data aggregation in WSNs: A comprehensive overview. Computer Networks.

2009;53(12):2022-37.

914 — Tameem Hameed Obaida and Hanan Abbas Salman DE GRUYTER

[26

Mohaisen A, Nyang D-H, AbuHmed. T. Two-level key pool design-based random key pre-distribution in wireless sensor

networks. KSII Trans Internet Inf Syst (TIIS). 2008;2:222-38.

[27] Mohaisen A, AbuHmed T, Zhu T, Mohaisen M. Collaboration in social network-based information dissemination. In 2012
IEEE International Conference on Communications (ICC). IEEE; 2012. p. 2103-7.

[28] Yang X-S. Nature-inspired optimization algorithms. Challenges and open problems.] Comput Sci. 2020;46:101104.

[29] Goldanloo MJ, Gharehchopogh FS. A hybrid OBL-based firefly algorithm with symbiotic organisms search algorithm for

solving continuous optimization problems.) Supercomputing. 2022;78:3998-4031.

Abedi M, Gharehchopogh FS. An improved opposition based learning firefly algorithm with dragonfly algorithm for solving

continuous optimization problems. Intell Data Anal. 2020;24:309-38.

[30

	1 Introduction
	2 Related work
	3 Background theory
	3.1 Mininet
	3.2 FA

	4 Proposed model
	4.1 Node initialization
	4.2 Path discovery
	4.3 Implementing the firefly search algorithm

	5 Experiment and analysis
	6 Conclusion and future works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

