
Research Article

Lounis Ouarda*, Bourenane Malika, Nacer Eddine Yousfi, and Bouderah Brahim

Improving the efficiency of intrusion
detection in information systems

https://doi.org/10.1515/jisys-2022-0059
received April 05, 2022; accepted May 05, 2022

Abstract: Policy Interaction Graph Analysis is a Host-based Intrusion Detection tool that uses Linux MAC
Mandatory access control policy to build the licit information flow graph and uses a detection policy defined
by the administrator to extract illicit behaviour from the graph. The main limitation of this tool is the
generation of a huge signature base of illicit behaviours; hence, this leads to the use of huge memory space
to store it. Our primary goal in this article is to reduce this memory space while keeping the tool’s efficiency
in terms of intrusion detection rate and false generated alarms. First, the interactions between the two nodes
of the graph were grouped into a single interaction. The notion of equivalence class was used to classify the
paths in the graph and was compressed by using a genetic algorithm. Such an approach showed its efficiency
compared to the approach proposed by Pierre Clairet, by which the detection rate obtainedwas 99.9%, and no
false-positive with a compression rate of illicit behaviour signature database reached 99.44%. Having these
results is one of the critical aspects of realizing successful host-based intrusion detection systems.

Keywords: host-based intrusion detection system, PIGA, system calls, genetic algorithm, equivalence class

1 Introduction

To respond to the security problem, a security policy must be defined according to the information system
we wish to secure and the security objectives we wish to achieve. This policy expresses the confidentiality,
integrity, and availability properties that the information system must respect. Intrusion Detection Systems
(IDS) refer to a hardware/software platform for monitoring network or system activities to detect malicious
activities.

There are two main types of IDS: Host-based IDS (HIDS) and Network-based IDS (NIDS). HIDS is
characterized by analysing events/traces generated by the system (e.g. analysis of system calls) [1]. NIDS
analyses the data passing through the network [2]. From a methodological point of view, IDS can also be
classified into two classes: one that seeks to detect anomalies (this is known as a behavioural approach) and
one that seeks to detect malware (this is known as the misuse approach) [2].

A behavioural approach can detect attacks that are still unknown at the time of modelling. However,
building such a detectionmodel can be difficult, and themodellingmay lead to false alarms. Misuse detection
allows the detection of a known attack along with the definition of a scenario. This approach uses a knowl-
edge base called an attack signature base and a pattern search method to recognize the defined signatures.



* Corresponding author: Lounis Ouarda, Computer Science Department, Industrial Computing and Networking Laboratory-RIIR,
University Oran 1, 31000, Oran, Ahmed Benbella, Algeria, e-mail: lounis.ouarda@edu.univ-oran1.dz
Bourenane Malika: Computer Science Department, Industrial Computing and Networking Laboratory-RIIR, University Oran 1,
31000, Oran, Ahmed Benbella, Algeria, e-mail: bourenane.malika@univ-oran1.dz
Nacer Eddine Yousfi: LSV Specification and Verification Laboratory, Computer Science Laboratory of ENS Paris-Saclay (CNRS),
Paris, France, e-mail: neyousfi@yahoo.com
Bouderah Brahim: Computer Science Department, University of M’sila, M’sila, Algeria, e-mail: Brahim.bouderah@univ-msila.dz

Journal of Intelligent Systems 2022; 31: 835–854

Open Access. © 2022 Lounis Ouarda et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 International License.

https://doi.org/10.1515/jisys-2022-0059
mailto:lounis.ouarda@edu.univ-oran1.dz
mailto:bourenane.malika@univ-oran1.dz
mailto:neyousfi@yahoo.com
mailto:Brahim.bouderah@univ-msila.dz

However, it does not allow the detection of unknown attacks, which results in a high false-negative rate
and requires active maintenance of the signature base.

In practice, IDS based on behavioural approaches are not very secure. Furthermore, signature-based
intrusion detection does not guarantee any security properties. The objective is simply to detect known
violations. Therefore, we can deduce that these intrusion detection solutions do not consider the sequences,
and they are limited to the control of interactions and do not deal with complex activities. Moreover, these
solutions are oriented towards the detection of attacks, so instead of analysing each attack separately,
knowing that there are multiple types and several variants of these attacks with a specific signature for each
type of attack, why not try to seek the origin of these attacks to ensure that the security properties reached
by these attacks will not be compromised (we are referencing solutions oriented towards the effects of
attacks). Hence, the idea of formalizing system security properties was treated by the authors in ref. [3–5].

Authors in ref. [3] propose Policy Interaction Graph Analysis (PIGA) HIDS, a tool for detecting malicious
behaviour by a system trace analysis. To do so, it uses signatures representing illicit behaviours. These
signatures are generated in pre-processing and are used in the detection process. However, the signature
base is large for a real system and requires significant memory for the detection process. For example, for a
complete Fedora system with a graphical interface, the signature database is over 500MB [5].

Motivated by this shortcoming of PIGA, this article is suggested a way to reduce the memory needed to
store signatures while preserving the signature quality. For that, specific contributions can be summarized
as follows:
– The proposed mathematic model is original and not limited to PIGA HIDS compression signatures but

also applicable to other types of databases like NSL-KDD.
– The proposed model applies to both oriented and non-oriented graphs, unlike Pierre Clairet’s model,

which applies to a non-oriented graph.
– The proposed model applies to both Briffaut’s [3] and Cornabas’ [4] graphs; the only difference is that the

use of the first graph implies the signatures of illegal behaviour, and the use of the second graph implies
the signatures of legal behaviour

– As far as we know, this is the first time that an optimization method has been proposed on PIGA HIDS,
taking into account the detection rate, the false-negative rate, the false-positive rate, and the signature
compression rate. However, the authors in ref. [5] studied just the compression rate.

In the rest of this article, more details of the approach are explained, and experimental results are
presented to demonstrate the effectiveness of the proposed method.

2 Related works

Several types of research were carried out in the field of intrusion detection. Those attempts examined
different techniques to design an efficient system that can detect malicious events in real-time. Those
approaches include deep learning, machine learning [6], neural network [7], and last and not least,
research that used a formal model for the formalization of security properties [3–5].

In this section, some practical approaches proposed by researchers during the past decade are
reviewed, especially those that allow analysing system calls. Besides, the achievements and limitations
of each of those works are highlighted in Table 1.

As stated above, HIDSs have been very successful in addressing the security needs of the system.
However, most of the work done in this area remains difficult to compare because each has its approaches,
formalisms, and prototypes. Other researchers are oriented towards a new way of researching new para-
digms, for that we can say:

“The merging and proper use of the principles and concepts of security mechanisms (access control and intrusion detection)
can create a new powerful approach, capable of compensating for their limitations. In this context, we found two important
works, those of Jeremy Briffaut and Pierre Clairet.”

836  Lounis Ouarda et al.

Ta
bl
e
1:

C
om

pa
ri
so

n
w
it
h
th
e
pr
ev
io
us

ap
pr
oa

ch
to

H
ID
S

A
rt
ic
le

D
at
a
se

t
Te

ch
ni
qu

e
S
tr
en

gt
h

W
ea

kn
es

s
R
es

ul
t

[5
]

In
fo
rm

at
io
n
fl
ow

gr
ap

h,
w
hi
ch

re
pr
es

en
ts

th
e
se

t
of

in
fo
rm

at
io
n

tr
an

sf
er
s
au

th
or
iz
ed

by
an

ac
ce
ss

co
nt
ro
l
po

lic
y
PI
G
A
H
ID
S

(1
)T

he
us

e
of

m
od

ul
ar

de
co

m
po

si
ti
on

on
th
e
PI
G
A
H
ID
S

gr
ap

h
to

ob
ta
in

a
m
od

ul
ar

qu
ot
ie
nt

gr
ap

h

S
ho

w
s
hi
gh

co
m
pr
es

si
on

si
gn

at
ur
e

da
ta
ba

se
ra
te

N
on

e
of

th
e
re
su

lt
s
is

gi
ve
n
ab

ou
t

de
te
ct
io
n
ra
te
,
fa
ls
e-
ne

ga
ti
ve

an
d

fa
ls
e
po

si
ti
ve

C
om

pr
es

si
on

si
gn

at
ur
e

da
ta
ba

se
ra
te

is
98

.6
1%

(2
)D

el
et
io
n
by

in
cl
us

io
n;

it
de

le
te
s

al
l
re
du

nd
an

t
si
gn

at
ur
es

fr
om

th
e

si
gn

at
ur
e
ba

se
[6
]

A
D
FA

-L
D

U
ns

up
er
vi
se

d
m
ac
hi
ne

le
ar
ni
ng

-
ba

se
d
sy
st
em

an
om

al
y
de

te
ct
io
n

fr
am

ew
or
k
us

in
g
(R
N
N
-A
E)

an
d

(R
N
N
-D
A
E)

Th
e
be

st
re
su

lt
w
as

re
co

rd
ed

at
0
.8
8
28

in
te
rm

s
of

ar
ea

un
de

r
th
e

re
ce
iv
er

op
er
at
in
g
ch

ar
ac
te
ri
st
ic

cu
rv
e
(A
U
RO

C
)

Th
e
sy
st
em

ca
ll
tr
ac
es

on
ly

re
fl
ec
t

so
m
e
pa

rt
s
of

us
er
s;

ot
he

r
at
tr
ib
ut
es

ca
n
be

co
ns

id
er
ed

,
su

ch
as

sy
st
em

ca
ll,

A
PI

in
fo
rm

at
io
n,

an
d
m
ul
ti
pl
e

ar
te
fa
ct
s
co

ns
id
er
in
g
ne

tw
or
k,

re
gi
st
ry
,
an

d
pr
oc

es
s

0
.8
8
28

in
te
rm

s
of

A
U
RO

C

[8
]

A
D
FA

-L
D

A
na

ly
si
s
ba

se
d
on

Tfi
df

va
lu
es

of
n-
gr
am

te
rm

s
al
on

g
w
it
h

di
m
en

si
on

al
it
y
re
du

ct
io
n
us

in
g

tr
un

ca
te
d
S
V
D

(1
)H

ig
he

r
de

te
ct
io
n
ra
te

an
d

ac
cu

ra
cy

M
ar
gi
na

l
ov

er
he

ad
is

In
vo

lv
ed

in
co

m
pu

ti
ng

th
e
Tfi

df
va
lu
es

of
n-
gr
am

te
rm

s
fo
r
pe

rf
or
m
in
g
di
m
en

si
on

al
it
y

re
du

ct
io
n

0
.9
6
2
in

pr
ec
is
io
n,

0
.9
53

in
th
e
re
ca
ll,

an
d
0
.0
38

in
th
e

fa
ls
e-
po

si
ti
ve

ra
te

A
D
FA

-W
D

(2
)C

om
pu

ta
ti
on

effi
ci
en

t
A
s
it
us

es
sm

al
l
S
iz
ed

fe
at
ur
e
ve
ct
or
s
fo
r

an
al
ys
is

[7
]

N
S
L-
K
D
D
,
C
IC
ID
S
20

17
,
A
D
FA

-L
D
,

an
d
A
D
FA

-W
D

C
on

vo
lu
ti
on

al
N
eu

ra
l
N
et
w
or
k

Pr
op

os
ed

H
ID
S
fo
r
C
IC
ID
S
20

17
ha

s
th
e
hi
gh

es
t
pe

rf
or
m
an

ce
w
it
h

99
.2
9%

A
C
C
(a
cc
ur
ac
y)
,f
ol
lo
w
ed

by
A
D
FA

-L
D
w
it
h
95

.3
4%

A
C
C
an

d
N
S
L-

K
D
D
w
it
h
8
3.
43

%
A
C
C
.
Fi
na

lly
,

A
D
FA

-W
D
w
it
h
77

.0
1%

A
C
C

—
99

.2
9%

B
es

t
de

te
ct
io
n

ac
cu

ra
cy

fo
r
th
e

C
IC
ID
S
20

17
da

ta
se

t

Improving the efficiency of intrusion detection in information systems  837

Our work is interested in compressing the PIGA HIDS signatures database by considering the detection rate,
false positive, and false negative.

3 The overall description of the problem

We consider a system execution trace containing a set of system calls; each system call defines an inter-
action between two system entities through an elementary operation of type read, write, transition or
execution. Furthermore, we consider the date and time of each interaction’s beginning and end; this
information is necessary to enumerate the indirect information flows. In fact, the principle of causality
must be respected in the indirect information flow to detect the interaction sequences representing a
forbidden activity. Finally, we are interested in optimizing host-based intrusion detection in the static
case. To accelerate this detection, we apply minimization on the information flow graph; our approach is
described through the following two phases:

3.1 Interactions grouping

To do this, we first define groups of interactions and thus reduce their number; then, we consider all
interactions in the execution trace before forming the flow graph. After that, we classify them into groups;
each group contains the interactions with the same source and target security contexts. Therefore, all
interactions with the same elementary operation will be combined into one interaction with the same
elementary operation type and the smallest start date and time, and the largest end date and time.

Sample: be the following interactions:

()→user1 file3r
Jan 02 12:10:12, 12:12:15

()→user1 file3r
Jan 02 13:21:12, 13:58:01

()→user1 file3r
Jan 02 14:11:10, 14:15:26

()→user1 file3r
Jan 02 14:17:15, 15:20:00

These four interactions are grouped into the interaction: ()→user1 file3r
Jan 02 12:10:12, 15:20:00 having the

same source and destination and Jan 02 12:10:12 as the smallest start date and time Jan 02 15:20:00 as the
largest end date.

3.2 Size reduction of the information flow graph

To remedy the problem of false negatives encountered when using the deletion by inclusion in the work of
Clairet et al. [5], we define another solution in the second step that allows the size reduction of the
information flow graph. An information flow is either a path in this graph or a composition of several
paths. First, we define the notion of equivalence classes; each class contains all the possible paths having
the same source and destination; thus, each class is considered to be decomposed into equivalence sub-
classes. Each subclass contains equal length paths. Then, we enumerate all the possible paths between two
vertices of the graph. We minimize them to obtain one or more signatures using an algorithm that takes into
account, at the same time, the capacity of the signatures obtained to represent the maximum of paths.
Therefore, its capacity to detect the maximum of illicit behaviours and the error rate that these signatures
can cause hence the number of false negatives and false positives obtained. These two notions are essential
because they will be used in our solution to determine the percentage of accuracy of each signature.

838  Lounis Ouarda et al.

This solution allows us to minimize the flow graph, which reduces memory consumption while testing the
signatures’ effectiveness and therefore keeps the IDS very efficient.

In our proposed solution methods, we consider these hypotheses:
1) We define the notion of equivalence classes; each class contains all paths with the same source and

destination and is composed of several equivalence subclasses. All paths in a subclass have the same
length, which is defined by the number of arcs in the path.

2) The enumeration of all paths between two vertices of the graph must be represented by one or more
signatures compressing the paths.

3) The set of all signatures must have the same decision, which is assigned by the initial graph to each
intercepted and tested system call.

4) The compressed paths in the form of signatures must have a maximum detection rate and minimum
false positive/false negative rates.

5) These signatures must be stored with a minimal memory space, which must not exceed the space of the
initial graph.

Therefore, the objectives and the constraints of our work can be summarized as follows:
– minimize the CPU load and memory consumption;
– increase the detection rate;
– minimize the false positive and the false negative rates;
– no addition of information in the new system; and
– no deletion of information from the new system.

Accordingly, our proposed approach covers the following points:
Hybrid: this means combining both the behavioural and signature approaches. In fact, we will benefit

from the behavioural approach while limiting its drawbacks by using the signature approach. Most of the
previous works have shown the usefulness of such a combination.

Performance/Efficiency: the proposed approach guarantees the system’s performance via reducing the
memory consumption and the CPU load of the IDSwhilemaintaining its efficiency by providing a high detection
rate and a minimum false positive/negative rate. Guaranteeing the efficiency of HIDS with a low impact on the
system’s performance is the main challenge. Therefore, it comes down to resolving a problem with two contra-
dictory objectives. This point is manifested by using heuristics to keep high-quality signatures only.

4 Solving our optimization problem in the offline case

The offline case represents the case where the system calls are already collected in a system trace before the
beginning of the analysis operation. We distinguish three phases running sequentially:
– First phase: The construction of the information flow graph is done from an SELinux security policy [3].
– Second phase: In which our information flow graph minimization solution is applied.
– Third phase: The effectiveness of our intrusion detection solution present in the system call trace is

tested.

4.1 Mathematical modelling

Our model is based on a graph, which highlights the security property “confidentiality”; it represents in a
general way the relations between the various entities concerned. The main interest of this approach is the
processing of rare events by their chronological appearance order.

Improving the efficiency of intrusion detection in information systems  839

For the resolution of the offline case, we propose a mathematical formalization of the Problem in which
the parameters described in Table 2 are used. The formulation is given below.

Let the following decision variable:

() ⎧
⎨⎩

()
=x Sign 1 whether the signature in question is effective,

0 else,
,
,L k

j i
,

,
sign

() ()∀ = …

= … = … = … …

L L L
k j i

min max
NbrSign NbrCl NbrSCl

, , ,
1, . , , 1, .., , 1 ,

sign sign sign

For the offline case of solving the information flow graph optimization problem, we propose the
following two objective functions:

⎧

⎨
⎩

()

()

()F
G

Maximize 1 Sign
Maximize CompRate

L k
j i

,
,

sign

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

()

()

() ()

()

 ≤ ≤

≤ ≤

≤ ≤

≤ ≤

F

G
k
i
j

L L L

Sign allows to test the satisfiability of a signature

CompRate compression ratio of G graph
NbrSign

NbrSCL
NbrCl

min max

with

1 :

:
1
1
1

L k
j i

sign sign sign

,
,

sign

(1)

Table 2: Parameters used in the mathematical modeling

Notation Description

Indexes i Numbering the sets and paths
j Numbering the equivalent classes
Lpath Path length
k Numbering the signatures
Lsign Signature length
NbrSign Number of signatures
NbrCl Number of equivalent classes
NbrSCL Number of equivalent sub-classes

Path PathL ,i j
L

,
Sc ,Sc
path

pathSource1 target() A path number i, having as source node ScSource1 and as destination node
Sctarget belonging to the equivalence class number j and having
Lpath as a length

Decision variable x SignL k
j i

,
,

sign
()()

Decision variable, which gives an integer number

Class Cls j
Sc ,ScSource target() Equivalence class containing all the paths starting with the node ScSource and

ending with the node Sctarget with j as the number of this equivalence class
Subclass SCLL i

j
,path

Equivalence subclass number i belonging to equivalence class j and all its
paths having an identical length Lpath

Signature SignL k
j i

,
,

sign
() A signature number k compressing the paths in subclass number i that

belongs to class number j having a length of Lsign
The arc source source(arci) Function that has as a parameter an arc and returns the source node of

this arc
The arc destination target(arci) Function that has as a parameter an arc and returns the destination node of

this arc
The arc start date start(arci) Function that has as a parameter an arc and returns the start date
The arc end date end(arci) Function that has as a parameter an arc and returns the end date
The destination target(arci) Function that has as parameter an arc and returns the target node of this arc
The source source(arci) Function that has as parameter an arc and returns the source node of this arc

840  Lounis Ouarda et al.

The F1 function is defined on a set of SIGN signatures and gives a value between 0 and 1.

{ ()| }() ()
∈FMax Sign Sign SIGN1 L k

j i
L k
j i

,
,

,
,

sign sign

To explain our approach further, we propose the following different definitions:

Definition 1. Graph
In our case, the information flow graph is defined by a tuple G = (S, A, E) such that:

– S is a finite set of vertices; each vertex represents the security context of the system entity.
– A is a set of pairs of vertices {(si, sj) ∈ S2} representing the interaction between the two vertices
– E represents the values that an arc can take (elementary operation type: Read, Write, Execute, Transition,

and the start and end date of the interaction) (Figure 1).

Example. On the following graph:

Taking for example the interaction user file1 1r w
Jan 05 10:00:07 10 03 08, : :
,

The user1 security context can perform read and write operations on file1.

Definition 2. Summit
Let G = (S, A, E) be the information flow graph, a vertex or node xi ∀i, 0 ≤ i ≤ n – 1 in the graph G

represents the security context of a system entity. A security context is a set of attributes (attri) associated
with each operating system entity, representing the system’s processes and resources. These entities can be
separated into two sets: that of subjects, which are the active entities (processes), and that of objects, which
correspond to passive entities (resources, files, and sockets).

{ }= …x attr , attr . attri n1 2

Example. the security context Scuser and Scadmin correspond respectively to the security contexts associated
with users user1, user2 and administrators admin. They are defined by:

{ }=Sc user1, user2user

{ }=Sc admin .admin

Definition 3. Arc
Let G = (S, A, E) be the information flow graph, an Arc represents all the information of a system call; it

connects two summits, i.e., the two security contexts of the two system entities that interact through the
system call. This arc is labelled by a tuple that defines the type of the elementary operation of the system
call (Read, Write, and Transition) and the start and end dates of the system call.

Figure 1: Example of an information flow graph.

Improving the efficiency of intrusion detection in information systems  841

⎡

⎣⎢ []
⎤

⎦⎥
≡Arc Sc eo

sd, ed
Scdef Source target

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

 ≡

∈ ∈ ∈ ∈ ∈

 ()

D D

Arc

Sc CSS, Sc CS, eo EO, sd , ed ,
Sc performs the elementary operation eo
on Sc starts on sd date and ends on
ed date
with
CSS: is the set of subject security contexts

CS: is the set of all contexts subject and object
EO: the whole of the elementary operation

def

Source target

Source

target

Example. We take the previous graph, the arc user file1 1r w
Jan 05 10:00:07, 10:03:08
,

where (user1 and file1) represent the security contexts, (r, w) represents the type of the elementary
operation, (Jan 05 10:00:07, 10:03:08) represents the start and end dates of the interaction.

Definition 4. Elementary path
Let G = (S, A, E) be the information flow graph. In our graph, we use the notion of an Elementary Path to

avoid cycles; an elementary path is represented by a set of system calls (set of arcs) respecting the causality
principle. For the principle of causality to be respected, the terminal node of the first arc must be the same
as the initial node of the second arc in the path. Likewise, the terminal node of the second arc must be the
same as the initial node of the third arc and so on for the rest of the nodes in the path. Accordingly, the start
date of the first arc must be less than or equal to the end date of the second arc and the start date of the
second arc must be less than or equal to the end date of the third arc, and so on for the rest of the other
nodes making up the path.

An elementary path is defined as follows:

()

= …Path arc arc arc, , ,L i j L
Sc Sc

, ,
,

1 2
L

path

Source1 target path
path

With: target (arci) = source (arci+1) and start (arci) ≤ end (arci+1)

In more detail, the elementary path is defined as follows:

⃑

⃑

⃑

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

()

() ()

() ()

≡

…

=

=

……

=

() = ()

() ≤ ()

…

=

≤

[]

[]

[]

−

−

L

Path

arc , arc , , arc

arc Sc Sc

arc Sc Sc
. .

arc Sc Sc

Avec:
target arc source arc and

start arc end arc and
. and

target arc source arc and

start arc end arc

: length of the path, i : path number and
jnumber of the class to which it belongs

L

L L L

L L

L L

i jL

path

, ,
Sc ,Sc

def

1 2

1 Source1 sd1,ed1
eo1

target1

2 Source2 sd2,ed2
eo2

target2

Source sd3,ed3
eo3

target

1 2

1 2

1

1

path

path

path path path

path path

path path

Source1 target

Example.

user file file1 1 2r w r w
Jan 05 10 00 07 10 03 08 Jan 05 10 01 02 10 10 14: : , : :
,

: : , : :
,

842  Lounis Ouarda et al.

This elementary path is composed of two arcs:

arc1: user file1 1r w
Jan 05 10 00 07 10 03 08: : , : :
, and

arc2: file file1 2r w
Jan 05 10 01 02 10 10 14: : , : :
,

With: [target(arc1) = file1 = source (arc2)] and

[() ()]= = ≤10:00:07 10:10:14, 10:00:07 10:10:14start arc1 and end arc2
Our model is essentially based on the definition of equivalence classes and equivalence subclasses to

facilitate the minimization of paths in the graph and thus the generation of signatures.
The definitions from definition one to definition four are essentially inspired by the work of ref. [3–5]

and written according to our formalism.

Definition 5. Equivalence class

An equivalence class denoted ()Cls j
Sc , ScSource target represents all elementary paths with the source node

ScSource and having as the target node Sctarget, each class is numbered by a number j.

{ }= GPATHS all Elemental Paths in the information flow graph

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪)

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

()

()

≡

∈

 (

L

Cls

Path PATHS

With:
PATHS:set of all paths
Sc :source node of paths
Sc :target node of paths

:path length differs from
one path to another

j

L i j

path

Sc ,Sc
def

, ,
Sc ,Sc

Source

target

Lt

path
path

Source target

Source1 arget

Example. Clsfile2 1
user1

, This class represents all the paths starting with user1 and ending with file2, it contains
the following paths:

=Path user1 file1 file21 Jan 05 10:00:07, 10:03:08
r,w

Jan 05 10:01:02, 10:10:14
r,w

=Path user1 file3 file22 Jan 05 10:01:02, 10:04:06
r,w

Jan 05 11:00:02, 11:02:06
r,w

=Path user1 file4 file23 Jan 05 10:00:02, 10:02:06
r,w

Jan 05 10:01:25, 10:07:12
r,w

=Path user1 file3 file5 file24 Jan 05 10:01:02, 10:04:06
r,w

Jan 05 10:10:02, 10:12:17
r,w

Jan 05 10:13:18, 11:00:16
r,w

Definition 6. Equivalence subclass (in our case)
An equivalence subclass noted

SCLL i

j
,path
, represents the set of elementary paths belonging to class j,

starting with summit ScSource and ending with summit Sctarget. All these paths have the same length.
Lpath, the equivalence subclass, is numbered by i.

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

()

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

()

≡

∈

 -

L
j

i

Path

SCL

PATHS

With:
PATHS:set of all paths

:number of equivalence class
: path length the samefor all paths

:number of equivalence sub class

L

L i j

i
j

path

, def

, ,
Sc ,Sc L

path

path

Source1 target path

Example. SCL2,1
1 is the first subclass that belongs to the class Clsfile

user
2,1

1 and has 2 as path length, the paths it
groups are the following:

=Path user1 file1 file21 Jan 05 10:00:07, 10:03:08
r,w

Jan 05 10:01:02, 10:10:14
r,w

=Path user1 file3 file22 Jan 05 10:01:02, 10:04:06
r,w

Jan 05 11:00:02, 11:02:06
r,w

Improving the efficiency of intrusion detection in information systems  843

=Path user1 file4 file23 Jan 05 10:00:02, 10:02:06
r,w

Jan 05 10:01:25, 10:07:12
r,w

Definition 7. Signature

The signature in this article is an elementary path representative of a set of paths in the information

flow graph G and going against a security property. A signature noted ()

SignL k
j i

,
,

sign
is defined as follows:

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

()
≡

 -

G
j

i
k
L

Sign

Elementary paths representative of a set
of paths in the graph with
:number of equivalence class

:number of equivalence sub class
:number of signature
sign:Signature length

L k
j i

,
,

defsign

Example:
The paths in the subclass SCL2 1

1
, are compressed by the following signatures:

=Sign user1 file1 file21 Jan 05 10:00:07, 10:03:08
r,w

Jan 05 10:01:02, 10:10:14
r,w

=Sign user1 file3 file22 Jan 05 10:01:02, 10:04:06
r,w

Jan 05 11:00:02, 11:02:06
r,w

=Sign user1 file4 file23 Jan 05 10:00:02, 10:02:06
r,w

Jan 05 10:01:25, 10:07:12
r,w

=Sign user1 ⁎ file24 Jan 05 10:00:07, 10:03:08
r,w

Jan 05 10:01:02, 10:10:14
r,w

By using the genetic algorithm, we choose the appropriate signatures and eliminate the others.

Definition 8. Equivalence relation 1 (in our case)
Our first equivalence relation is defined on the set of graph paths, it is the relation when all paths have

the same source and target node. So the equivalence relation R1 is defined on the set of paths PATHS such
that ∀ ∈ x y x R yPATHS, , 1 , if x and y have the same source and target. This relation is reflexive, sym-
metric, and transitive.

Definition 9. Equivalence class 1 (in our case).
Let PATHS be a set of paths, R1 an equivalence relation on PATHS and ∈x PATHS. We call the

equivalence class of x the set:

() { }= = ∈ x x y y R ẋ Cls1 PATHS, 1

With R1, the equivalence relation is defined in Definition 8.

Definition 10. Equivalence relation 2 (in our case).
Our second equivalence relation is defined on the set of graph paths; it is the relation where all paths

have the same source and target node and the same path length. Thus, the equivalence relation R2 is
defined on the set of paths PATHS such that ∀ ∈x y x R yPATHS, , 2 if x and y have the same source and
target and the same path length. This relation is reflexive, symmetric, and transitive.

Definition 11. Equivalence class 2 (in our case, it defines the equivalence subclass)
Let PATHS be a set of paths, R2 an equivalence relation on PATHS and ∈x PATHS. We call the

equivalence class of x the set:

() { }= = ∈ x x y y R ẋ Cls2 PATHS, 2

with R2 the equivalence relation is defined in 10.

844  Lounis Ouarda et al.

Therefore, in our graph, we use the notions of equivalence classes, equivalence subclasses, and sig-
natures to minimize the number of paths between two vertices of the graph. These notions are represented
in the following figure, which shows our idea of graph minimization in a general way (Figure 2).

From the number of paths in a subclass, we form the signatures corresponding to this subclass using all
possible combinations; each node can take the values attributed to the nodes of the corresponding paths.

We propose two criteria to classify a compressed signature. This classification is measured by the ability
of the compressed signature to detect the most significant number of illicit behaviour and the smallest
number of false negatives and false positives. The first criterion, “Prediction,”measures the probability that
this signature predicts any illicit behaviour. The higher this criterion is, the more effective the signature is.
The prediction calculation function is as follows:

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

()
()

()

⎧

⎨

⎪
⎪

⎩

⎪
⎪

()

()

()

()

()
∑ ∑

=

=

≤ ≤

≤ ≤

=

= =

z

z

L L

Pre Sign
Tp Sign

Sign

with

Sign Path and

1 j NbrCl and
1 i NbrSCL and

L k
j i L k

j i

L k
j i

L k
j i

j i
L i
j

NbrCls NbrSCl

path sign

,
, ,

,

,
,

,
,

1 1
,

sign

sign

sign

sign path (2)

Such that:

()()Tp SignL k
j i

,
,

sign
represents the number of true positives that this signature can detect.

Lpath represents the same number for all signatures.

()

z Sign i
j
L ,sign

represents the number of paths with the same path length as ()SignL k
j i

,
,

sign
belonging to all

subclasses and classes.
The second criterion “Sensitivity” is the number of paths well classified by this signature. The sensi-

tivity measures the capacity of a signature to detect all the illicit behaviours ensuring the least number of
false negatives. The higher this criterion is, the smaller the number of false negatives is. The function for
calculating the sensitivity of a signature is as follows:

()
()

() ()

()

()

() ()
=

+

Se Sign
Tp Sign

Tp Sign Fn SignL k
j i L k

j i

L k
j i

L k
j i,

, ,
,

,
,

,
,sign

sign

sign sign

(3)

With:

()()

Fn SignL k
j i

,
,

sign
is the number of false negatives detected by this signature.

For a signature to be effective, we propose the following mathematical model:

)

Figure 2: Equivalence classes, equivalence subclasses, and signatures.

Improving the efficiency of intrusion detection in information systems  845

⎧

⎨
⎩

()

()

() () ()

⎧

⎨
⎩

()

()

()

()

() () ()

()

= +

+ =

≤ ≤

F

F

Maximize Pre Sign

Maximize Se Sign

Sign α Pre Sign β Se Sign

with
α β 1 4.1 and
0 1 Sign 1

1 ⁎ ⁎

L k
j i

L k
j i

L k
j i

L k
j i

L k
j i

L k
j i

,
,

,
,

,
,

,
,

,
,

,
,

sign

sign

sign sign sign

sign

(4)

In order to group, the two criteria of the signature efficiency test, we propose the weighted sum method
presented above.

Then, α and β are coefficients whose sum equals 1; these coefficients reduce the multi-objective sig-
nature effectiveness testing problem to a single-objective optimization problem. Furthermore, the con-
straint (4.1) α + β = 1 ensures that the value of the objective function F1 is contained in the interval
[0,1], so the closer the value to 1, the more efficient the signature is inverse; a value close to 0 eliminates
this signature.

We initially assume that the two coefficients, α and β, have the same level of importance, hence: α = 0.5
and β = 0.5, and we change the values of these two criteria to see their influence on the quality of the
results.

⎧

⎨

⎪⎪

⎩

⎪
⎪

()

⎧
⎨⎩

()
∑ ∑=

≤ ≤

≤ ≤

= =

x

j
i

NbrSignComp Sign

with NbCls
NbrSCL

1 and
1

j i
L k
j i

NbCls NbrSCL

1 1
,

,
sign

(5)

The function (5) calculates the number of compressed signatures after testing one by one by the

objective function F1. Thus, if this signature is effective, the decision variable ()()x SignL k
j i

,
,

sign
associated

with it will have a value of 1, so it will be counted. Otherwise, if it is not effective, its decision variable

()()x SignL k
j i

,
,

sign
will have a value of 0, so the signature will not be counted.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎧

⎨

⎩
() ()

()

()

∑ ∑ ∑=

≤ ≤

≤ ≤

≤ ≤

= =

i
L L L

j

NbrAllPath Path

NbrCls and
NbrSCL

Min
with

1
1

Max

j i L

L

L i
j

NbrCls NbrSCL

Min

Max

path path path

1 1
,

path

path

path

(6)

The function (6) calculates the number of all paths that we wanted to minimize.

() = −G .CompRate NbrSignComp
NbrAllPath

1 (7)

Function (7) calculates the compression ratio of the paths in graph G. The compression ratio is in the
interval [0,1], a better compression is the one that is close to 1. A compression ratio equal to 0 means that
none of the paths is compressed, and our optimization is not interesting.

4.2 Complexity and objectives of the problem

4.2.1 Theory of algorithm complexity

Our Problem is a graph optimization problem. This graph is an instance of considerable size. It consists of as
many nodes as there are entities in the system. According to several works, graph optimization problems

846  Lounis Ouarda et al.

belong to the class NP-complete. Knowing that the Problem we are working on is NP-complete is an
indication that the problem is difficult to solve. In other words, it is NP-hard, so it is better to look for
approximate solutions using heuristics and meta-heuristics to find exact solutions [6].

4.2.2 Solving the Problem according to its size and objectives

There are two main families of methods to solve problems, especially optimization problems [9]: the exact
(complete) methods, which guarantee the completeness of the solution, and the approximate (incomplete)
methods, which are efficient but not complete. The exact methods guarantee the optimal solution for a
given optimization problem, and their use is very interesting. However, they are limited to the case of small
problems; in addition, they generate unacceptable execution times [1]. On the other hand, approximate
methods apply to many problems and show that they can lead to satisfactory results in much more reason-
able times [9]. Therefore, due to our problem’s size, we were naturally driven to apply approximate
methods.

Multi-objective optimization problems are mostly NP-complete or rather NP-hard. Moreover, their size
changes from one Problem to another; depending on this size, two classes of methods have been distin-
guished: exact algorithms for small problems and heuristics for solving large problems and problems with
two or more objectives.

Therefore, given the complexity of graph optimization, the size of our graph and the objectives to be
reached, i.e., guaranteeing the efficiency and the performance of the system, we always come across the
need to use heuristics to optimize the graph and to solve our Problem classified in the NP-hard class.

We choose a meta-heuristic Algorithm, mainly a Genetic Algorithm, to solve our problem. This choice is
justified, like said above, by its complex class and problem objectives. Indeed, genetic algorithms have
proven their efficiency in finding reasonable solutions to difficult problems of large size [10,11] and have
been applied several times to 3-SAT problems [12] and graph problems such as graph colouring [13].

5 Resolution algorithm

Evolutionary algorithms represent an essential tool for solving optimization problems. Moreover, they are
increasingly used in many fields. They are easy to implement and provide excellent performance at a low
cost. Genetic algorithms are part of this family, and they explore domains with many solutions. In other
words, the principle is to simulate the evolution of a population of various individuals to which we apply
different genetic operators.

5.1 Application of genetic algorithms to the context of our information flow graph
optimization work

The role of the genetic Algorithm here is
– To find a signature of illicit behaviour that checks both constraints:

• ()()
≥

F 0.51 SignL k

j
,

,i
sign

; the signature must be able to detect at least 50% of the illicit behaviours it

represents; this favours the increase in detection rate
• () ((() ()))≤ + /Nbr Nbr node Nbr Arc⁎ 2 ; the appearance of (*) in the signature should not be more than

half of the number of nodes plus the number of arcs in the signature; it promotes the decrease of false
positives. (* means any value)

– Minimize the number of paths efficiently.

Improving the efficiency of intrusion detection in information systems  847

– If ()()
≥F Sign1 0.5L k

j i
,

,
sign

and () ((() ()))≤ + /Nbr Nbr node Nbr Arc⁎ 2 , then we will keep the signature.

Otherwise, it will be passed to the evolutionary process to produce new and more significant signatures.

5.2 The architecture of the Genetic Algorithm in our case

Genetic evolution begins with the initial population. The mechanism of generation of this population must
be able to produce a population of non-homogeneous individuals that will serve as the basis for future
generations. The choice of the initial population is important because it can make the convergence towards
the optimum more or less rapid. If nothing is known about the problem to be solved, the initial population
must be distributed over the entire research domain. In our research, we invest the approach to detecting
illicit behaviours based on models that represent illicit behaviours. More specifically; one can have two
global views of the subject:
– A generic model represents all types of illicit behaviour.
– A model for each type of illicit behaviour.

We are motivated by the establishment of host-based IDS in order to detect as many types of illicit
behaviour as possible. However, each behaviour has its specificities. Proposing an initial population
without considering this can lead to unsatisfactory results, especially when the applied genetic algorithm
graph is huge. To remedy this shortcoming, our contribution was to propose an initial population for each
type of illicit behaviour (diversification of the initial population). The size differs from one population to
another, considering that the size of the chromosomes is not fixed. Figure 3 shows the structure of the
chromosome.

A chromosome is a feasible solution in our implementation, consisting of a record of string saved into
the MongoDB dataset. Chromosomes in Figure 3 represent an elementary path from summit1 (source node)
to summit3 (target node). Figure 4 shows a real example of such a chromosome.

Algorithm 1: Informal algorithm for information flow graph optimization using genetic algorithms
Optimization (G)
Start
1) Initialization of the initial population P_0 (generation 0 population)
−For every two nodes of the graph, name all the elementary paths between them while respecting the

principle of causality;
−Classify these paths in classes;
−Partition each class into subclasses;

Summit1 Arc1 Summit2 Arc2 Summit3
Chromosome

Figure 3: Chromosome representation for an elementary path of 3 summits.

Chromosome

Figure 4: Real Example of a chromosome of 3 summits.

848  Lounis Ouarda et al.

−For each subclass, signatures are generated, and the value of the ith gene of the signature is randomly
chosen among the values of the ith gene of all the paths in this subclass;

−The signatures are generated;
2) Evaluation of the chromosomes (signatures) of the population P_i

−If ()()
≥

F Sign1 0.5L k

j i
,

,
sign

and () ((() ())) ≤ + / Nbr Nbr nodes Nbr Arc⁎ 2 then keep the signature and

go on to evaluate the next one
Otherwise, pass this signature to the evolutionary process to generate new individuals
−These signatures will constitute the procreators of the generation Pi+1
3) Crossing two by two of the selected signatures to generate new individuals, the descendants
4) Generation of the new population P_(i + 1)
5) Repeat the process from 2 as long as the stopping criterion is not satisfied (in our case, the criterion is:

generation N terminal not reached)
End
Figure 5 shows a global architecture of the genetic algorithm application for our case of information

flow graph optimization.

5.3 Construction of the quotient space

Using the equivalence relation defined in definitions 8 and 10, we form the equivalence classes and
subclasses of all the obtained signatures.

Let R2 be the equivalence relation defined in definition 10. Then, the equivalence subclasses realize a
partition of signatures SIGN; this partition is obtained by grouping together the signatures “equal modulo
the relation R2.

Figure 5: Application of the Genetic Algorithm for information flow graph optimization.

Improving the efficiency of intrusion detection in information systems  849

Définition 12
Quotient space (used in our case)

Let SIGN be a set of signatures, R2 an equivalence relation on SIGN and ∈x SIGN. We call the equiva-
lence class of x the set:

() { } = = ∈ẋ x y y R xCls SIGN2 , 2 With R2, the equivalence relation is defined in 10. We call the quo-
tient space the set:

/ = / ∈ R x xSIGN 2 ̇ SIGN

The definition of the equivalence relation R2 on the signatures gave rise to a partition or equivalence
classes. However, conversely, this one can be transformed into an equivalence relation when we have a
partition. As there is a round trip between the notion of equivalence relation and the notion of partition,
which allows the transformation of equality more or less into true equality, the definition that we gave of the
equivalence relation is relevant to generalizing the equality relation.

In other words, from the paths with which we associate an equivalence relation, we have seen that it
constitutes our quotient space. Moreover, the elements of the equivalence class are identical, so we can
choose one or two elements that can represent all the others. Here is a figure schematizing the construction
of the quotient space (Figure 6).

6 Experimentations and results

At the end of this part, we have concluded the last phase of this article, namely the chosen programming
language, the chosen graph, and the interpretation and discussion of the experimental results.

6.1 Programmation language

The programming language used to implement the solution proposed in Section 5 was Python. It was
chosen because of the availability of libraries and documentation and its fast and efficient execution.
The database used to record the results in MongoDB. It offers speed and efficiency in data processing
and text indexing, allowing powerful querying and analytics.

Figure 6: Construction of the quotient space.

850  Lounis Ouarda et al.

6.2 Description of the chosen graph

The graph chosen is in Figure 7, the same graph used by Pierre Clairet to apply his optimization solution [5].
This graph was chosen in order to be able to compare the two solutions. This graph is composed of 11
vertices (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) and 58 arcs. In this case, we work on the undirected graph. To evaluate
the effectiveness of our method, we calculate the number of paths between two source/target pairs. From
these paths, we classify them into classes and subclasses to generate signatures of illicit behaviour.

Here is an informal algorithm showing the steps followed to implement our solution.
Algorithm2: Algorithm showing the steps for the implementation of our solution

1) Graph in Figure 7, it represents the allowed information flows
2) We want to prohibit information flows between these source/destination pairs ([1, to all other nodes],

[2, to all other nodes], [3, to all other nodes], [4, to all other nodes], [5, to all other nodes], [6, to all
other nodes])

3) Classify these paths into equivalence classes and subclasses
4) For each subclass, create the corresponding collection (the collection is an array in the database)
5) For each subclass, create variables A1, A2, …. An containing the possible values, respectively, of the

first node, the second node, the third node ….etc.
6) For each subclass, generate the signatures from the variables A1, A2, …. An
7) Execute Algorithm 1 from step 2 for each signature to keep or delete it (calculate the F1 function for each

signature)
8) Calculate the compression rate (1-(Number of compressed signatures/number of all paths to be

reduced)
9) Calculate the detection rate, false-positive rate, false-negative rate
10) Compare the results obtained with the results obtained by executing the optimization method of Pierre

Clairet

6.3 The influence of the generation factor on the performance of the Genetic
Algorithm

We proceed to study the influence of the number of generations on the performance and, more precisely, to
determine the pace of the convergence of this performance to draw the necessary information concerning
the stability of the Genetic Algorithm. The stability is a relevant factor revealing the degree of adaptation of
the Algorithm and its power to recognize the types of attacks in a minimal time and proceed to construct the
sought models as soon as possible.

The study carried out considers different generation lapses according to the path length. The results are
collected at the end of each period. The experimental results are translated into graphs for a better

Figure 7: Graph example.

Improving the efficiency of intrusion detection in information systems  851

expression. Take an example of the equivalence subclass, which contains all the paths from node 2 to all the
other nodes with a length of 5. Each generation has 100 signatures. The following table shows the results
obtained for each generation; the associated curve is presented in Figure 8 (Table 3).

The evolution is launched during the second generation; we notice that the detection rate accelerates at
each generation and stabilizes at 100% in the fourth generation, while the false positive rate stabilizes in
the first generation.

7 Interpretation and discussion of the results

A good IDS can distinguish between normal and abnormal activity [1]. The challenge of this study was to
satisfy two contradictory objectives; the detection of attacks and the system’s performance. Therefore, a
comparison will be made between these two notions. The same graph was used in both optimization
methods (our’s and Pierre Clairet’s method), and the results for both are shown in the following tables
(Tables 4 and 5):

The number of paths used in our method is more significant than those used in Pierre Clairet (110,295
against 103,411). The number of signatures obtained by applying the method of Pierre Clairet was 1,436,

R
at

e
in

 %

Detection Rate

Example of an equivalence sub-class

False Positive Rate

Number of generation

Figure 8: Detection result curve for an example of an equivalence subclass.

Table 3: Detection result for an example of an equivalence subclass

Generation 1 2 3 4 5

Detection rate (%) 0.00 57.62 57.62 100 100
False positive rate (%) 0.00 0.00 0.00 0.00 0.00

Table 4: Results of the two methods in terms of Performance (Graph compression)

Methods Number of paths Number of generated
signatures

Number of compressed
signatures

Compression rates

Pierre Clairet 103,411 — 1,436 98.61%
Ours 110,295 — 620 99.44

852  Lounis Ouarda et al.

which gives a compression rate of 98.61%. In our method, the number of signatures obtained by applying
genetic algorithms was 620, which gives a compression rate of 99.44%. To test the efficiency of an IDS, the
criteria listed above must be calculated. In Pierre Clairet’s method, none of these criteria was given clearly
(no number showing their values). The table below shows another comparison (Table 6).

Our method has been developed aiming at a minimal impact on the operating system’s performance on
which it will be deployed while maximizing the efficiency of PIGA HIDS. Our method gave a high detection
rate of 99.9%, a low false-negative rate of 0.1% and no false positives. Despite the promising results
obtained by this model, it is not free of shortcomings. The proposed model does not consider the cycles
in the graph, and the pre-processing time (phase 2) is considerable, about a week. However, the detection
time (phase 3) takes just 6.75 s, which is better than Pierre’s Clairet 11.125 s.

8 Conclusion and perspectives

As described in this article, our main contributions to improving the efficiency of host-based IDS PIGA have
two parts: the definition of a new classification mathematical model based on the use of equivalence
classes/equivalence subclasses and a hybrid method that combines a signature-based approach and
anomaly-based approach. To the best of the authors’ knowledge, our approach is the first to improve the
efficiency of PIGA HIDS and discusses all the evaluation criteria (detection rate, false-positive rate, false-
negative rate, and compression rate).

Effectively, the main goal of this article is to minimize the graph, that is, to minimize the number of
paths between two nodes of the graph. The use of the equivalence class concept gives the notion of
diversification of the initial population used for the genetic algorithms. It allows us to construct the quotient
space that constitutes the minimization of the paths in the graph. Besides, the proposed model is exten-
sible/scalable and can be used in other databases with another pattern recognition method or the same
method to detect malicious behaviour. Moreover, the hybridization proposed for PIGA HIDS allowed us to
create more accurate HIDs and can better fit their design by focusing on lowering false alarm rates. We
compared its outstanding performance with Pierre Clairet’s [5] method and demonstrated its robustness
and generality through experiments.

As discussed earlier, we have succeeded in satisfying our contradictory objectives (keeping the effi-
ciency of the PIGA HIDS without affecting the operating system’s performance. The efficiency in this article
means a high detection rate and a low false-positive and false-negative rates). Further, the set of all
signatures reduces the memory space consumed and thus the CPU load.

Table 5: Results of the two methods in terms of detection (detection rate and error rate)

Methods Number of paths Detection rates False-positive rates False-negative rates

Pierre Clairet 103,411 — — —
Ours 110,295 99.9% 0% 0.1%

Table 6: Global comparison of the two methods

Methods Graph Detection
Rates

False-positive
rates

False-negative
rates

Pre-
processing time

Detection
time (s)

Cycles in
graph

Pierre Clairet Same ✗ ✗ ✗ ✗ 11.125 ✓
Ours Same ✓ ✓ ✓ Week 6.75 ✗

Improving the efficiency of intrusion detection in information systems  853

As part of our future work, we are planning to test the efficiency of our method against other methods in
the same field, especially that of Jonathan Cornabas. We aim to use fuzzy logic to choose the parameters α
and β. In addition, we intend to design and implement an anomaly detection technique for the Linux
platform using deep learning and a real database ADFA-LD, especially exploring the pre-processing of
system call traces to generate fixed-size call sequences. These sequences are used to train an LSTM deep-
based learning model. The model consists of several layers: the embedding layer, LSTM layer, distributed
time layer, and softmax layer.

Finally, for optimization of the present work, we would be able to take into account the cycles in the
graph and test our method on the real graph used by Pierre Clairet. For another optimization, we can add
signatures of licit behaviour to detect new types of attacks (zero-day attacks), therefore minimizing false
negatives.

Conflict of interest: Authors state no conflict of interest.

References

[1] Samrin R, Vasumathi D. Hybrid weighted k-means clustering and artificial neural network for an anomaly-based network
intrusion detection system. J Intell Syst. 2018;27(2):135–47.

[2] Elmasry W, Akbulut A, Zaim AH. A design of an integrated cloud-based intrusion detection system with third party cloud
service. Open Computer Sci. 2021;11(1):365–79.

[3] Brifaut J. Formalization and guarantee of system security properties: application to intrusion detection. PhD thesis.
Orléans: Orléans University; 2007.

[4] Cornabas JR. Formalization of security properties for the protection of operating systems. PhD thesis. Orléans:Orléans
University; 2010.

[5] Clairet P, Berthomé P, Briffaut J. Signature compression for PIGA IDS, 9th ed. France: MajecSTIC; 2012.
[6] Kim C, Jang M, Seo S, Park K, Kang P. Intrusion detection based on sequential information preserving log embedding

methods and anomaly detection algorithms. IEEE Access. 2021;9:58088–101.
[7] Shams EA, Rizaner A, Ulusoy AH. A novel context-aware feature extraction method for convolutional neural network-based

intrusion detection systems. Neural Comput Applic. 2021;33:13647–65.
[8] Subba B, Gupta P. A tfidf vectorizer and singular value Decomposition based host intrusion detection system framework

for detecting anomalous system processes. Computers Sec. 2021;100(102084).
[9] Hemmak A, Bouderah B. New properties for solving the single-machine scheduling problem with early/tardy jobs. J Intell

Syst. 2017;26(3):531–43.
[10] Resende PAA, Drummond A. Adaptive anomaly-based intrusion detection system using genetic Algorithm and profiling.

J security Priv. 2018;1(4):e36.
[11] Gauthama Raman MR, Somu N, Kirthivasan K, Liscano R, Shankar Sriram VS. An efficient intrusion detection system based

on hypergraph – Genetic Algorithm for parameter optimization and feature selection in support vector machine. ELSEVIER
Knowl Syst. 2017;134:1–12.

[12] Huimin F, Yang X, Guanfeng W, Hairui J, Wuang Z, Rong H. An improved adaptive genetic algorithm for solving 3-SAT
problems based on effective restart and greedy strategy. Int J Computational Intell Syst. 2018;11(1):402–13.

[13] Arindama D, Aayushb A, Pranavb D, Hoang L, Franke W, Tandrab P, et al. A genetic algorithm for total graph colouring.
J Intell Fuzzy Syst. 2019;37(6):7831–8.

854  Lounis Ouarda et al.

	1 Introduction
	2 Related works
	3 The overall description of the problem
	3.1 Interactions grouping
	3.2 Size reduction of the information flow graph

	4 Solving our optimization problem in the offline case
	4.1 Mathematical modelling
	4.2 Complexity and objectives of the problem
	4.2.1 Theory of algorithm complexity
	4.2.2 Solving the Problem according to its size and objectives

	5 Resolution algorithm
	5.1 Application of genetic algorithms to the context of our information flow graph optimization work
	5.2 The architecture of the Genetic Algorithm in our case
	5.3 Construction of the quotient space

	6 Experimentations and results
	6.1 Programmation language
	6.2 Description of the chosen graph
	6.3 The influence of the generation factor on the performance of the Genetic Algorithm

	7 Interpretation and discussion of the results
	8 Conclusion and perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

