DE GRUYTER Journal of Intelligent Systems 2022; 31: 660-671 a

Research Article

Ying Wang* and Korhan Cengiz

Implementation of the Spark technique in a
matrix distributed computing algorithm

https://doi.org/10.1515/jisys-2022-0051
received October 29, 2021; accepted February 07, 2022

Abstract: Two analyzes of Spark engine performance strategies to implement the Spark technique in a
matrix distributed computational algorithm, the multiplication of a sparse multiplication operational test
model. The dimensions of the two input sparse matrices have been fixed to 30,000 x 30,000, and the
density of the input matrix have been changed. The experimental results show that when the density
reaches about 0.3, the original dense matrix multiplication performance can outperform the sparse-sparse
matrix multiplication, which is basically consistent with the relationship between the sparse matrix multi-
plication implementation in the single-machine sparse matrix test and the computational performance of
the local native library. When the density of the fixed sparse matrix is 0.01, the distributed density-sparse
matrix multiplication outperforms the same sparsity but uses the density matrix storage, and the accelera-
tion ratio increases from 1.88x to 5.71x with the increase in dimension. The overall performance of dis-
tributed operations is improved.

Keywords: spark technology, distributed, matrix operation, sparse matrix, dense matrix

1 Introduction

In recent years, with the development of communication technology, especially the rapid development of
mobile, internet, video, voice, image, and other data are growing rapidly [1]. In order to dig deeper into the
value contained in the massive data, Click-Through-Rate estimation, recommendation algorithm, image
recognition technology, speech recognition technology, etc., are widely used. With the widespread appli-
cation of these algorithms on large-scale data, the computing power of the existing single machine is
limited by the bandwidth and the limited computing power of a single CPU, and hence, it can no longer
meet the needs of massive data processing. Matrix operations are a basic mathematical tool, and are the
foundation of many machine learning and data mining algorithms, commonly used matrix operations have
high algorithm complexity [2]: for example, matrix multiplication commonly used in deep learning, matrix
factorization commonly used in natural language processing and recommendation systems, etc. Massive
data promote the rapid development of various parallel algorithms, especially the wide application of
Hadoop ecosystem, parallel algorithms based on the Hadoop ecosystem are constantly emerging [3]. The
use of traditional methods on general computers cannot solve large-scale numerical calculation problems,
massive data promote the rapid development of various parallel algorithms [4]. Initially, parallel com-
puting required a dedicated computer system, such as parallel vector processing machines, massively
parallel processor, and distributed shared memory processor. These dedicated computer systems are

* Corresponding author: Ying Wang, Department of Information Engineering, Tianjin Maritime College, Tianjin, 300350, China,
e-mail: YingWang5s@126.com

Korhan Cengiz: College of Information Technology, University of Fujairah, Fujairah, United Arab Emirates; Department of
Electrical — Electronics Engineering, Trakya University, 22030, Edirne, Turkey, e-mail: korhancengiz@uof.ac.ae

a Open Access. © 2022 Ying Wang and Korhan Cengiz, published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 International License.

https://doi.org/10.1515/jisys-2022-0051
mailto:YingWang5@126.com
mailto:korhancengiz@uof.ac.ae

DE GRUYTER Implementation of Spark technique in a matrix distributed computing algorithm — 661

expensive and not suitable for large-scale use. With the continuous improvement in workstation perfor-
mance and the declining price, there are also high-speed and cheap networks constantly appearing, and
the use of ordinary workstations to form a cheap parallel computing system appeared [5]. This system can
make full use of the resources of each workstation, unified scheduling processor, and realize efficient
parallel computing. In this kind of workstation cluster, users need to explicitly send and receive messages
to achieve data exchange between processors, call it messaging. Based on this, parallel programming
environment, MPI4, appeared in the 1990s, it is a standard for messaging interface used to develop parallel
computing programs based on message passing, its purpose is to provide users with a portable, practically
usable, and efficient messaging interface library. Xiong et al. proposed a new generation of parallel com-
puting framework, Spark. As shown in Figure 1, the framework is dedicated to proposing a unified pro-
gramming model, providing a better programming interface, at the same time, supporting batch jobs,
interactive jobs, iterative jobs, and stream processing jobs. While providing performance comparable to
proprietary systems, it can also reduce learning costs and maintenance costs [6].

‘ Spark SQL‘ ‘ Spark Streaming ‘ ’ Spark MLIlib ‘ ‘GraphX ‘

’ Spark Core ‘

‘ Standalone Scheduler ‘

Figure 1: The Spark system component diagram.

2 Literature review

Heidari and others believe that MapReduce implements Shuffle in order to reduce memory usage, extensive
use of external sorting to achieve the aggregation of Value of the same Key, and there will be a lot of disk 10
operations [7]. Wang and others proposed a new data abstraction resilient distributed dataset (RDD), which
reduced disk IO and brought a huge performance improvement. Spark can also make full use of the various
resources already in the Hadoop ecosystem, no technology stack migration is required. RDD is an immu-
table, partitioned, distributed, and abstract distributed data collection [8].

Guo et al. examined the performance bottleneck of MLlib (ML’s official Spark package) in detail,
focusing on its implementation of stochastic gradient descent (SGD) under the training of multiple ML
models. We prove that the performance disadvantage of Spark is caused by implementation problems, and
the Spark performance can be significantly improved by utilizing the famous “model averaging” (MA)
technology in distributed ML. Further, the application of MA in training a potential Dirichlet allocation
(LDA) model in Spark is demonstrated. Not intrusive, only a small amount of development work. The results
of the experimental evaluation show that the MA-based SGD and LDA versions are several orders of
magnitude faster than the similar versions without the MA [9].

SparkBLAST, a distributed parallel BLAST method, was designed based on the big data technology
Spark, by Wang et al. Under the memory computing framework Spark, SparkBLAST identifies the sequence
alignment task, divides the sequence dataset, and compares the sequence data. The Apache Hadoop YARN
is used for task scheduling and resource allocation. Finally, the SparkBLAST was experimentally compared
with an independent BLAST. It is shown that the SparkBLAST achieves an acceleration ratio of 3.95 without
sacrificing accuracy. That is, SparkBLAST is computationally more efficient than independent BLAST. The
results provide an efficient sequence alignment tool for bioinformatics researchers [10].

In cloud computing and big data systems, delayed detection and manual resolution of performance
anomalies can result in performance violations and financial penalties. Based on this, Alnafessa et al.
proposed an anomaly detection method based on artificial neural network, which is applicable to The
Apache Spark memory processing platform. Apache Spark is widely used in the industry due to its high

662 —— Ying Wang and Korhan Cengiz DE GRUYTER

speed and versatility. However, there is still no comprehensive performance exception detection method
applicable to this platform. Alnafessa et al. proposed a method driven by artificial neural network to rapidly
filter Spark log data and operating system monitoring indicators, and accurately detect and classify
abnormal behaviors based on the characteristics of Spark elastic distributed dataset. The method is eval-
uated using three popular machine learning algorithms, decision trees, nearest neighbors, and support
vector machines, as well as four variables that consider different monitoring datasets. The results show that
this method is superior to other methods, usually achieving 98—-99% F scores, and provides higher accuracy
than other techniques in detecting the period and type of anomaly occurrence [11].

Compared with traditional statistical methods, machine learning algorithms have been widely used in
load forecasting to obtain better accuracy. However, with the huge growth of data scale, complex models
need to be established, which requires a big data platform. By maximizing the effective utilization of cluster
nodes, available computing resources can be optimized and utilized efficiently. In the process of smart grid
big data, parallel computing is needed to realize the optimal utilization of resources. Zainab et al. carried
out experiments on load prediction in multi-AMI environment by using master-slave parallel computing
mode. A parallel job scheduling algorithm based on Apache Spark in multi-energy data source environment
is proposed. An efficient Spark job submission resource utilization strategy is proposed to reduce job
completion time. The optimal value of the cluster clusters the data to reduce the computation time.
Multiple tree-based machine learning algorithms were tested for parallel computation to evaluate perfor-
mance with tunable parameters on real datasets. Three years of real data from 1,000 distribution transfor-
mers in Spain were used to demonstrate the trade-off between accuracy and processing time of the
method [12].

Data reduction or summarization techniques allow for a reduced representation of a dataset that has a
much smaller collective volume but closely preserves the integrity of the original data. Clustering hier-
archical clustering algorithm has little advantage in summarizing data. It can be as simple as generating a
specific level of summary (in the form of a clustering pattern) with a simple tweak, or it can be paralyzed.
Apache Spark is a data processing framework that can quickly perform processing tasks on very large
datasets. It is a standard tool for analyzing big data. In terms of data processing, Spark can distribute data
processing tasks across multiple machines. Spark runs on the DISTRIBUTED File System (HDFS) and YARN
(Resource Management) of Hadoop to access HDFS files and efficiently utilize network resources. In order to
achieve high performance and scalable data analysis technology in the Spark environment, the cost of
phase conversion, narrow conversion, and wide conversion, I/0, and network must be considered. Moertini
and Ariel developed a data summarization technique using clustering algorithms on Spark. To avoid bias in
the results, records in a given big data are randomly divided into bags of datasets stored in elastic RDD
partitions on the work machine. To reduce network and I/O costs, an extensive transformation is adopted
that involves data transformation across the network. In addition, RDD partitions are then processed locally
to generate cluster patterns from work tasks. Functions with complex calculations are designed as Spark
parallel tasks. We ran a series of experiments on a Spark cluster by varying data sizes (5-20 Gb), machine
kernel usage (10-50), and application variables (data split and Max object/tree). The results showed that
the method is scalable and effective. Execution time is largely determined by parallel tasks running locally
on the worker [13].

Clustering is one of the most important unsupervised machine learning tasks. It is widely used in
intrusion detection, text analysis, image segmentation, and other problems. Subspace clustering is the
most important method in high dimensional data clustering. In order to solve the clustering problem of
parallel subspaces of high-dimensional big data, Xiao and Hu proposed a parallel subspace clustering
(PSubCLUS) algorithm based on Spark, inspired by the classical subspace clustering algorithm, SubCLU.
Spark is the most popular parallel processing platform for big data. PSubCLUS uses the RDD log base
provided by Spark for distributed storage. The two main execution stages of the algorithm, one-dimensional
subspace clustering and iterative clustering, can be executed in parallel at each working node of the cluster.
PSubCLUS also uses a repartitioning approach based on the number of data points for load balancing.
Experimental results show that PSubCLUS has good parallel acceleration and ideal load balancing effect,
and is suitable for solving the clustering problem of parallel subspace of high-dimensional big data [14].

DE GRUYTER Implementation of Spark technique in a matrix distributed computing algorithm — 663

Spark is a more efficient distributed big data processing framework following Hadoop. It provides users
with more than 180 adjustable configuration parameters, and it is a challenge to automatically select the
optimal configuration to make the Spark application run efficiently. The key to solving these problems is the
ability to predict the performance of Spark applications in different configurations. Cheng et al. proposed a
new adaboost-based approach that can efficiently and accurately predict the performance of a given
application with a given Spark configuration. Adaboost is used to build a set of performance models for
Spark at the stage level. The proposed approach was evaluated on six typical Spark benchmarks with five
input datasets. Experimental results show that the prediction error and cost of the proposed method are less
than those of the previous method [15].

RDD only supports coarse-grained operations, and does not support fine-grained operations, for
example, RDD does not support updating one of its elements.

In the optimization of dense matrix multiplication, this article optimizes the call method of local native
library to reduce frequent data transmission and improve the degree of operation concurrency. Based on the
existing conversion method between the distributed block matrix and row matrix in Spark, a more efficient
conversion method is proposed, and some system components of Spark are further modified to provide
operators to reduce the data disk read and write load in the matrix multiplication join step. Through these
optimizations, the overall performance of dense matrix multiplication is significantly improved.

3 Method

3.1 Analysis of two execution strategies based on Spark execution engine

Matrix A with the dimensions m x n contains M;, x K}, sub-blocks, and matrix B with dimensions n x k,

contains Kj, x Ny, sub-blocks.

(1) Reuse methodology manual (RMM): In the RMM execution strategy, there is only one shuffle step. In
order to get the final result matrix C, input sub-matrix blocks A; and By ; need to generate multiple
copies. In the flatMap phase of RMM, each sub-block of matrix A needs to generate N}, copies, similarly,
each sub-block of matrix B needs to generate My, copies, the amount of data that needs to be shuffled at
this stage is Np|A| + My|B|. Perform multiplication between sub-blocks in the reduceByKey stage of
RMM, unlike Competency of Project Management Model (CPMM), at this time, M}, X N}, tasks can be
executed at the same time, and each task needs to perform Kj, sub-block matrix multiplications in series
and accumulate to obtain the final sub-block C;j;

(2) CPMM: In this execution strategy, there are two shuffle stages. In the map step of the first shuffle stage,
input matrices A and B are connected by key k and written to disk, aggregating the combination 4;; and
By ; of the sub-block matrix, the data volume of shuffle in this stage is |A| + |B|. The next stage performs
the cross product, namely P,-’fl» = A; By j, since each matrix block has been combined by the key k
connection, therefore, at most Kb tasks can perform matrix multiplication between sub-blocks at the
same time. These intermediate results are then combined according to the key (i, j) to get P,-’f]« ; write to

disk, the amount of data required to mix in this step is K}, |C| is. In the final reduce stage, the final result

matrix C;j = X pi’fi is obtained through the reduceByKey operator. Through the above analysis, it can be
seen that when CPMM performs sub-block matrix multiplication, only K, tasks are executed concur-
rently, in other words, the concurrency is only Kj, the concurrency of RMM can reach My, x N, For the
same matrix size, since the computational cost of accumulating the intermediate result sub-matrix is
much less than performing sub-matrix multiplication, higher concurrency, when the cluster resources
are met, tends to bring better performance [16—18]. So inspired by this, an additional step of accumu-
lating sub-matrices is introduced to greatly increase the concurrency of sub-matrix multiplication. So on
the basis of RMM, an optimized execution strategy Competency of Reuse methodology manual (C-RMM) is
proposed, which is described in detail as follows: In this strategy, there are two shuffle stages, the first

664 —— Ying Wang and Korhan Cengiz DE GRUYTER

shuffle stage is similar to RMM, each sub-block matrix in matrix A and matrix B needs to generate N, and
My, copies, respectively, but since there is no need to distribute related A;; and By to the same task in
order to obtain the resulting sub-block matrix C;;, C-RMM can simultaneously exist at most My, x Kj, x N,
tasks to perform sub-block matrix multiplication in parallel. Finally, a shuffle stage is introduced to
accumulate the intermediate results to get the final matrix. In fact, after analysis, we can find that C-
RMM is equivalent to RMM or CPMM in two special situations. When inputting the three dimensions of
matrices A and B, when the latitude k is much smaller than the dimensions m and n, the distribution of
sub-block matrices of matrices A and B can be deduced from M}, x K, x Ny, to M, x 1 X Ny,_ In this situation,
since the dimension k is not divided, therefore, there is no need for an additional shuffle stage to
aggregate and accumulate the intermediate result matrix, therefore, C-RMM and RMM are theoretically
equivalent in this special case. When inputting the three dimensions of matrices A and B, when the
latitude k is much larger than the dimensions m and n, this scenario can be visually depicted as a very flat
matrix A and a very thin and tall matrix B performing multiplication [19-21]. At this time, the distribution
of sub-block matrices of matrices A and B can be deduced from M}, x Ky, x N, to 1 x K}, x 1. In this case,
originally, it is necessary to generate A and B copies of each sub-block matrix in matrix N, and matrix Mj,,
respectively, At this time all are 1, therefore, C-RMM and CPMM are theoretically equivalent in this special
case. In fact, this scenario is very easy to appear in the matrix transpose multiplication (H™-H), especially
when H is a thin and tall matrix. In addition to the above three matrix multiplication execution strategies,
since Spark supports broadcasting variables from the driver side (broadcastvariable) [22-24], when two
matrices are input, and when the scale of one of them is small, the small matrix can be broadcasted,
making each executor node store the small matrix in the process, thus avoiding the shuffle phase, and
reducing the read and write of the disk [25-27]. This strategy is called mapside matrix multiplication
(MapMM; the network transmission overhead of this strategy is the number of executors x min(|A|, |B|).

For the CPMM strategy, on the one hand, increasing Kj, can improve the multiplication concurrency of
the sub-matrix, but on the other hand, the larger the K, more data need to be written to the disk after this
multiplication stage. Because of the shuffle process, a large amount of data writing may cause some threads
to fail to get enough memory, therefore, some data will be spilled to the disk to wait for resource alloca-
tion , these behaviors will cause great pressure on the Java Virtual Machine (JVM) and affect the overall
performance [28-30]. Assuming a 12-node Spark cluster, with each computing node having 16 logic com-
puting cores, then the maximum number of concurrency in the cluster is 192. To facilitate discussion,
suppose the dimensions of the input matrices A and B are the same, in this way, the global shuffle data
volume can be expressed in multiples of |A|. When these three strategies reach the same degree of con-
currency, the global shuffle data volume of the C-RMM strategy is less.

In addition to the above three matrix multiplication execution policies, since Spark supports broad-
casting variables from the driver side (broadcast variable, when the two input matrices are small), the small
matrix can be broadcast to make the small matrix to be stored within each executor node, thus avoiding the
shuffle stage and reducing the read and write of the disk [31,32]. This strategy is called MapMM (matrix
multiplication for map), and the network transmission overhead is The number of executors x min(|A|, |B]).
Each-step cost analysis of the above four strategies is summarized in Table 1.

3.2 Efficient conversion of distributed row matrix and block matrix

For the matrix operation library for machine learning, since the distribution of data can naturally be
expressed as a row matrix, so how to efficiently process the conversion between the distributed row matrix
and the block matrix is particularly important. SparkMLlib emits the original every row vector into a large
number of coordinates in the format of (i, j, v). This will not only bring about twice the unnecessary data
redundancy for data-parallel Spark-like big data systems based on JVM but this method will bring a large
number of small objects in the shuffle phase, frequent disk reads and writes can cause great pressure on the

665

Implementation of Spark technique in a matrix distributed computing algorithm

DE GRUYTER

*191SN)2 3y} J0 310D |e2150] JO Jaquinu B30} Ay) sjuasaldal 4

(ejep 1seapeoiq jo Junowe ayj)

SuiyjonN SuyjoN (d ‘N x W+ D x Iwuiw (Ig] ‘lyuiw x s101129%3 Jo Jaquiny SuyioN wwdew

(d “N x Iwjuiw 1D1% (d N x D + N x Yy)uiw I + VIV (d “IN X D+ Dy x Gp)uiw WWY-D

3ulyjoN SulyioN (d “V x Tw)uiw gl + VI (d N x D + Dy x Iw)uiwu WY

(d ‘W x uiw 1% (d “DHurw Igl+ 1l (d ‘W x %+ 9y x Ip)uiw WWdD

X1lJew)20]q-qns uojjewwns dajs puodas uopjedfdinw xijew y20)q-qns YSIP 3y} 03 SAIM ASajens
ayj jo Aduainduod dyl dyj 10j ejep AYnys waopad 0) Aduaiinduod jo sa1Sap ayl dols 1Siy ayj) Jo Junowe ejep INYnYs JU3.1INJUO0D JO 1NN e 9)ndax3

S91591k11S UOIINIAXS uofIeddIINW X1IJeW JUBIBYIP JO SISAjeuy :T djqel

666 —— Ying Wang and Korhan Cengiz DE GRUYTER

system. The additional problem is that after this inefficient conversion, SparkMLIib treats each sub-block
matrix as a sparse matrix, as a result, the subsequent matrix operations cannot call the native library.

As can be seen from Table 1, for CPMM strategy, Kj, is increased on the one hand, improving the
multiplicative concurrency of the submatrices, but on the other hand, the larger the K;,, more data need
to be written to the disk after that multiplicative phase. Because large amounts of data writing during
shuffle may cause some threads to get enough memory, spilling (spill) part of the data to disk for resource
allocation can put great pressure on JVM and affect overall performance. The comparison of the three matrix
multiplication strategies involving shuffle, namely CPMM, RMM, and C-RMM, can be intuitively illustrated
in Figure 2. Assuming the Spark cluster of 12 nodes and 16 logical operation cores per calculation node, the
maximum number of concurrency in the cluster is 192. To facilitate the discussion, let the size of the input
matrices A and B be the same, so that the global shuffle data volume can be expressed by the multiple of |A],
which is the vertical axis of Figure 2, and the horizontal axis represents the concurrency in the sub-block
matrix multiplication phase. From Figure 2, it is intuitive that the three strategies have less global shuffle
data for the C-RMM strategies when reaching the same concurrency.

= 7 —=— CPMM
ey —e— RMM
g 30+ —A— C-RMM
=
=
= 254
g
[}
s
2} -
o 20
]
o
[}
E 15
=
=
v
= 104
s
[}
2

5_

T T T T T
0 50 100 150 200

concurrency in the sub-matrices multiplication phase

Figure 2: The shuffle data volume of the three multiplication execution strategies, vs An intuitive comparison of the concurrency
(192 logos in the cluster Q).

4 Results and analysis

4.1 Experimental design and result analysis of distributed sparse-sparse matrix
multiplication operation

First, fix the dimensions of the two input sparse matrices to be 30,000 x 30,000, change the input matrix
density, the performance comparison between sparse matrix multiplication operations and related opera-
tions stored in the dense matrix format and calling local native libraries are done, and the experimental
results are shown in Figure 3. Similarly, the density of the fixed matrix is the usual density of 0.01 in the
recommended system data, and on changing the dimension of the input matrix, the relative performance
comparison chart is shown in Figure 4.

From Figure 3, we can observe the use of C-RMM strategy and optimizing the distributed sparse-sparse
matrix multiplication of the stand-alone matrix library is significantly better than the distributed dense
matrix multiplication using the same execution strategy. For the input of the latter dense matrix, although
the density of the matrix is low, due to the dense matrix storage method, the amount of serialized data for

DE GRUYTER Implementation of Spark technique in a matrix distributed computing algorithm —— 667

400 A
_ []
3307 —u— dense-denseC-RMM f
B0 #— sparse-sparseC-RMM
2 250 1 ®
2 .
S 200 1
E .-
8 150 - I
> a1 o
= /
1004 w—= " o
N .
50 o p
0 o o e
T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5
Matrix Density

Figure 3: The performance of distributed sparse-sparse matrix multiplication varies with matrix density.

1000
L]
—a—Sparse-sparseC-RMM
800 1 —e—dense-dense C-RMM
]

2 600
= »
S
S 4001
Q
o
*%
o

200 Y

0- ®
% —————— 3 ——— &=
T T T T T 1
20 30 40 50 60 70

Matrix size

Figure 4: The performance of distributed sparse-sparse matrix multiplication varies with matrix dimensions.

shuffle is still very large. When the density reaches about 0.3, the performance of the original dense matrix
multiplication can be better than the sparse-sparse matrix multiplication implemented in this chapter. This
is also basically consistent with the calculation performance relationship between the implementation of
sparse matrix multiplication and the call of the native library in the stand-alone sparse matrix test. Zhou
et al. presented an improved cost estimate for computing the inverse problem of a univariate polynomial
N x N matrix. A deterministic algorithm with worst-case complexity (N3s)1 + O (1) field operation is proved,
where S >1 is the upper bound of the average column degree of the input matrix. Here the “ +o(1)” in the
exponent indicates the absence of the factor C1 (log ns)c2 for the positive real constants C1 and C2. As an
application, it is shown how to calculate the maximum invariant factor of the input matrix in the field
operation of (nws)1 + O (1), where w is the exponent of matrix multiplication [33]. Figure 4 shows that when
the density of the fixed matrix is 0.01, as the size of the matrix increases, the performance of the imple-
mented distributed sparse-sparse matrix multiplication is far better than the same sparseness; however, the
dense matrix format is used for storage and operation strategy.

668 —— Ying Wang and Korhan Cengiz DE GRUYTER

Combining the above two points, it shows that the performance of the design and implementation of
the sparse-sparse matrix is much better than the performance of the original dense matrix to deal with such
problems, especially when the density of the sparse matrix is below 0.3, the advantages are more obvious.

4.2 Experimental design and result analysis of distributed dense-sparse matrix
multiplication operation

First, fix the dimensions of the two input matrices to be 30,000 x 30,000, one of them is a dense matrix,
while the other is a sparse matrix. Change the density of the sparse matrix, multiply dense-sparse matrices,
and store in dense matrix format, and call the relevant operations of the local native library for performance
comparison. The experimental results are shown in Figure 5. Similarly, fix the dense density of the sparse
matrix to 0.01, change the dimension of the input matrix, and the relative performance comparison chart is
shown in Figure 5.

400 7

N —s—dense-denseC-RMM »

+— dense-sparseC-RMM

300 A

E 250 o

g 200 1 "

1

5 150 R e ISP e —
100 + .77,.—".
504 o *e ‘

0.0 0.1 0.2 0.3 0.4 0.5
Matrix density

Figure 5: The performance of distributed dense-sparse matrix multiplication varies with matrix density.

Figure 5 shows the adoption of C-RMM strategy. The distributed dense-sparse matrix multiplication that
optimizes the stand-alone matrix library is obviously better than the distributed dense matrix multiplica-
tion that adopts the same execution strategy. For the input of the latter dense matrix, although the density
of the matrix is low, due to the dense matrix storage method, the amount of serialized data for shuffle is still
very large. When the density reaches about 0.1, the performance of the original dense matrix multiplication
can be better than the implemented sparse-sparse matrix multiplication. This is also implemented with the
dense-sparse matrix multiplication in the stand-alone sparse matrix test and the relationship between the
pros and cons of the computing performance of calling the e native library is basically the same [34,35].

Figure 6 shows that when the density of the fixed sparse matrix is 0.01, as the size of the matrix
increases, the performance of the implemented distributed dense-sparse matrix multiplication is better
than the same sparseness but using the related operations of dense matrix storage, and as the dimension
increases, the speedup has been increased from 1.88x to 5.71x.

This paper confirms the implementation of sparse distribution with high density of sparse matrix
multiplication, and performs the relevant actions using previous comparisons using sparse matrix multi-
plication distribution and density matrix preservation. The experimental results show that when the thick-
ness of dense and sparse distribution is below 0.3, the performance is better than that ofdense and sparse

DE GRUYTER Implementation of Spark technique in a matrix distributed computing algorithm — 669

1800
1600 »
—=— dense-aparse C-RMM
1400 7 +— dense-dense C-RMM
1200 ¢
Q
'S 1000 o
8 .
S 800 Vs
o /
& 600 /
P |
400 P
200 - "
—
0 t""!!
T T T T T 1
10 20 30 40 50 60 70
matrix size

Figure 6: The performance of distributed dense-sparse matrix multiplication varies with matrix dimensions.

matrix multiplication; when the sparsity is less than 0.1, the performance of distributed dense-sparse
matrix multiplication is better than that of original dense matrix multiplication.

5 Conclusion

The realization of Spark technology in matrix distributed computing algorithm was proposed, the two
execution strategies based on the Spark execution engine are analyzed, and the conversion of efficient
distributed row matrix and block matrix was analyzed. The distributed sparse-sparse matrix multiplication
operation experiment is designed, and as a result of the experiment, the dimensions of the two input sparse
matrices are fixed to be 30,000 x 30,000, the input matrix density is changed, and the performance of
sparse-sparse matrix multiplication operation stored in dense matrix format and the related operations of
the local native library are compared. The fixed matrix density is the common density 0.01 in the recom-
mended system data, the amount of serialized data for shuffle is still very large. When the density reaches
about 0.3, the performance of the original dense matrix multiplication can be better than the implemented
sparse-sparse matrix multiplication. This is also implemented with sparse matrix multiplication in the
single machine sparse matrix test and the relationship between the pros and cons of invoking the local
native library is basically the same. When the density of the fixed sparse matrix is 0.01, as the size of the
matrix increases, the performance of the implemented distributed dense-sparse matrix multiplication is
better than the same sparseness but using the related operations of dense matrix storage, and as the
dimension increases, the speedup also increases from 1.88x to 5.71x. The performance of the dense-sparse
matrix design and implementation is better than the original performance when the dense matrix is used to
deal with such problems, especially when the density of the sparse matrix is below 0.1, the advantages are
more obvious.

The present work in this article cannot achieve a completely automated distributed matrix partitioning
strategy, and most of the time it depends on the partitioning settings provided by users. These three are
different for different cluster hardware environment, thus affecting the partition of matrix blocks. The next
step could be to introduce machine learning models to train a model that can intelligently select the cutting
method through pre-performance tests.

Conflict of interest: The authors declare that they have no competing interests.

670 —— Ying Wang and Korhan Cengiz DE GRUYTER

References

(1]

(2]

3]

(4]

(8]

9]

[10]

(11]

[12]

[13]

[14]
(15]

[16]

(17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Kamburugamuve S, Wickramasinghe P, Ekanayake S, Fox GC. Anatomy of machine learning algorithm implementations in
MPI, SPARK, and FLINK. Exp Mech. 2018;32(1):61-73.

Scholkmann F, Boss J, Wolf M. Ampd: an algorithm for automatic peak detection in noisy periodic and quasi-periodic
signals. Algorithms. 2016;5(4):588-603.

Xie S, Low KS, Gunawan E. A distributed transmission rate adjustment algorithm in heterogeneous CSMA/CA networks.
Sensors. 2015;15(4):7434-53.

Zeng R, Wang YY. Forward looking infrared target matching algorithm based on depth learning and matrix double
transformation. Clust Comput. 2019;22(3):7055-62.

Zhang W, Liu W, Wang X, Liu L, Ferrese F. Online optimal generation control based on constrained distributed gradient
algorithm. IEEE Trans Power Syst. 2015;30(1):35-45.

Xiong L, Teng GW, Yu ZP, Zhang WX, Feng Y. Novel stability control strategy for distributed drive electric vehicle based on
driver operation intention. Int] Automot Technol. 2016;17(4):651-63.

Heidari A, Agelidis VG, Zayandehroodi H, Pou J, Aghaei). On exploring potential reliability gains under islanding operation
of distributed generation. IEEE Trans Smart Grid. 2016;7(5):2166-74.

Wang Z, Zhao Y, Liu Y, Chen Z, Lv C, Li Y. A speculative parallel decompression algorithm on apache spark.

] Supercomputing. 2017;73(9):1-30.

Guo Y, Zhang Z, Jiang), Wu W, Zhang C, Cui B, et al. Model averaging in distributed machine learning: a case study with
Apache Spark. VLDB J. 2021;30(4):693-712.

Wang H, Li L, Zhou C, Lin H, Deng D. Spark-based parallelization of basic local alignment search tool. Int] Bioautomot.
2020;24(1):87-98.

Alnafessa HA, Casale G. Artificial neural networks based techniques for anomaly detection in Apache Spark. Cluster
Computing. 2020;23(4):1-16.

Zainab A, Ghrayeb A, Abu-Rub H, Refaat SS, Bouhali O. Distributed tree-based machine learning for short-term load
forecasting with Apache Spark. IEEE Access. 2021;9:57372-84.

Moertini VS, Ariel M. Scalable parallel big data summarization technique based on hierarchical clustering algorithm.

) Theor Appl Inf Technol. 2020;98(21):3559-81.

Xiao W, Hu J. PsubCLUS: a parallel subspace clustering algorithm based on Spark. IEEE Access. 2020;9:2535-44.
Cheng G, Ying S, Wang B, Li Y. Efficient performance prediction for Apache Spark. J Parallel Distrib Comput.
2021;149(5):40-51.

Huang B, Ma C. Symmetric least squares solution of a class of sylvester matrix equations via MINRES algorithm.] Frankl
Inst. 2017;354(14):6381-404.

Li X, Zhao X, Chu D, Zhou Z. An autoencoder-based spectral clustering algorithm. Soft Comput. 2020;24(3):1661-71.
Lee SH, Kim YH, Lee JK, Lee DG. Hybrid app security protocol for high speed mobile communication.] Supercomputing.
2016;72(5):1715-39.

Chavez-Mejia AC, Villegas-Suarez G, Zaragoza-Sanchez Pl, Magaa-L6pez R, Jiménez-Cisneros BE. Photocatalytic activity
of TiO, synthesized by anodization and anodic spark deposition. MRS Adv. 2020;5(61):1-12.

Yu J, Fu Z, Sarwat M. Dissecting GeoSparkSim: a scalable microscopic road network traffic simulator in Apache Spark.
Distrib Parallel Databases. 2020;38(4):963-94.

Popov SE, Zamaraev RY. A fast algorithm for classifying seismic events using distributed computations in Apache Spark
framework. Program Computer Softw. 2020;46(1):35-48.

Hong S, Choi), Jeong WK. Distributed interactive visualization using GPU-optimized spark. IEEE Trans Vis Computer Graph.
2020;27(9):3670-84.

Yang A, Qian J, Chen H, Dong Y. A ranking-based hashing algorithm based on the distributed Spark platform. Inf (Switz).
2020;11(3):148.

Myung R, Yu H. Performance prediction for convolutional neural network on Spark cluster. Electronics. 2020;9(9):1340.
Akinwamide SO, Lesufi M, Akinribide O), Mpolo P, Olubambi PA. Evaluation of microstructural and nanomechanical
performance of spark plasma sintered TiFe-SiC reinforced aluminium matrix composites.] Mater Res Technol. 2020;9(6),
12137-48.

Kumar SA, Subathra M, Kumar NM, Malvoni M, Chopra SS. A novel islanding detection technique for a resilient photo-
voltaic-based distributed power generation system using a tunable-q wavelet transform and an artificial neural network.
Energies. 2020;13(16):4238.

Nguyen N, Killeen NS, Nguyen DP, Stameroff AN, Pham AV. A wideband gain-enhancement technique for distributed
amplifiers. IEEE Trans Microw Theory Tech. 2020;68(9):3697-708.

Zhang F, Cheng L, Li X, Sun YZ. A prediction-based hierarchical delay compensation (PHDC) technique enhanced by
increment autoregression prediction for wide-area control systems. IEEE Trans Smart Grid. 2020;11(2):1253-63.
Nguyen DP, Nguyen N, Stameroff AN, Camarchia V, Pham AV. A wideband highly linear distributed amplifier using
intermodulation cancellation technique for stacked-HBT cell. IEEE Trans Microw Theory Tech. 2020;68(7):2984-97.

DE GRUYTER Implementation of Spark technique in a matrix distributed computing algorithm — 671

[30] Balogun BF. Distributed firewalls mechanism for the resolution of packets forwarding problems in computer networks
using RSA-CRT technique. Int] Computer Appl. 2021;174(15):32-8.

[31] Sirige SS, Choudhury S, Jayalakshmi NS. Islanding detection of distributed generation systems using hybrid technique for
multi-machine system. Int] Power Electron Drive Syst. 2020;11(4):2046.

[32] Faturrahman MI, Yoyo Y, Zaini AR. Technique and quality translation of idhafi in The Matan Hadits of Arba’in al-Nawawi. J Al
Bayan | Jur Pendidik Bhs Arab. 2020;12(2):208-24.

[33] Zhou W, Labahn G, Storjohann A. A deterministic algorithm for inverting a polynomial matrix.] Complex.
2015;31(2):162-73.

[34] Walunj G, Bearden A, Patil A, Larimian T, Borkar T. Mechanical and tribological behavior of mechanically alloyed Ni-TiC
composites processed via spark plasma sintering. Materials. 2020;13(22):5306.

[35] Adesina OT, Sadiku ER, Jamiru T, Adesina OS, Salifu S. Polylactic acid/graphene nanocomposite consolidated by SPS
technique.) Mater Res Technol. 2020;9(5):11801-12.

	1 Introduction
	2 Literature review
	3 Method
	3.1 Analysis of two execution strategies based on Spark execution engine
	3.2 Efficient conversion of distributed row matrix and block matrix

	4 Results and analysis
	4.1 Experimental design and result analysis of distributed sparse-sparse matrix multiplication operation
	4.2 Experimental design and result analysis of distributed dense-sparse matrix multiplication operation

	5 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

