DE GRUYTER Journal of Intelligent Systems 2022; 31: 632-650 a

Research Article

S. Premkumar* and AN. Sigappi

loT-enabled edge computing model for smart
irrigation system

https://doi.org/10.1515/jisys-2022-0046
received January 10, 2022; accepted March 16, 2022

Abstract: Precision agriculture is a breakthrough in digital farming technology, which facilitates the appli-
cation of precise and exact amount of input level of water and fertilizer to the crop at the required time for
increasing the yield. Since agriculture relies on direct rainfall than irrigation and the prediction of rainfall
date is easily available from web source, the integration of rainfall prediction with precision agriculture
helps to regulate the water consumption in farms. In this work, an edge computing model is developed for
predicting soil moisture in real time and managing the water usage in accordance with rain prediction. A
soil moisture prediction hybrid algorithm (SMPHA) has been developed that revolves around the decision-
making techniques with live environmental parameters including weather parameters for the prediction of
soil moisture through the impact of precipitation. Numerous algorithms with the combination of regression
+ clustering are estimated, and it is inferred that XGBoost + k-means outperforms other algorithmic com-
binations that is deployed in edge model. This model is used as an intermediary between the end IoT
devices and cloud that results in the saving of computationally intensive processing performed on cloud
servers. The servers located on a local edge network perform the developed algorithmic computations.
Avoiding transmission over the cloud results in significant latency, response time, and computation power
savings and therefore increases the efficiency of data transfer. The proposed edge computing model is
implemented in Raspberry Pi as an edge, Heroku as cloud, and edge nodes as the combination of Pi with
actuators and sensors. The monitored data from Pi are stored in MongoDB webserver that is controlled by
Web dashboard. Finally, the developed model is implemented in cloud and edge where the edge server
implementation performs better in terms of latency, bandwidth, throughput, response time, and CPU
memory usage.

Keywords: smart irrigation, edge-based irrigation, edge computing, precision agriculture, soil moisture
prediction, irrigation management system, IoT, offloading mechanism

1 Introduction

It is evident that agriculture always has a specialized role in the anthrophonic evolution and has been
serving as an important economic factor for the growth of a country [1]. Around 58% of the population
depend on agriculture as the chief source of livelihood in India. The quality and productivity of agricultural
products have declined over these years as several factors have influenced the crop productivity both
directly and indirectly. Some major factors that affect the crop production are climatic changes, global
warming, and water scarcity [2]. The agricultural land’s productivity is affected by the direct and indirect

* Corresponding author: S. Premkumar, Department of Computer Science and Engineering, Faculty of Engineering and
Technology, Annamalai University, Chidambaram - 608002, Tamilnadu, India, e-mail: premambal@gmail.com

AN. Sigappi: Department of Computer Science and Engineering, Faculty of Engineering and Technology, Annamalai University,
Chidambaram - 608002, Tamilnadu, India, e-mail: an.sigappi@gmail.com

a Open Access. © 2022 S. Premkumar and AN. Sigappi, published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 International License.

https://doi.org/10.1515/jisys-2022-0046
mailto:premambal@gmail.com
mailto:an.sigappi@gmail.com

DE GRUYTER loT-enabled edge computing model for smart irrigation system =—— 633

changes in climate [3,4]. The crop growth has been already affected by the changes in climate incurred by
global warming. The nutrition quality of soil, ground water level, sea, and ocean are affected by the
modifications in average temperature, rainfall, and extreme weather conditions such as hail storms, dust
storms, heatwaves, etc. due to global warming [5,6]. Degradation of soil is primarily created by various
methods including 93.7% by water erosion, 9.5% by wind erosion, 5.9% by salinity and alkalinity, etc.
Further changes in climate would influence adversely the crop production [7]. Since water is an indispen-
sable requirement for plants and cultivation, the high level of soil is eroded and thereby the fertility is also
declined. Due to the ever-changing climate, water scarcity has become a huge problem. Drought-like
conditions is already formed in several areas and thereby the present and conventional farming practices
are not suitable. New and unique environment preserving techniques are the need of the hour [8].

The conventional approaches in agriculture are enhanced by the advent of several advancements in
technology [9]. These new improved methodologies ensure optimized utilization of resources, accurate
forecast of water needs and environmental parameters, reduction of human intervention, etc. [10]. Conse-
quently, the outcomes of crops in terms of yield and quality are higher with cost-effective methods. One
such booming technology is the Internet of things (IoT) [11].

IoT is the collection of components embedded in the sensor for measuring and transferring data via
network devices as sensed from pumps and tractors to weather stations. Primarily, IoT deals with the
transmission and reception of data related to farms through devices using the Internet for prediction
and providing decisions to the farmers. IoT-based methodologies has brought a changeover in agricultural
patterns and farming approaches [12]. IoT devices can gather information about soil moisture, chemical
properties, dam levels, livestock health, and weather details in real time. The information acquired from IoT
devices facilitates the farmers in tracking farms periodically. Farmers can save time and money by
responding faster to farm conditions. Cloud computing models integrated with on-field agricultural sensors
need to be incorporated for tackling the issue of processing huge voluminous data.

One of the major challenges of IoT is the processing of huge datasets in a sequential way. Some of the
key factors that need to be focused on this process are as follows: information about the type and nature of
data, the way of acquiring the data, etc. The preliminary stage comprises acquiring the data and ingesting
the data to the system. Substantial cognizance of data are achieved as the data pass through all the
gateways where it is cleansed and transformed before entering into the system. In the near future, dynamic
prediction of soil moisture and precipitation techniques are to be developed for smart irrigation systems.
Therefore, a system is developed for efficient and optimal utilization of fresh water in irrigation along with
drip irrigation system. It aids in finding which one of the plants fails to get sufficient water. When the water
supply is provided the next day, this delay should not disturb the system. It becomes important for the
farmers to understand the optimal usage of water and fertilizers to bring out sustenance in the agricultural
industry. Therefore, processing must be done for analyzing the data, so that patterns can be analyzed and
planning can be done for the long term, accordingly. Hence, it gives a broad vision in deciding where the
processing is to be done exactly. Therefore, it is obvious that not all data are crucial, and it provides a clear
view of which data need to be stored, discarded, and retained for both long-term and short-term purposes.
Thus, all these challenging issues require to be addressed and that is where storage technologies are
actually highlighted. The poor quality of Internet access in developing nations makes the implementation
quite challenging. An applicable solution to solve this problem is through edge computing where the
essential data could be offloaded from the cloud over the edge of the cloud, and this is the exact point
where the approach of smart sensing with edge computing gets in.

With the purpose of broadening the potential of edge computing and using it in the agriculture domain,
a novel approach using machine learning (ML) methods is proposed for analyzing the data acquired by the
IoT devices deployed at the farm. Here, the data acquired from IoT components undergo preprocessing and
ML models on the edge nodes to analyze and assess the appropriate results for providing the best instruc-
tions for controlling the actuators (e.g., light, pumps at different locations) in the farms.

This article presents an automated system, as shown in Figure 1, to predict the soil moisture using the
field information acquired from the self-designed sensor node deployed at the field and the forecast
information of weather via Internet. A unique algorithm has been developed that revolves around the

634 —— S.Premkumar and AN. Sigappi DE GRUYTER

[WWW of
weather

. Web Service for online Raspberry Water
data collection Pl & re|ay motor
.
Service to control Field control
water motor device
MQTT
Raspberry
Web Interface On P Pi database protocol

Soil Moisture
Prediction algorithm

Field Sensor data
collection

Figure 1: Architecture of the proposed system.

sensors

sensors

Field deployed sensor

machine learning techniques for the prediction of soil moisture. Here, many algorithms with the combina-
tion of regression + clustering was estimated, and it is inferred that XGBoost + k-means outperforms other
algorithmic combinations, and therefore, it is deployed for the prediction of soil moisture in the proposed
work. The proposed algorithm makes effective irrigation decisions with optimized usage of water in a more
accurate and reliable manner. The effective decision-making refers to the process of predicting the rainfall,
thereby reducing the water usage in advance by the proposed algorithm in accordance with the predicted
rainy days. Through this automatic decision-making, over watering is avoided by saving the soil. The
server-side software is developed with node-side connectivity using the information for visualization and
decision support features. This proposed algorithm is implemented in edge to prove the efficiency of the
edge server handling the automated system better than the cloud control. The performance of the decen-
tralized edge-based architecture has been evaluated for downloading the hybrid algorithm from cloud in
real time execution. The performance can be enhanced by adopting edge computing architecture and
measured with the help of network parameters like latency, bandwidth, and response time. Edge computing
capacity is also estimated using the CPU processor and memory consumption while executing the proposed
algorithm with irrigation scheduling.

2 Related work

In ref. [13], a smart irrigation system not affected by communication disconnection and delay is developed
using edge nodes deployed at the farms. Environmental parameters have an intricate impact on the plant
growth. It becomes necessary for evaluating multiple Al models simultaneously in an actual cultivation
environment for comparing Al models under the same conditions. Due to the working of existing irrigation
systems on the cloud, communication is instable in the concurrent evaluation of Al models. However, the
instability does not induce an edge node in its performance.

The factors such as type of plant, soil, climate, humidity, temperature, and soil moisture need to be
considered for the irrigation system packed with potential smart decisions. The nature and type of plant,
soil, and climate are queried by ontology (branch of metaphysics dealing with the nature of being), whereas
other factors such as temperature, humidity, and soil moisture are sensed by the sensor network. The
trained ML model predicts the watering decisions based on ontology and other factors as mentioned earlier.

DE GRUYTER loT-enabled edge computing model for smart irrigation system =—— 635

Smart irrigation has three modules: (i) sensor network modules that sense the parameters impacting the water
requirement by using sensors DHT22, light sensor BH1750, and HL-69 hygrometer for sensing the temperature,
soil moisture, light, and humidity in air. (ii) Edge and IoT server’s module to send and receive data through
HTTP requests. (iii) Training module in which KNN is applied on the sample dataset for training and decision-
making regarding the water needs. Based on the input values, the trained model categorizes the input into five
possible classes: highly not needed, not needed, average, needed, and highly needed [14].

A decentralized smart irrigation approach is proposed for strawberry greenhouses in contrast to con-
ventional cloud-based solutions for keeping the agricultural data at the edge of the network. A full-scale
smart irrigation system in an actual strawberry greenhouse environment is developed after a small-scale
smart irrigation networking prototype system and a reference architecture targeting edge data distribution
for strawberry greenhouse applications are framed. A three-step industrial approach is formed for
designing, implementing, and validating a solution for smart strawberry irrigation in greenhouses and
keeping the corresponding data at the edge of the network at the same time: (i) A small-scale smart
irrigation prototype solution with off-the-shelf hardware and software equipment is tested and evaluated
on various types of plants for gaining useful insights for deployments on a large scale. (ii) A reference
network architecture is designed for targeting smart irrigation and edge data distribution specifically for
strawberry greenhouses. (iii) A large-scale system in an actual strawberry greenhouse environment is
developed in Greece, incorporating the proposed reference architecture [15].

Edge computing is proposed for addressing the issues by taking advantage of computing resources in
the edge of the network. The issues such as an edge mobile device make it easier to achieve low end-to-end
latency, high bandwidth, and low jitter to services located on the edge network. An edge can enforce the
privacy policies of its owner prior to the release of the data to the cloud through edge analytics. If a cloud
service becomes unavailable due to network failure, cloud failure, or a denial-of-service attack, a fallback
service on a nearby edge can temporarily mask the failure. Cloud services, partial analysis, and control
functions are extended to the edge nodes from the cloud data center. Edge nodes facilitate the timely
monitoring of sensors in smart farming by the reduced latency and enhanced data transmission. Due to
these factors, edge computing is applied through farming [16,17]. A three-tier open-source software plat-
form we proposed by authors, and the platform enhanced the precision agriculture by introducing edge
computing and fog computing. An network functions virtualization (NFV)-based approach is deployed for
performing the local operational decisions at the edge level for mitigating the influence of network failures
while using cloud data centers [18]. For control processing in smart farming, a platform enabling cost-
effective sensor/actuator network based on IoT, utilizes edge computing [19,20].

The authors in ref. [21] predicted the soil moisture using a mathematical model that measures the
values given by a sensor matrix on the ground. Due to the huge interval in measurements (10 minutes), the
model presented estimated error by more than 10%. This methodology has incorporated the online
approach by making the sensors to send data every minute to edge devices without time-based interruption.
The authors of ref. [22] applied a combinative approach of using field sensor network’s data along with
weather forecast station’s data for the management of optimality in water conditions for the enhanced
growth of grapes. The generated data are forwarded to a web server, which displays graphics without
statistical analysis of such data. The analysis must be performed a posteriori by the user.

The watering mechanism for a plant via IoT methodology is devised by the proposed smart irrigation
model without acquiring any pre-processed data. A prototype application is developed, which gets adapted
to the parameters needed in irrigation after a couple of human-made irrigations. With the usage of various
ML algorithms, several tests are devised for manual and automated irrigations for the performance evalua-
tion. After the evaluation using four different ML algorithms such as logistic regression (LR), K-nearest
neighbors (KNN), Gaussian naive Bayes (GNB), and gradient boosting regression trees (GBRT), it is found
that GBRT outperforms other algorithms. To analyze the overall performance, a test bed for the sensor edge,
mobile client, and the decision service on the cloud is established. Two different indoor species are selected
as test items for the prototype, namely, Peace lily and Sardinia. The outcomes were quite good, and it is
inferred that the prototype has learned the patterns of irrigation and making decisions automatically with a
high rate of accuracy [23].

636 —— S. Premkumar and AN. Sigappi DE GRUYTER

The authors from ref. [24] adopted the deep learning methodology for detecting the type and the
category of the plant using an automated plant irrigation system. The water necessity of the plant is
determined using the recognition of predefined set of plant images and data set acquired from farm. It
utilizes the database for fetching the irrigation information after the recognition process is completed.
Modeling the training processes are time consuming as voluminous set of images needs to be stored.
The authors in refs [25,26] incorporated ML methods in the irrigation decision support model using a
pre-processed irrigation data set. A model is developed for learning the irrigation needs of any plants
progressively rather than using a readily available dataset. Several ML algorithms are evaluated with their
precision for concluding the irrigation decisions. Manual irrigations are performed two times before making
precise decisions. Due to the dynamicity in model, data processing is done progressively, and it can be
applied to several plants having varying irrigation conditions. There is a need for the learning model that
can be trained by itself using a comparatively lighter learning process using environmental parameters that
do not need larger storage in the system but need higher computation. From the aforementioned survey for
making a precise decision with instant computation locally, edge computing needs to be integrated into the
irrigation system. This article is directed towards presenting a platform that implies IoTs and edge com-
puting in monitoring soil moisture via sensors, data communication between sensors and edge devices, and
an Analytics-as-a-Service cloud. It analyzes the collected data in the form of a density map of soil moisture
for denoting the areas in need of greater or lesser frequency of irrigation. Here, density map does not refer to
the geographical point data by satellite mapping, and it actually denotes the point of dry area and watery
area through soil moisture detection point. This point is averaged among areas of irrigation to be done and
the irrigation process is controlled with prediction of rainfall using the proposed system.

3 The proposed system

The proposed learning model for irrigation is implemented in a prototype IoT system that has four compo-
nents: (i) Edge node layer — This layer consists of sensors, actuator, and two microcontrollers. In this layer,
edge node acquires the sensor data from the surroundings and controls the actuator for actuating water
pumps to start irrigation. (ii) Edge server layer — This layer consists of Raspberry Pi that act as edge server
and capable of multitask processing. Here, edge server controls the edge nodes for sending signal and
receiving data at regular interval of time. It is also connected to the cloud server for receiving developed and
trained machine learning model to be deployed and make irrigation decision for controlling edge nodes.
(iii) Edge service layer — This layer is deployed in the edge server and it is responsible for controlling the
whole system through a developed web dashboard. The dashboard has live feed data, control of edge
nodes, and cloud services access. This service layer also has the control access of the proposed machine
learning model. (iv) Cloud server layer — This layer composed of cloud services and cloud storage where its
role is to train the machine learning model and store the data in database. It sends the trained proposed
model to the edge server for decision-making regarding irrigation scheduling. The comprehensive inter-
connections in the system are shown in Figure 2. The proposed IoT-based smart irrigation system includes
five major components: field deployed module, Web-based interface, Web API weather input, soil moisture
prediction mechanism, and edge communication model.

3.1 Field deployed module

In the field requirements, a wireless sensor network of the sensor nodes needs to be deployed as shown in
Figure 3. Here, field data collection device accommodates four different sensors: Capacitive Soil Moisture
Sensor V2.0, DS18B20 Water Proof Temperature Sensor Probe for soil temperature, ultraviolet (UV) Light
Radiation, DHT11 — Temperature and Humidity Sensor Module, and GYML8511 Analog Output Ultra-Violet

DE GRUYTER

loT-enabled edge computing model for smart irrigation system =— 637

[Cloud Server layer]

Cloud Service(Heroku service)

i IEdge Service layer
cafcafce y
1 = =
oo j ool oo

SMPHA Algorithm

YA,
I

Cloud Stora;];(MongoDB}

Edge Server Iayeﬂ

7

@

Air Soil
Humidity ~Temperature

Air
Temperature

Ultravoilet
Rays

Edge Node(Arduino Uno)

Soil
Moisture level

Water Pump

Relay

Figure 2: Components of the proposed system.

Figure 3: Real-time prototype of the proposed edge model.

Light Sensor Module. An Arduino Mega connected to Raspberry Pi 4 Model-B read, the output of these
sensors where the program is developed in Python for the Pi model to fetch the hourly data from sensors
and store the data in MongoDB [27] database. It is then synchronized with the server database using the

developed web service. A Wi-Fi-enabled

Arduino controls the water pump connected to a relay switch.

638 —— S.Premkumar and AN. Sigappi DE GRUYTER

For the real time monitoring, a trigger is made for controlling the web service from the responsive web-
based interface. The irrigation decisions are checked periodically by the proposed model performed in the
server. The water pump is actuated, and irrigation process is started only if the server makes any irrigation
decision. A wireless sensor network (WSN) [28] scenario with ZigBee [29] technology can be implemented
for a large farming area in which several sensor nodes can be affixed in the specified area and every sensor
node possesses sensors similar to a standalone device. Then, the Arduino Mega reads the sensor output
connected to ZigBee for transferring data to Gateway Node for aggregating the received data and storing it
in MongoDB locally and also for transferring the data via web service to the edge server.

3.2 Web-based interface

The proposed framework consists of a web-based application to allow farmers visualize the growing data
and interacting with the garden in real time. In addition, users can also be able to examine and analyze the
historical growing data, if needed, through functionalities such as irrigation control, motor control predic-
tion model deployment, and manual data entry implemented in this web application. Here, Node.js was
chosen for developing the web application [30,31], while MongoDB [27] was utilized as the database system.
Data stored in the database, which is deployed in the cloud, will be used for further data analysis in the
future. The web application’s functions are designed following a software design pattern called model-
view-controller (MVC) as shown in Figure 4. In the frontend, Chart]S is used to represent data through
dynamic charts. The web application is also used as an interface to manage all the physical devices/
actuators in the garden. To deploy the web-server to the cloud, a cloud platform as a service (PaaS), namely,
Heroku, had been utilized. Heroku is a cloud platform that provides platform as a service (PaaS), facilitates
the creation of applications and deploying these online rapidly [32,33]. It also enhances scalability and
functionality by integrating several add-on services. The field data are sent to the server by Raspberry Pi
using this web service. This web service manages the network outage/fluctuation during data synchroniza-
tion from the field device to the server by taking the help of flag settings at the database level. The interface
facilitates the scheduling of irrigation along with visualizing real time sensors and predicted soil moisture
for upcoming days and precipitation information. By using the denoted threshold value of soil moisture
suggested by agronomists, the irrigation can be scheduled by the user. The system maintains the threshold
value depending on the predicted pattern of soil moisture and precipitation information. The process of
irrigation is initiated automatically and stopped after the specified threshold value generated from the
proposed algorithm of soil moisture when it is reached.

<« C O httpy/192.168.1.7:8080 z % @

i1 Apps [T Getting Started € Web of Science [v.5. Latest Headlines [https;//www.scimag.. @ Download and Wat... RTI Now, the Internet o G Shopping 2ZbigZ - personal cl. o oc » Other bookmarks | [E] Read

Irrigation Management Server

Irrigation Start Motor
4 m_ SM Max
Live Status SM.Min Next SM Predicted value
" 29.1,32.6,34.9,33.8,32.5
Air Temperature 359
Air Humidity 40
Start Prediction
UV value 32
"
Soil Temperature 312 Download Model)
Soil Moisture Value 33

Figure 4: Web interface for the irrigation system.

DE GRUYTER loT-enabled edge computing model for smart irrigation system =—— 639

3.3 Web API weather input

The weather prediction data are collected by a web service developed in Python. The forecast data such as
humidity, temperature, ultra violet index, precipitation, and cloudiness of web forecasting portals like
Open Weather API are aggregated by the developed web service [34]. These portals provide the forecasted
information in HTML, XML, or JSON format. The predicted data with JSON format are read by the developed
web and stored in database at the edge server, which is concerned in the prediction algorithm. Also, these
data are utilized as testing dataset in the ML. model for predicting the soil moisture.

3.4 Soil moisture prediction mechanism

An algorithm for predicting the soil moisture based on data derived from field sensors and weather fore-
casting using the combination of supervised and unsupervised machine learning techniques has been
developed underpinned by regression algorithms and k-means clustering for estimating the difference/
change in soil moisture owing to weather conditions. Many regression algorithms are compared against
each other and infusing each of them with k-means to check the preciseness in mean square error (MSE),
R2, accuracy and mean absolute percentage error (MAPE) for prediction of soil moisture of upcoming days
with the help of sensor data and weather forecasting days. The information about soil moisture for the
upcoming days and suggestions for irrigation in accordance with the prescribed levels of soil moisture and
predicted precipitation values, thereby saving energy and water, is presented by the algorithm. The infor-
mation generated from the device and the predicted values from the algorithm soil moisture prediction
hybrid algorithm (SMPHA) are stored in the server.

3.5 Edge communication model

The communication protocols in the proposed framework are flexible and transparent in nature for
accepting both wired and wireless methodologies. For the maximum utilization of potentiality in edge
computing components, the communication among various components in the edge-IoT system requires
intense probing by using the versatility among the devices in network edges. For transferring the data
gathered from pivot sensors, a communication technology such as Zigbee [35] is needed for the irrigation
systems. Therefore, the communication component in the proposed work is classified into three main areas
as shown in Figure 5. The Message Query Telemetry Transport (MQTT) protocol is used for the

— Web S
eV 5 /mMarTEdge MQTT Local
)] server \ server
) -
Web Application o \‘m /
\\\ : =
<4—> HTIPS Edge network |
<—> Publish/Subscribe ~ |
—> Publish \ .
— Ssubscribe MongoDB =

Edge Server >,
Raspberry Pl 4

Local Server

Figure 5: Proposed edge communication model.

640 —— S. Premkumar and AN. Sigappi DE GRUYTER

communication in the proposed system. The analysis in ref. [36] presented seven IoT messaging protocols
(MQTT, CoAP, XMPP, AMQP, DDS, REST-HTTP, and WebSocket) as communication protocols that play a
major role in smart farming. The authors have concluded that MQTT proved to be the most secure protocol
after probing all the protocols with respect to latency, energy and bandwidth requirements, throughput,
reliability, and security. Moreover, MQTT is secure in both end-to-end architecture and gateway server
architecture. In an MQTT setup, a MQTT server termed as MQTT broker executes on the IoT solution [37].
Under a common identifier, a “publisher” and a “subscriber” link among themselves to this broker. In the
IoT solution, publishers and subscribers are the IoT devices and IoT hubs or control devices, respectively.
When the publishers have new data for recording, the data are published to the broker. The broker then
flags that it has new publisher data, and the corresponding data are read by the subscriber. Then, the
subscriber analyzes the data and reacts accordingly.

The first level accomplishes with connecting the end users to system with the help of mobile or web-
based applications through the Internet. The next level (cloud computing server) deals with the connection
of web server and MQTT broker for directing the user requests and other components at the edge landscape
or from the farms to the right cloud-based services like displaying the real time status of the farm for the
users, triggering a new deployment of the updated ML model to the corresponding edge node. The third
level (farming area) is directed toward the deployment of sensors and IoT devices (actuators) for commu-
nicating with other components in the entire system.

4 Deployment of soil moisture prediction hybrid algorithm

The watering mechanism of the plant has different approaches in the proposed model. Primarily, the system
is trained with manual irrigations datasets during the process of learning with respect to suggestions
defined by agronomists. The model is trained to learn the needs of irrigation in the first level of deployment
in cloud without the inclusion of pre-processed data. After acquiring the required data and training, the
proposed system is initiated to grasp the plant’s watering needs by undergoing plenty of manual irrigations.
Thereafter, manual irrigation is not required and the system makes automated decisions in watering using
the gathered data and the application of ML methods. The proposed model then decides the irrigation
strategies automatically using ML methods without the need including collected datasets in the automatic
irrigation process. The proposed model can be improved through the learning process when the number of
precise irrigation inputs is provided to the model at each stage of training.

The decision-making procedure is developed with two modules for irrigation strategies according to the
soil moisture prediction for upcoming days. The first module deals with training the model in cloud with
manual irrigation datasets through steps such as data collection, data preprocessing, training, and model
development. The system acquires values of air temperature (TH), soil temperature (SMT), soil moisture
(SM), humidity (HU), and ultraviolet rays (UV) periodically from the physical environment in the data
collection stage, which is essentially required for arriving at the watering decisions. Also, the time of
performing the manual irrigation is recorded in the database. These data are timestamped and stored in
as datasets to aid in making decisions for knowing the time of irrigation. In the next step of pre-processing,
inconsistencies are eliminated and outliers caused by sensor errors are detected from the irrigation dataset,
thereby helping in the removal of broken data. The training stage involves the application of supervised
machine learning (ML) algorithms. Here the regression algorithms such as support vector regression (SVR),
multiple linear regression (MLR), lasso regression (LR), decision tree regressor (DTR), random forest
regressor (RF), and XG-boost regressor (XB) techniques are used for the deployment. The regression algo-
rithms are trained using the collected datasets. Finally, through training, regression models are created,
namely, SVR model, MLR model, LR model, DTR model, RF model, and XB model that are been combined
with the second module for decision-making.

The second module caters to the prediction of irrigation for upcoming days by infusing the weather data
as an input to the regression trained models. The live datasets from the weather API for future prediction of

DE GRUYTER loT-enabled edge computing model for smart irrigation system =—— 641

soil moisture variable are used. The dependent variables from weather forecast data like temperature (TH),
humidity (HU), ultraviolet (UV), and precipitation (PC) are tested in the aforementioned model for soil
moisture prediction. Then, the regression trained model is evaluated and deployed using the weather
testing data for the prediction of soil moisture in accordance with the precipitation. After the prediction
of data for the upcoming days, these developed regression models are combined with unsupervised ML
algorithm named k-means clustering for estimating the changes incurred in soil moisture prediction due to
the impact of weather conditions. Further, each regression models with k-means algorithm are evaluated
for performances in terms of irrigation decision-making process as shown in Table 1. The combined algo-
rithms are estimated through MAPE, MSE, R2, execution speed, power consumption, and accuracy. The
estimation and computation of these parameters are detailed by the authors in ref. [38].

Table 1: Comparison of performance metrices obtained from various ML algorithms

Algorithms used Accuracy R? MSE MAPE (%) Execution time Power (J)
SVR + k-means 0.96 0.96 0.25 1.98 0.06078 1164.85
MLR + k-means 0.94 0.88 0.31 2.15 0.02075 429.30
LR + k-means 0.95 0.94 0.32 2.23 0.02482 351.35
DTR + k-means 0.93 0.95 0.29 1.62 0.15687 914.70
RF + k-means 0.95 0.91 0.27 1.57 0.16745 1475.13
XB + k-means 0.97 0.98 0.20 1.08 0.03547 537.87

XGBoost + k-means (XB+k-means) approach provides more accuracy with less MSE comparatively and
also the R2 with 98% in soil moisture prediction using combined approach is given in Table 1. It is evident
that the proposed combination performs better when compared to other regression + k-means-based
approaches. XB + k-means-based hybrid machine learning algorithm is applied in irrigation planning
module on account of aforementioned performance metrices of ML. Although it performs moderately in
terms of execution time and power usage, it is selected for the deployment in edge computing as it has
better performed in terms of accuracy, R2, MSE, and MAPE metrices. It is observed that the prediction of soil
moisture for the upcoming days from the proposed algorithm (XB+k-means) is nearer to the actual value as
shown in Table 2, and hence, XB+k-means is selected for the implementation of SMPHA in edge-based
irrigation scheduling.

Table 2: Comparison of predicted SM value with actual SM value

Date Average SM value Average predicted SM
from sensor value (XB+k-means)
28-09-2021 35.23 34.04
29-09-2021 36.41 37.20
30-09-2021 31.57 30.46
01-10-2021 34.66 33.15
02-10-2021 36.73 37.12
03-10-2021 32.88 33.01

4.1 Hardware setup

IoT system is crucial to handle, collect, and transfer the data to the computing nodes at the edge or in the
cloud. These devices are connected to the edge nodes through wireless communication protocols like
ZigBee. It is used in reducing the latency and loss of data. An Arduino micro-control unit controls the
combined IoT sensors and actuators at the same part of a field into a cluster, each connected to a Raspberry

642 —— S.Premkumar and AN. Sigappi DE GRUYTER

Pi that acts as an edge node in processing the gathered data and controlling the actuators. For example,
Figure 2 shows an edge architecture with a Raspberry Pi connected to two components: Arduino Uno and
Arduino Mega units via ZigBee connection. The first Arduino Mega node is responsible for collecting data
from sensors and the second one is for controlling the actuators in the field. Depending on the sensor type
with collecting Arduino unit, the sensors are connected via analog or digital PWM pins while controlling
Arduino uno joins with actuators in the field and controls (turn on/off) them in accordance with upper
layers (from the edge web server). The trained (cloud) and deployed ML model in edge nodes provides the
necessary instructions to the edge nodes.

4.2 Web layer setup

The deployment of web server assists the user in planning and managing the irrigation system. It visualizes
the crucial information of factors like temperature of air and soil, UV, humidity, and soil moisture in live
irrigation with real time updates in the form of various charts. In accordance with the selected field, the web
application redirects the user to the field’s dashboard as shown in Figure 4. The dashboard consists of field
parameters as well as control signals for activating all the physical devices/actuators at the garden layer.
These signals are denoted as switch buttons, and each switch controls (turn on/off) a particular kind of
actuator (for instance, water pump to start and stop the irrigation). The user interface facilitates remote
controlling of the field by just clicking on the buttons as shown in Figure 4.

4.3 Edge layer setup

The edge node acts as a computing center where incoming data are analyzed and fed as the input vector to
the ML model for processing and to return the control signals for activating or deactivating the actuators
placed at the farm. Edge node processes the physical data (real time) at every end device such as the
collected and processed data via the Raspberry Pi nodes presented in the proposed scheme. The prediction
model is designed using TensorFlow API and trained, tested on Google Colab in this work. Amazon Web
Service (AWS) offers a library named Boto3 having many APIs to upload and download objects. After the
development of model, it is transferred to Amazon S3, a service provided by AWS. The edge node utilizes the
trained model from S3 for analyzing the sensed data acquired from garden’s sensors. The decision is
delivered based on real time data analysis at the edge node and transmitted to Arduino nodes in the fields
landscape immediately for controlling the actuators. In another flow, the data collected from sensors are
filtered so as to keep only the modified data at the edge node before being sent back for mitigating the
communication cost to the database in the cloud. These data are used in the updation of the ML model to
enhance its efficiency.

4.4 Analytics setup

The main goal of this experiment lies in gathering the various physical parameters of a farming land via
sensors and utilizing the fetched data along with weather forecast information for developing an algorithm
using hybrid machine learning approach to infuse higher accuracy in predicting the soil moisture for the
upcoming days. As discussed in Section 4, for the proper planning and provisioning of optimal irrigation,
the algorithm provides a predictable estimate of soil moisture with the assistance of various statistical
measures as shown in Table 1. The measures are adopted for estimating the appropriateness and error rate
of the proposed algorithm. It is inferred from the experiment that, optimal irrigation is feasible using a good

DE GRUYTER loT-enabled edge computing model for smart irrigation system =—— 643

estimation (close to the actual value) of the soil moisture (Table 2), with the support of field data and
forecast information, thereby utilizing the natural rain efficiently.

The SMPHA ML model is interdependent on dynamic changes in weather environment where the
models deployed on edge nodes need to change the controls accordingly after model gets trained con-
tinuously. For the process of retraining, the trained model needs to be updated. The parameters such as TM,
HU, ST, UV, SM about grown plants are logged for the training purpose, and these generated datasets are
recorded from the already developed manual mode system [39]. The growth of the Indian Mundu Chilli [40]
is taken for the observation from the first stage to the last grown stage for 95 days. While retraining the
model, the training is carried in cloud without causing effect to the functionalities at edge nodes. A signal is
transferred to the corresponding edge server for triggering the task of updating the SMPHA model from the
web server. At that time, the newly trained model is downloaded to replace the existing one at the con-
sidering edge server. From then, the ML model at the edge server is called to be updated with the real-world
knowledge and is ready for its garden controlling tasks (to apply in the next farming season).

4.5 Work flow

The flowchart in Figure 6 depicts the working of the proposed system based on the decision support system
that is beneficial for irrigation needed for the growth of vegetables. The chilli plant is grown in a growbag
attached with sensors and Pi as shown in Figure 3 and monitored for 95 days of data collection. To bring out
optimality in the irrigation system, features relating to climate, soil, crop, and field infrastructure are to be
considered. To provide several recommendations in the production of vegetables, decision support systems
(DSSs) are designed, which process voluminous information [39]. This proposed work is the extension of
soil moisture differences (SMD) model [41] developed for soil moisture prediction. The threshold values of
soil moisture are used in the SMD model where the system schedules the irrigation date based on the
predicted soil moisture and weather forecast (precipitation) information automatically using SVR+ k-means
modeling. Therefore, in the extension of the aforementioned work, further more number of sensors are used
to log soil moisture value, which is averaged in the proposed model. This model is developed in two
divisions of flowchart as shown in Figure 7, where both are interconnected. It is observed that the prediction
of XB + k-mean approach provides better results as presented in Table 2.

The first phase of the flowchart describes the hybrid algorithm for the soil moisture prediction (SMPHA)
using the combination of XB + k-means algorithm. During the data collection step, the sensor data for the
parameters, namely, TM, HU, ST, UV, and SM, are collected. During preprocessing, null values and outliers
are removed and the preprocessed data are used to train the XG-Boost model. The developed model is then
trained with variables of live weather features (TM, HU, UV, PC) obtained from Weather API for the
prediction of SM data. These data are given as input to k-means clustering algorithm to predict the soil
moisture, which is defined as SMPHA value to be infused in the next phase of the flowchart. The second
phase of the flowchart defines the automatic irrigation planning setup. The setup starts obtaining the soil
moisture maximum (SMMax) and soil moisture minimum (SMMin) values in the dashboard for setting the
maximum and minimum level of soil moisture. Then, the current soil moisture (CuSM) is sensed and
compared against the threshold SMMin. If the resulting value is less than SMMin, the process proceeds
with SMPHA. On the contrary, it stops the irrigation process by sending O to the relay. In SMPHA, the
nearest precipitation date is selected and it is assigned to the predicted soil moisture (PSM). The SMMax is
decided by finding the minimum of (PSM + SMMin, SMMax), and the predicted SMMax is further checked
against CuSM with a condition if SMMax is greater the CuSM then it sends 1 to the relay as a signal to start
irrigation. If the condition fails, then it sends O to stop irrigation. The process of automatic irrigation ends
by forecasting the irrigation schedule in accordance with the live weather parameters.

644 —— S.Premkumar and AN. Sigappi DE GRUYTER

Y. = / : Forecasted 5 days Data
VA TM,HU,ST,UV,SM/’ Data Collection ;, from Weather API

[

- - g >

/

Developed A & v
Sensor Data XgBoost <—/ TM,HU,UV,PC//
v :

Data

Preprocessing

SM predicted | Predicted 5 days SM
Data Data

Xgboost Training

K-means cluster

l Training

XgBoost Model ———— l
Final
Evh:lz(;filon — 3 Predicted SM
Data (PSM)

Soil Moisture Prediction Hybrid Algorithm

1P SMMax &
SMMin

Check CuSM

Select Ndate preceptiaton

l

Set PSM (PSM = Ndate)

l

Set SMMax =
Min((P SM+SMMin), SMMax)

Intilize SMMax
& SMMin

Check CuSM

False

>
>

\ 4
Send 0

Senq 1) Stop Irrigation
Soil moisture Prediction Startimgation
Hybrid Algorithm i
S,
\ Stop /

Automatic Irrigation Setup

Figure 6: Flow chart of the proposed edge model.

5 Experimental setup and evaluation

The test bed is developed and deployed, and the data are collected for the analysis in irrigation manage-
ment. Here, Heroku cloud platform is used to deploy the cloud web server. The same cloud is also installed
at a local edge that is at two Raspberry Pi units equipped with Wi-Fi 802.11n connections to denote the edge
nodes. JMeter application is used to get sequential accesses to the web page from various users for eval-
uating the network parameters. The specification of these servers is given in Tables 3 and 4.

We evaluated the performance of the proposed IoT-based smart farm on two different platforms,
namely, in the cloud and on the local computer to show the feasibility and the benefit of the edge com-
puting scheme. Further many parameters are considered for evaluation and discussed in the next section to
show that edge deployment is better than cloud.

DE GRUYTER loT-enabled edge computing model for smart irrigation system =—— 645

1600 f—vr i
.\./ \l——'—’-\. /-/'\-
1400

1200 _—
—m— Cloud Service
—e— Edge Service

1000

800

Response Time(ms)

600

p.
400 \'\ e, & o
{ ® .\.\./ \.

200 T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12

Test Scenarios

Figure 7: Average response time with 10 test scenarios.

Table 3: Configuration of raspberry Pi

CPU Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GHz

RAM 8 GB LPDDR4-3200 SDRAM

Network 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE, Gigabit Ethernet
Pinboard 8 GB LPDDR4-3200 SDRAM

Operating system, language Raspbian , Python 3

Table 4: Configuration of Heroku cloud

Country United states

Service Amazon web service S3

Processor 2.4 GHz Intel Xeon E5-2676 v3 Processor
CPU Power 8 GB

Virtual CPUs 3-5

5.1 Evaluation

A hybrid machine learning methodology is used in evaluating the first stage of the proposed model. The
predicted value of the soil moisture is better in terms of their accuracy and error rate. From the comparison
of the other ML algorithms as shown in Table 2, XB + k-means performs better and taken further to be
deployed in edge and cloud to check its efficiency with each other. Therefore, for analyzing the efficiency of
the edge server in accordance with the proposed hybrid algorithm SMPHA is evaluated in terms of the time
taken to train the ML model in edge and cloud. In this experiment Raspberry Pi is used to train the SMPHA
model with 196,400 rows, that is, input data sample size and takes around 1,710,000 ms (approximately
28.5 min). The same model when it is trained in Google Colab cloud environment, it takes 204,000 ms
(approximately 3.4 min) as depicted in Table 5. The main purpose is to run the trained model on edge not to
train the model at edge. So due to the lack of computing capability at the edge, it takes more time to train
the model, but it can be ignored as it does not affect the purpose of the proposed model. Here, edge is
introduced to obtain the task of computing from the cloud (i.e., offloading the task) by making the system
more edge-oriented deployment. It can be accomplished rapidly as it requires only 14 s to download a
trained SMPHA model from the cloud to the edge node with a size of 3,101 kb as given in Table 5. The time to

646 —— S.Premkumar and AN. Sigappi DE GRUYTER

Table 5: Comparison of model training time

Edge Cloud
Model training time 28.4 min 3.4 min
Downloading time Not applicable 14 s

download varies according to the size of the trained model. So, from this process it can be inferred that
downloading the trained model saves time when compared to training the model at the edge. Through this
in real time, deployment of the trained SMPHA model in edge is better compared to deployment in cloud
services. Furthermore, network parameters like latency, throughput, bandwidth, and response time are
adopted to measure the performance improvements in edge computing.

The performance metrices taken into account are latency, bandwidth, and response time [42]. The
latency of an application is the product of two factors: computing latency and transmission latency. The
time spent on data processing and transmission between end devices to cloud servers is termed as com-
puting latency and transmission latency, respectively. The computational capacity of the system decides
the computing latency as the network servers possess a considerable amount of capacity to make the data
processing faster, whereas the sensors come with limited computing capacity. The latency in transmission
is increased by the end devices and cloud servers. Bandwidth: As large number of sensors are deployed in
IoT, data generated would be huge that consumes an intense range of bandwidth and leads to several
problems such as delay in transmission and loss of packets. It becomes unacceptable for the data to be
transferred directly to cloud servers without applying compression. Therefore, data preprocessing and
aggregation are needed for IoT gateways before redirecting them to remote cloud servers. Then, the issue
to be confronted is to control the traffic flow by migrating data processing and aggregation tasks optimally
to decrease the bandwidth needs of the end users while maintaining the data quality. Response time: The
total response time is calculated by adding up transmission and processing time. The local deployment of
the proposed model for controlling IoT-based irrigation are deployed on two modes: (i) Cloud mode: The
developed SMPHA model is implemented in the cloud communicating with IoT sensors nodes directly to
manage the irrigation process. The data are stored and processed at the cloud server itself where it uses
Heroku platform. (ii) Edge mode — Raspberry Pi is deployed as an edge server that involves in processing of
the SMPHA model controlling the IoT sensor nodes. Here, the data are stored and processed locally within
the edge servers. This SMPHA model from both the edge and cloud does the job of controlling the actuators
to initiate and quit the working of water flow motors. Through this deployment in both the environments,
performance of edge server and cloud server can be checked in terms of latency, throughput, bandwidth,
and response time is shown in aforementioned graphs in Figures 6, 8, and 9. This performance metrices is
not feasible to calculate while deploying in real time, so the aforementioned scenarios of two modes are
virtually created by generating many request and response threads between the servers. This sampling,
load test, and distributed testing are conducted through JMeter application [43] and also verified with
Wireshark [44] in cloud servers. The test scenario is created here by data of sending and receiving sampling
data between cloud to IoT sensors and between Edge to IoT sensors. The sampling data considered in this
work refer to the approximate number of requests generated by Arduino to cloud and Arduino to Raspberry
Pi that are calculated in real time. The test scenario is divided into 10 days of sampling data collected for
each day. The evaluation results are depicted for latency and response times in 10 days perspective. In
latency parameter, edge service has decreased by an average of 77.85% time compared to the with cloud. In
the same manner, the response time of edge service is also decreased by 74.09% time compared to cloud
service. In throughput calculation, sampling data are calculated for an hourly basis for the 10 hours data in
a day. From the hourly comparisons of throughput value, edge outperforms with 67.17% high Mbps usage.
Through this analysis as shown in Table 6, it is evident that the proposed edge computing methodology
deployed in Raspberry Pi or in local computers outperforms the cloud-oriented approach.

DE GRUYTER loT-enabled edge computing model for smart irrigation system =—— 647

— "
400 : \\//.__—l » \L
] (]
1200 —: [—m— CIoud‘Service
|—@— Edge Service
/‘;,\ 4
é 1000:
>
CC)]
ko) 800+
©]
— 4
600
400 ‘;v\, ‘ ' ‘ 0\'
E \“/.\“ ® s ./ .
— —T— — T 1 7 — T 1

1 2 3 4 5 6 7 8 9 10 M
Test Scenarios

Figure 8: Average latency with 10 test scenarios.

|—m— Cloud Service| Y
0.1 |—®—Edge Service | 7 ,,\7‘_77
R /
0.093 | Bt
20083 /"""\"
Q.
Ke)
£ 007 7
Bood S : e
< 2]
g, 0_05_/ _./n/ \“\ |
|
2 004 e ”
£ 004 . v |
= /
0.03 |
0.02 3
0.01
0.00 T T T T T 1

T
1 2 3 4 5 6 7 8 9 10 N
Hour wise Test

Figure 9: Average throughput value with 10 h test scenarios.

Finally, to illustrate the efficiency of resource management in edge computing, CPU and memory
utilization are considered for the analysis as both factors rely on the service execution model and the
computational needs of the services being fired from off-loaders. Figure 10 depicts the utilization of CPU
and RAM on the Raspberry Pi acting as an edge node in two cases: with and without the deployment of
SMPHA model on it. As shown in Figure 10, the SMPHA model affects the CPU of the Raspberry Pi node
significantly as it consumed around 41.2% of the CPU compared to only 3.5% when it does not host the

Table 6: Performance metrices for cloud and edge services

Performance metrices Cloud service Edge service
Throughput (Mbps) 0.04944 0.08265
Latency (ms) 1415.8 313.6
Response time (ms) 1519.6 393.8

Bandwidth (bps) 86 1,365

648 —— S. Premkumar and AN. Sigappi DE GRUYTER

Memory without SMPHA
Memory with SMPHA

CPU without SMPHA | 3.50 %
CPU with SMPHA

0 5 10 15 20 25 30 35 40 45 50
Usage (%)

Figure 10: CPU and memory utilization with and without SMPHA.

SMPHA model. However, the memory (RAM) utilization in both the cases (with and without deployment of
an SMPHA model) is nearly the same which is around 31%. Comparatively RAM utilization does not have
much difference in with and without SMPHA. It is worthwhile to note that, the CPU utilization is still much
lower than the 50% of total CPU capacity in Raspberry Pi. Therefore, it becomes feasible for adopting edge
server implementation in the proposed irrigation system.

6 Conclusion

This article proposed a novel approach to edge-based irrigation system to facilitate decision-making on
watering the plants on scheduled time. The proposed approach applying IoT with an edge computing
framework enables the farming system to adapt to the changes in environmental conditions automatically
and efficiently. The process of automatic irrigation regulates irrigation according to the live weather para-
meters for forecasting the irrigation process. Soil moisture prediction was performed using major regression
algorithms that are again combined with k-means clustering for estimating the changes incurred in soil
moisture prediction. These techniques were compared through metrics such as MAPE, MSE, speed, and
power consumption from which XB + k-means was found to perform better. The XB + k-means algorithm
was further used for the implementation of decision mechanism on the developed edge computing model.
The proposed edge model saves the data communication cost and reduces the response time of IoT services.
It can be deployed on existing devices on the network edges serving as edge nodes, thereby reducing the
overall implementation cost of a large-scale IoT system. The edge-based approach was found to perform
better than the cloud-based approach in terms of response time, latency, throughput, and bandwidth
usage. Finally, the edge model was analyzed through CPU and memory usage while running with and
without the algorithm. In both cases, the memory utilization is almost lower to total available resource of
the edge device. From this, edge device can allocate its remaining resource for other computing services,
which increases the efficiency of edge computing device. The number of end edge nodes can be increased
according to the field area and then to check the potency of the system.

Conflict of interest: The authors declare no conflict of interest.

Data availability statement: All data that support the findings of this study are included within the article.

DE GRUYTER loT-enabled edge computing model for smart irrigation system =—— 649

References

(6]

(7]

(14]
(15]
(16]
(17]
(18]
(19]
(20]

(21]

(22]

(25]

(26]

(27]

India: Issues and Priorities for Agriculture, The World Bank, May 17, 2012. https://www.worldbank.org/en/news/feature/
2012/05/17/india-agriculture-issues-priorities.

India at a glance in Agriculture, FAO in India. https://www.fao.org/india/fao-in-india/india-at-a-glance/en/.
Cavicchioli R, Ripple W), Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: Microorganisms
and climate change. Nature Rev Microbiol. 2019;17(9):569-86. doi: 10.1038/541579-019-0222-5.

Huong NTL, Bo YS, Fahad S. Economic impact of climate change on agriculture using Ricardian approach: A case of
Northwest Vietnam.) Saudi Society Agricult Sci. 2019;18(4):449-457. doi: 10.1016/j.jssas.2018.02.006.

Fagodiya RK, Pathak H, Bhatia A, Jain N, Kumar A, Malyan SK. Global warming impacts of nitrogen use in agriculture: An
assessment for India since 1960. Carbon Management. 2020;11(3):291-301. doi: 10.1080/17583004.2020.1752061.
Sarkar S, Chatterjee S, Misra S. Assessment of the suitability of fog computing in the context of internet of things. IEEE
Trans Cloud Comput. 2018;6(1):46-59. doi: 10.1109/TCC.2015.2485206.

Porter JR, Xie L, Challinor A}, Cochrane K, Howden SM, Igbal MM, et al. Food security and food production systems. In: Field
CB, Barros VR, Dokken D), Mach KJ, Mastrandrea MD, Bilir TE, et al., editors. Climate Change 2014: Impacts, Adaptation,
and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group Il to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change Cambridge, United Kingdom: Cambridge University Press and New York,
NY, USA; 2014. p. 485-533.

Lal R. Adaptation and mitigation of climate change by improving agriculture in India. In: S. SherazMahdi (Ed.), Climate
Change and Agriculture in India: Impact and Adaptation. Cham: Springer International Publishing; 2019. p. 217-27.
Saravanan K, Julie G, Robinson H. (Eds.), Handbook of research on implementation and deployment of loT projects in
smart cities. Hershey: IGI global, 2019.

Baylis A. Advances in precision farming technologies for crop protection. Outlooks Pest Manag. 2017;28(4):158-61.
Mulla D, Khosla R. Historical evolution and recent advances in precision farming. Soil-Specific Farming Precision
Agriculture. Boca Raton: CRC Press; 2015.

Dutta L, and Basu TK. Extraction and optimization of leaves images of mango tree and classification using ANN. |JRAET
2013;1(3):46-51.

Kawai T, Mineno H. Evaluation environment using edge computing for artificial intelligence-based irrigation system. 2020
16th International Conference on Mobility, Sensing and Networking (MSN). Tokyo, Japan: IEEE; 2020. p. 214-9.

Munir MS, Bajwa IS, Ashraf A, Anwar W, Rashid R. Intelligent and smart irrigation system using edge computing and loT.
Complexity. 2021;2021:1-16.

Angelopoulos CM, Filios G, Nikoletseas S, Raptis TP. Keeping data at the edge of smart irrigation networks: A case study in
strawberry greenhouses. Comput Netw. 2020;167:107039.

Satyanarayanan M. The emergence of edge computing. Computer. 2017;50(1):30-9.

Shi W, Dustdar S. The promise of edge computing. Computer. 2016;49(5):78-81.

Ramirez Izolan PL, Diniz Rossi F, Hohemberger R, Konzen MP, da Cunha Rodrigues G, Saquette LR, et al. Low-cost fog
computing platform for soil moisture management. In: 2020 International Conference on Information Networking (ICOIN).
Barcelona, Spain: IEEE; 2020. p. 499-504.

Ferrandez-Pastor F, Garcia-Chamizo,), Nieto-Hidalgo, M, Mora-Pascual, J, Mora-Martinez,). Developing ubiquitous sensor
network platform using internet of things: application in precision agriculture. Sensors. 2016;16(7):1141.

Xu X, Liu X, Xu Z, Dai F, Zhang X, Qi L. Trust-oriented loT service placement for smart cities in edge computing. IEEE Internet
Things J. 2020;7(5):4084-91.

Wu X, Liu M. In-situ soil moisture sensing: Measurement scheduling and estimation using compressive sensing. In: 2012
ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN). Beijing, China: IEEE; 2012.
p. 1-11.

Kameoka T, Nishioka K, Motonaga Y, Kimura Y, Hashimoto A, Watanabe N. Smart sensing in a Vineyard for advanced
viticultural management. In: Proceedings of the 2014 International Workshop on Web Intelligence and Smart Sensing.
Saint Etienne France; 2014. p. 1-4.

Cagri Serdaroglu K, Onel C, Baydere S. loT-based smart plant irrigation system with enhanced learning. In: 2020 IEEE
Computing, Communications and loT Applications (ComComAp.) Beijing, China: IEEE; 2020. p. 1-6.

Kwok J, Sun Y. A smart loT-based irrigation system with automated plant recognition using deep learning. In: Proceedings
of the 10th International Conference on Computer Modeling and Simulation - ICCMS2018. Sydney, Australia: ACM Press;
2018. p. 87-91.

Goldstein A, Fink L, Meitin A, Bohadana S, Lutenberg O, Ravid G. Applying machine learning on sensor data for irrigation
recommendations: Revealing the agronomist’s tacit knowledge. Precision Agricult. 2018;19(3):421-44.

Vij A, Vijendra S, Jain A, Bajaj S, Bassi A, Sharma A. loT and machine learning approaches for automation of farm irrigation
system. Proc Comput Sci. 2020;167:1250-7.

Krishnan H, Scholar R. MongoDB - a comparison with NoSQL databases. Int J Scientific Eng Res. 2016;7(5):1035-7.

https://www.worldbank.org/en/news/feature/2012/05/17/india-agriculture-issues-priorities
https://www.worldbank.org/en/news/feature/2012/05/17/india-agriculture-issues-priorities
https://www.fao.org/india/fao-in-india/india-at-a-glance/en/

650 —— S. Premkumar and AN. Sigappi DE GRUYTER

[28]
[29]
[30]
(31]
[32]
[33]
[34]
[35]
[36]
[37]
(38]
[39]

[40

[41]

[42]

[43]

[44]

Ojha T, Misra S, Raghuwanshi NS. Wireless sensor networks for agriculture: The state-of-the-art in practice and future
challenges. Comput Electr Agricult. 2015;118:66-84.

Gutierrez J, Villa-Medina JF, Nieto-Garibay A, Porta-Gandara MA. Automated irrigation system using a wireless sensor
network and GPRS module. IEEE Trans Instrument Measurement. 2014;63(1):166-76.

Chanthakit S, Keeratiwintakorn P, Rattanapoka C. An loT system design with real time stream processing and data flow
integration. In: 2019 Research, Invention, and Innovation Congress (RI2C.) Bangkok, Thailand: IEEE; 2019. p. 1-5.

Lv H, Wang S. Design and application of loT microservices based on Seneca. USA: DEStech Transactions on Computer
Science and Engineering, (icte.). 2016.

Lee B-H, Dewi EK, Wajdi MF. Data security in cloud computing using AES under HEROKU cloud. In: 2018 27th Wireless and
Optical Communication Conference (WOCC). Hualien: IEEE; 2018. p. 1-5.

Lopez Pena MA, Munoz Fernandez I. SAT-loT: An architectural model for a high-performance fog/edge/cloud loT platform.
In: 2019 IEEE 5th world forum on internet of things (WF-loT.) Limerick, Ireland: IEEE; 2019. p. 633-8.

Weather API. Retrieved from https://openweathermap.org/api.

Drew Gislason. Zigbee wireless networking, 1st ed. Newnes, London: Elsevier Publisher; 2008.

Tanabe K, Tanabe Y, Hagiya M. Model-based testing for MQTT applications. In: Virvou M, Nakagawa H, Jain LC. (Eds.),
Knowledge-Based Software Engineering: 2020. Cham: Springer International Publishing; 2020. p. 47-59.

Babun L, Denney K, Celik ZB, McDaniel P, Uluagac AS. A survey on loT platforms: Communication, security, and privacy
perspectives. Comput Netw. 2021;192:108040.

Rastogi K, Lohani D. Edge computing-based internet of things framework for indoor occupancy estimation. Int] Ambient
Comput Intell. 2020;11(4):16-37.

Premkumar S, Sigappi AN. Functional framework for edge-based agricultural system. In: Al, Edge and loT-based Smart
Agriculture, 1st ed. USA: Academic Press, Elsevier; 2021. p. 71-100.

Phani Kumar J, Paramaguru P, Arumugam T, Manikanda Boopathi N, Venkatesan K. Genetic divergence among Ramnad
mundu chilli (Capsicum annuum L.) genotypes for yield and quality. Electr] Plant Breeding. 2021;12(1):228-34.

Goap A, Sharma D, Shukla AK, Rama Krishna C. An loT-based smart irrigation management system using Machine learning
and open source technologies. Comput Electronic Agricult. 2018;155:41-9.

Aslanpour MS, Gill SS, Toosi AN. Performance evaluation metrics for cloud, fog and edge computing: A review, taxonomy,
benchmarks and standards for future research. Internet Things. 2020;12:100273.

Sunardi A, Suharjito MVC architecture: a comparative study between Laravel framework and slim framework in freelancer
project monitoring system web based. Proc Comput Sci. 2019;157:134-41.

Robert Shimonski. The wireshark field guide, 1st ed. New York: Syngress Press, Elsevier; 2013.

https://openweathermap.org/api

	1 Introduction
	2 Related work
	3 The proposed system
	3.1 Field deployed module
	3.2 Web-based interface
	3.3 Web API weather input
	3.4 Soil moisture prediction mechanism
	3.5 Edge communication model

	4 Deployment of soil moisture prediction hybrid algorithm
	4.1 Hardware setup
	4.2 Web layer setup
	4.3 Edge layer setup
	4.4 Analytics setup
	4.5 Work flow

	5 Experimental setup and evaluation
	5.1 Evaluation

	6 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

