Research Article

Yonggang Wang and Haiou Sun*

Behavior feature extraction method of college students' social network in sports field based on clustering algorithm

https://doi.org/10.1515/jisys-2022-0030 received June 18, 2021; accepted January 23, 2022

Abstract: In order to improve the integrity of the social network behavior feature extraction results for sports college students, this study proposes to be based on the clustering algorithm. This study analyzes the social network information dissemination mechanism in the field of college students' sports, obtains the real-time social behavior data in the network environment combined with the analysis results, and processes the obtained social network behavior data from two aspects of data cleaning and de-duplication. Using clustering algorithm to determine the type of social network user behavior, setting the characteristics of social network behavior attributes, and finally through quantitative and standardized processing, get the results of college students' sports field social network behavior characteristics extraction. The experimental results showed that the completeness of the method feature extraction results improved to 9.93%, and the average extraction time cost was 0.344 s, with high result integrity and obvious advantages in the extraction speed.

Keywords: clustering algorithm, the sports field of college students, social behavior, network behavior, feature extraction

1 Introduction

As a social phenomenon, sport is an integral part of human beings. Physical education is not only a part of education but also a part of life. It belongs to people's social living conditions. Therefore, college physical education plays a leading role in the physical and mental development of college students. Sports can promote blood circulation, improve heart function, improve respiratory system function, and promote the growth and development of skeletal muscle, which has a positive effect on college students. However, in the actual process of physical exercise, college students need to rely on theoretical knowledge for related physical exercise and carry out technical exchanges with professionals to ensure the safety of physical exercise. For this reason, a social network was designed and developed for college students in the field of sports.

A social network is a system composed of multiple individuals or groups connected by certain relationships. The relationship mentioned here exists in every aspect of society, such as the teaching relationship between coaches and team members, the antagonistic relationship between opponents, the neighborhood relationship between families, and the mutual help relationship between friends [1]. The early research on

^{*} Corresponding author: Haiou Sun, Physical Education Teaching and Research Department, Northeast Agricultural University, Harbin 150000, China, e-mail: 26146234@qq.com

Yonggang Wang: Physical Education Teaching and Research Department, Northeast Agricultural University, Harbin 150000, China, e-mail: qiuwang926@126.com

social networks stayed in the field of sociology, and some breakthroughs in substantive research actively promoted the development and popularization of network science. A social network is the abstract extension of people's real communication network. The development of information technology provides conditions for users to record their status, contact friends, and form social circles on social networks. Social network analysis has become a hot interdisciplinary, with many research results. The existing achievements of social network analysis generally focus on the research of information rules in the network, the analysis of user group characteristics, and the mining of community. Users in social networks generate a lot of data on the platform every day, which provides a lot of raw material for social network analysis and research. Similar to real life, social network users also have user behavior characteristics worth exploring through blogs, forums, and other social network platforms. With the continuous expansion of user scale and enrichment of user level in social networks, social networking sites such as microblogs, blogs, and forums are becoming important channels for Netizens to obtain real-time information and disseminate all kinds of information. When choosing a social networking platform, information acquisition, exchange of views, and other factors are becoming the key factors for users to choose a platform and determine their behavior. User behavior reflects the characteristics of self-personality in social networks and reflects its real personality to a certain extent. In order to fully understand the situation of college students' sports and ensure a stable operation of social networks in the field of college students' sports, this study puts forward the method of behavior feature extraction and analysis of social networks in the field of college students' sports.

Feature extraction refers to the method and process of using a computer to extract the characteristic information in the image. It is a method of transforming the group measurement values of the first mock exam to highlight the typical characteristics of the pattern, through image analysis and transformation to extract the required features. Through analyzing of feature extraction methods, the research results of feature extraction methods for college students' social network behavior in the sports field at home and abroad include: Li and Han [2] explored an effective customer behavior mining algorithm that can improve the mining acceleration ratio, reduce the error rate, and ensure the reliability and practicability of behavior mining. In order to solve the problem of high error and low acceleration of customer behavior mining processing, a customer behavior mining algorithm based on online shopping feature extraction was proposed. Using the regularization estimation method minimized the regression line estimates and variance characteristic parameter estimates and obtained the coordinate line and the variance characteristic parameters combined with the coordinate algorithm and Karush-Kuhn-Tucker conditions. The online shopping criteria were used to excavate the best mining results corresponding to the regression line and variance characteristics parameters and complete the customer behavior mining. Men et al. [3] conducted predictive studies of patients with depression using online tools to analyze the language and behavioral characteristics of social network users. Self-disclosed depression information was collected from Twitter to extract information on language and behavioral characteristics of depressed and normal users on social networks. Based on the analysis and verification of the feature information, machine learning algorithms were used to predict depressed users. It was found that users' verbal and behavioral features on social networks can reflect their psychological state, and the various kinds of features extracted from them can be used for the detection of depressed users. Random forest classifiers performed best in the user prediction methods for depression. Empath-based word category features have the highest predictive scores among different types of categories, while the topic features rank lower. Li et al. [4] adopted many classical clustering algorithms to provide a new solution for big data clustering. A birch was fitted into MapReduce, which was called mrbirch. Compared with a large number of algorithms based on MapReduce, mr-birch only loaded the data set once, and the data set was processed in parallel on multiple machines. The complexity and scalability of mr-birch were analyzed to evaluate the quality of mr-birch, and the wide application of mr-birch and wireless sensor networks has attracted a lot of research work. Kumar et al. [5] proposed an improved load balancing clustering (modified GA-based load balanced clustering algorithm for wireless sensor networks based on a genetic algorithm. It was better than the genetic algorithm based load balancing clustering (galbc) algorithm because it balanced the load by considering the residual energy. The results showed that this method is superior to galbc in energy consumption, the number of active sensor nodes, and network lifetime.

However, the above feature extraction methods have the problems of low timeliness and poor application performance in the actual operation process, so the innovative point of this study is the introduction of a clustering algorithm to improve the behavioral feature extraction of social networks. The clustering algorithm is important in data mining. According to the similarity between objects, they are divided into several groups called "clusters," and the objects in a cluster have high similarity. With the continuous development of clustering algorithms, it is no longer regarded as an abstract mathematical method; it began to solve interdisciplinary problems and more emerging ideas were introduced. In this study, a cologne filter was used to process the original data before using a clustering algorithm. Then, the clustering algorithm was applied to the social network behavior feature extraction of sports college students, and the behavior feature vector extracted by the clustering algorithm was normalized and interval aligned, which improved the accuracy of traditional feature extraction.

The research process of this study was as follows: Analyze the mechanism of the propagation of social network information, the design process collects the social network behavior data, use the Cologne filter to process the social network behavior data, determine the type of social network user behavior using the clustering algorithm, and complete the extraction of the social network behavior characteristics of college students. Comparative experiments show that the design method somewhat improves the accuracy of the behavioral feature extraction, and indirectly improves the application value of the feature extraction results.

2 A method of extracting behavior characteristics of college students' social networks in the sports field

2.1 Social network information dissemination mechanism in college students' sports field

The spread range of social information in the field of college students' sports was affected by many factors such as the scale of the social network of information publishers, the number of strong contact chains, the frequency of contact, the communication power of contact objects and so on. In the social network of college students' sports field, a message sent by the initial node V_0 and forwarded by its adjacent node V_1 generates a directed chain from V_0 to V_1 and V_1 represents the first level dissemination node of this message. When the adjacent node V_2 V_1 forwarded the message V_1 again, it generated a directed chain from V_1 to V_2 ; V_2 representing the secondary dissemination node in information dissemination, and so on. Thus, the information from the initial node forms a directed propagation path $V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow ...$ The depth of information transmission of college students' sports social networks was also the longest forwarding path. The distance between the initial node and the final forwarding node was called the length of the propagation chain. Because the forwarding from nonfans was almost zero in the actual social network platform in the field of college students' sports, this part can be ignored. It is considered that information was forwarded layer by layer by fans from the publisher. The forwarding tree as shown in the figure can be used to describe the process of information dissemination, and the propagation depth refers to the progression of the forwarding tree. The information forwarding tree of social networks in college students' sports field is shown in Figure 1.

In addition, the range of nodes affected by the information dissemination in the social network of college students' sports field refers to the collection of all nodes forwarding the information from the initial node V_0 . If the set of paths formed by the dissemination is represented by E, the range of information dissemination can be represented by W(V, E) the way of graph theory. When a single message was forwarded, the size of the forwarding group represented the breadth of information dissemination. From the forwarding tree in Figure 1, the forwarding scale was the number of all intermediate nodes except the root node and all non-forwarding leaf nodes.

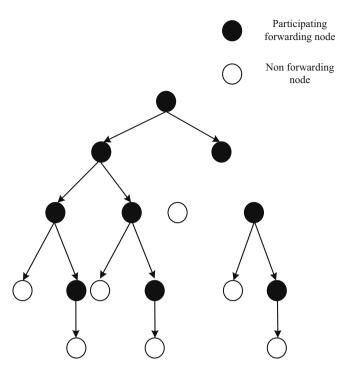


Figure 1: The information forwarding tree of social networks in college students' sports field.

2.2 Getting social network behavior data

Under the social network of college students' sports field, all users' real-time data information was obtained and stored. Before obtaining the user information on Microblog, it was necessary to determine a Microblog user as the starting point of the crawling data, by entering the user name or nickname, and searching among the crawled users. If the user name existed, it was the starting point to start crawling data; if the user name did not exist, it was necessary to change the starting user name [6]. Taking this point as the starting point of data acquisition, the web crawler was used to achieve real-time data acquisition. The specific data acquisition process is shown in Figure 2.

Most popular social networks in the field of college students' Sports contain videos and images. For Microblogs containing images, you can find "feed"_list_media_. Then we can use the regular expression to match the ID of the image and get the real address of the image http://ww1.sinaima.cn/bmiddle/pic_id [7]. At the same time, the crawler system can resolve the video link address accordingly. After obtaining the page address of the image or video, we can download its web page, and use regular expressions to obtain detailed information about the image or video, such as the title and upload time.

2.3 Social network behavior data processing

The obtained social network behavior data were processed from two aspects of data cleaning and deduplication. Data cleaning mainly completes data format standardization, abnormal data removal, error correction, repeated data removal, and so on. The specific aspect was to remove the noise and irrelevant data in the original data set, fill in the missing data and fields, and identify and delete outliers. In data filtering, data can be cleaned and corrected according to some rules [8]. For example, if the user account field is missing, the record will lose the user identity information; if the URL field is empty, the record will lose the social network site information; if the number of timestamp fields was incomplete, the exception will appear after format conversion. This kind of problem can be solved by appropriate abandonment and repair.

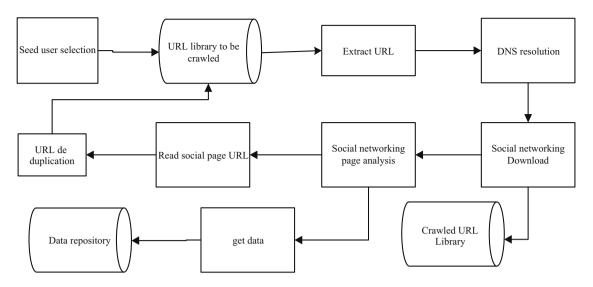


Figure 2: Real-time data acquisition flow chart of the social network.

In social network behavior data de-reprocessing, bloom filter, and 2m bit vector were used to express the data set. The first m bits corresponded to k mutually independent hash functions h_k , whose value range is [0, m-1] and is an integer, and the last m bits corresponded to another k mutually independent hash functions h_{2k} , whose value range is [m, 2m-1] and is an integer. When new data r_i were inserted, it was calculated with the function h_i to get the hash value $h_i(r_i)$, and the corresponding bit M in the bit vector m was set to 1. When querying whether a data formation s_i existed in the set, it was calculated with the hash function h_i to get the $h_i(s_i)$, and then it was checked that the corresponding bit $m[h_i(s_i)]$ in the bit vector group M was all 1 and whether s_i belonged to the data set or not [9]. The optimal values of k and m can be obtained from the number of data set elements n and the maximum allowable error rate p, the calculation method is as follows:

$$\begin{cases} k = 0.7 \times \frac{m}{n}, \\ m = -\frac{n \times Inp}{(In2)^2}. \end{cases}$$
 (1)

When the parameter *k* reached the optimal value, the social network behavior data was de-reprocessed.

2.4 Using a clustering algorithm to determine the type of social network user behavior

According to the processing results of the social network user behavior data in the field of college students' sports, the network users, the records in the log data that were triggered by the same internet user were identified and were connected to the access records of the same user to get the user's browsing sequence during this period [10]. In the weblog files stored by the operators, due to the summary of different users' online records, there was no identification of independent users, so the first task after data cleaning was to identify independent users. On this basis, a clustering algorithm was used to classify user behavior. First, the cluster center was selected randomly and then the cluster center was transferred to a higher density region iteratively until convergence. The cluster center and node distribution of cluster selection are shown in Figure 3.

By superimposing the offset vector on the current cluster center coordinate vector, the cluster center was updated, as follows:

$$Center^{(t+1)} = Center^{(t)} + shift^{(t)},$$
(2)

Figure 3: Distribution map of the cluster center and other cluster nodes.

one cluster)

shift $^{(t)}$ represents the offset vector, which represents the average distance from all samples in the current cluster to the current cluster center, the basic form is as follows:

$$Shift^{(t)} = \frac{1}{K} \sum_{x_i \in S^{(t)}} (x_i - Center^{(t)}).$$
(3)

The formula $S^{(t)}$ represents the set of sample points in the current cluster, and any x_i satisfies the following conditions:

$$\|x_i\text{-Center}^{(t)}\|_2 \le \text{Bandwidth.}$$
 (4)

That is, the distance from all sample points to the current cluster center was less than the key parameter, and the parameter bandwidth represents the bandwidth [11]. On this basis, Mean-shift aimed to make the offset vector less than a stop threshold:

Shift
$$^{(t)}$$
 < Stopthresh. (5)

In the formula, stopthresh was the set stop threshold to replace the above process until all sample points find the most suitable cluster center. At the same time, the clusters with close cluster centers were merged to form the final clustering results.

2.5 Set social network behavior characteristics

This study observed user characteristic attributes from the aspects of user access commodity category attributes, access frequency, website stay time, user status and location, and historical access commodity category attributes [12]. The characteristic quantity of network communication behavior selection is shown in Table 1.

When users browse different pages, each category will visit multiple or multiple times to the same page. This paper studies the user propensity of College Students under different categories, and the ratio of the number of users visiting such pages to the number of users visiting various pages [13]. The access frequency characteristic parameters can be expressed as:

$$f_i = \frac{\sum_i (\text{PageView})}{\sum_u (\text{PageView})},$$
 (6)

Serial number	Features	Feature description	Attribute	
1	x1	Source IP address	Choice	
2	x2	Destination IP address	Choice	
3	х3	IP packet header length	Choice	
4	x4	Source port	Choice	
5	x5	Destination port	Choice	
6	х6	Transaction ID	Choice	
7	х7	Protocol identifier	Choice	
8	x8	Length	Choice	
9	x9	Unit identifier	Choice	
10	x10	Function code	Choice	
11	x11	Data address	Choice	
12	x12	Data volume	Choice	

Table 1: Characteristic quantity of network communication behavior selection

u is all categories, *i* is one of them, \sum_i (PageView) and \sum_{i} (PageView) is the total number of visits of category *i* and the number of visits of the user in all categories. Users stayed longer on the pages they were interested in, but shorter on the pages they were not interested in. The longer the users stayed, the higher was the tendency of browsing such pages. Because of the browsing tendency of users in each page category, it was necessary to summarize and calculate the average residence time of users in the same page category [14]. Due to the randomness of the order of users browsing the pages, each category of pages will be interleaved, while the operator's user online records were stored in the order of Timestamp, so it needed to be calculated separately. The residence time of a user on a social network page can be expressed as:

$$t_i = \frac{\sum_i \Delta \text{TimeStamp}}{\sum_i \text{PageView}}.$$
 (7)

In the formula, Δ TimeStamp is the time difference between two adjacent records in the cleaned data, \sum_i PageView is the number of class *i* browsing times of the user and t_i is the average residence time of the user on class i goods.

2.6 Extraction of social network behavior characteristics of college students in the sports field

Based on the setting results of social network behavior characteristics, the quantitative extraction of social network behavior was realized. First, the weight of network behavior was calculated. Taking the weight of a user's entry and single sentence as an example, the formula of word weight is as follows:

$$W_i = \mathrm{TF}_i \times \log_2 \left(\frac{N}{n_i}\right). \tag{8}$$

In the above formula, W_i is the weight of the entry, TF_i is the number of times the entry appears in the current social process, n_i is the number of documents containing the entry in the dataset, and N is the total number of all documents in the dataset [15]. In the social process of college students in the field of sports, if an entry appeared more frequently in social behavior and less frequently in other documents, it was more likely to express the core meaning of this study [16]. In Chinese language habits, only some words in a sentence have practical meaning, while others are only used to support the composition of the sentence, which has no contribution to the substance of the sentence. In the same way, we can get the formula of sentence weight:

$$W(\text{sen},i) = \lambda_{\text{total}} \times \frac{\sum_{j=0}^{n} W_{(i,j)}}{n}.$$
 (9)

In the formula, $W_{(i,j)}$ is the weight of the entry in a single sentence, and the weight of a single sentence is the accumulation of the weight of the notional words in the sentence. Since long entries often contain more words with real meaning, in order to prevent the accumulation of entry weights, the weights of long sentences are naturally selected as feature quantities, it was necessary to calculate the average value of the weight of single sentences, where n represents the number of meaningful entries in a single sentence. In addition, the parameter λ_{total} represents the score of each weight factor of a single sentence. Thus, the social network behavior of college students in the field of sports can be expressed by documents and their weights, and the quantification of behavior characteristics can be realized [17]. In theory, in order to avoid the differences caused by different servers and time, the data set was the best for the user records of the same server in a small time window. However, this would lead to the sparsity of the user behavior data set and the poor performance of the intelligent detection algorithm [18]. Therefore, it was necessary to process the input behavior feature vector, which can be processed by normalization and interval alignment. Therefore, it was necessary to process the input behavior feature vector, which can be processed by normalization and interval alignment. The normalization selection min-max normalization was a linear transformation of the original data to map the value to the [0,1] interval. The conversion function is as follows:

$$x^* = \frac{x - \min}{\max - \min}.$$
 (10)

In the formula, max is the maximum value of feature sample data, min is the minimum value of feature sample data. The horizontal detection was to compare the user's behavior with other users' behavior, while the vertical detection was to compare the user's current behavior with historical behavior.

3 Comparative experimental analysis

In order to test the feature extraction effect of the designed clustering algorithm-based social network behavior feature extraction method in college students' sports fields, a comparative experiment was designed to show the advantages of this method.

3.1 Experimental environment and parameter setting

There were four machines in the whole operation platform; each machine was equipped with a dual-core Intel (R) core (TM) i5-2400 CPU, the main frequency was 3.1 GHz, the network bandwidth was 100 Mbps, 4 G memory, and 500 GB hard disk [19]. The operating system of each machine was Ubuntu 12.04, the Hadoop version was 1.0.2, and the JDK version was java-1.6.0–495. The IP configuration and node configuration of the four machines are shown in Table 2.

The configuration process is as follows: Hadoop 1.0.2 tar.gz store in-home/Hadoop and unzip the file. The command was "\$tar zvxfhadoop-1.0.2 tar.gz". Set the environment variable; Hadoop in/home/Hadoop/Hadoop conf directory- env.sh Set the environment variables needed by the Hadoop platform running

Table 2: IP configuration and node configuration of operation platform

Main engine	Host IP address	Node configuration	
Master	192.168.1.100	Master and slave	
Slave1	192.168.1.101	Slave	
Slave2	192.168.1.102	Slave	
Slave3	192.168.1.103	Slave	

in Java Home was a necessary variable, and Hadoop was not the home variable is optional [20,21]. To configure the conf/Masters and slaves files, you need to configure them on existing machines. Change the configuration file, such as the core site, configure the IP and port number of the machine cluster where the namenode is located – site, and configure the IP and port number of the cluster computer where the job tracker is located.

3.2 The experimental data set

The data sets prepared in the experiment were all from the social network of college students in the field of sports, in which the user's common friend relationship and user tag information was used to describe the degree of similarity between users. The significance was to reduce the number of users in the network and improve the calculation efficiency of the model. There were a large number of value corpse powder users in the social network of college students' sports field, ignoring the one-way attention connection can minimize the impact of advertising users and corpse powder users on the accuracy of the model prediction. In social networks, a user tag is an important user attribute information. A user is allowed to enter an open user attribute tag. These user tags are used to express users' interests and the topics they are concerned about. Through the social network user tag query, the input user can return all the tag information of the user and the corresponding weight of each tag. The specific settings of the user's original data set in the experiment are shown in Table 3.

3.3 Set test index

In this study, the performance of feature extraction was analyzed from the aspects of feature extraction efficiency and integrity. Generally speaking, the result of feature extraction should not be less than 10% of the social network behavior data. By calculating the ratio of the amount of feature extraction result data to the amount of social network behavior data, it can be concluded that the integrity of feature extraction can be reflected. The closer the ratio was to 10%, the more complete was the feature extraction. The efficiency of feature extraction was mainly the running time cost of the social network behavior feature extraction program, which can be directly obtained by retrieving the background data of the running program.

3.4 The process of the experiment

Since the clustering algorithm was applied in the designed behavior feature extraction method, the algorithm needed to transform into program code and imported into the experimental environment. The goal of K-means was to divide the data points into k clusters, s to find the center of each cluster and minimize the function:

Table 3: Experimental user data set table

Experimental group	Number of level 1 users	Number of level 2 users	Number of connections	Number of tags
Group 1	397	51,163	98,866	3,156
Group 2	521	107,169	215,890	3,895
Group 3	729	173,536	345,607	6,554
Group 4	291	43,826	91,309	2,180
Group 5	438	67,764	12,350	3,782

$$\arg\min \sum_{i=1}^{k} (x_i - \beta_i)^2.$$
 (11)

Among them, β_i is the center of the *i* cluster, the above formula is that each data point is as close as the center of the cluster they belong to.

The calculated matrix *D* made its diagonal the sum of the value of the column (or row) corresponding to the A matrix and the rest of 0.

$$D(i,i) = \sum_{j} A(i,j), \tag{12}$$

- 1. Makes the B = D A;
- 2. Seeks the first k eigenvalues and eigenvectors of the B matrix to project the data points into a k-dimensional space. The j value of the i eigenvector represents the projection of the j data point in the i dimension in the k dimension space. That is, if the k feature vectors are combined into a matrix of N^*k , then each row represents the coordinates of a data point in the k-dimensional space.
- 3. Clusters the data in the k dimension space of each data point, based on the k dimension space coordinates, using K-means or other clustering algorithms.

After the operation of the designed feature extraction method, the results of behavior feature extraction of college students' social networks in the sports field were obtained, and the quantitative extraction results of the number of social topics are shown in Figure 4.

In Figure 4, CDF is a quantitative indicator of the number of social network topics.

In addition, in order to reflect the advantages of the design method, the traditional feature extraction method and the feature extraction method based on worm detection were set as the two contrast methods of the experiment. The contrast method was imported into the experimental environment in the same way, and the final feature extraction result was obtained by calling the prepared data set.

3.5 Comparative analysis of experimental results

After the operation of the three methods, the quantitative comparison results are obtained, as shown in Table 4.

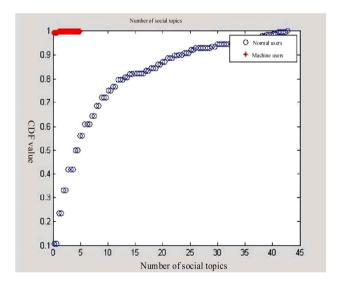


Figure 4: Quantitative extraction results of social network topic number behavior characteristics.

Table 4: Experimental comparison results

Experimental group	Document [2] method		Document [3] method		Social network behavior feature extraction method based on design	
	Feature extraction amount/MB	Time cost/s	Feature extraction amount/MB	Time cost/s	Feature extraction amount/MB	Time cost/s
Group 1	181.4	0.89	189.2	0.54	198.3	0.34
Group 2	182.5	0.85	188.7	0.66	199.4	0.36
Group 3	179.3	0.87	185.4	0.58	196.6	0.23
Group 4	181.7	0.82	187.6	0.67	198.7	0.28
Group 5	183.2	0.91	185.9	0.63	199.5	0.51

The amount of social network behavior data of college students in the field of sports set in the experiment was 2,000 MB, then through the calculation of the data in Table 4, it can be concluded that the integrity of feature extraction obtained by the three methods was 9.08, 9.37 and 9.93% respectively. In terms of timeliness, the average time cost of the three methods was 0.868, 0.616, and 0.344 s respectively. It was clear that the Social network behavior feature extraction method designed here had better completeness and the feature extraction time was the shortest. This is because this study collected social network behavior data according to the social network information transmission mechanism to ensure the integrity and correlation of data collection, then processes the raw data with Cologne filtering to ensure more clear and complete data. Using a clustering algorithm to extract the social network behavior characteristics of college students in the sports industry, normalized and transformed the extracted behavioral feature vectors, which improved the accuracy of traditional feature extraction.

4 Conclusion

In order to enhance the effect of extracting the sports social network behavior characteristics, this study proposes to be based on the clustering algorithm. The experimental results showed that this method effectively improved the effectiveness and speed of sports social networks. It had a high application value in the behavior recognition of college students' sports social networks. According to the extraction results of this study, it is important to understand the sports situation of college students and ensure the stable operation of social networks in the field of sports activity.

Conflict of interest: Authors state no conflict of interest.

Reference

- Navia L, Defit S, Muhammad LJ. Determination of student subjects in higher education using hybrid data mining method with the K-Means algorithm and FP growth. Int J Artif Intell Res. 2021;5(1):91-101.
- [2] Li Y, Han JL. Simulation of customer behavior mining algorithm based on online shopping feature extraction. Computer Simul. 2020;37(5):150-3, 234.
- [3] Men XP, Wei RB, Wu XL. Analysis and detection of language and behavior characteristics of depression in social network. J Mod Inf. 2020;40(6):76-87.
- Li YF, Jiang HT, Lu JY, Li XZ, Sun ZW, Li M. MR-BIRCH: A scalable MapReduce-based BIRCH clustering algorithm. J Intell Fuzzy Syst. 2021;40(3):5295-305.
- Kumar M, Kumar D, Akhtar MAK. A modified GA-based load balanced clustering algorithm for WSN: MGALBC. Int J Embedded Real-time Commun Syst. 2021;12(1):44-63.

- Ding JY, Yu SS, Wang HN, Xu W, Li ZZ. Member structure and sharing behavior: Social network analysis of CALIS online cataloging data in China. J Acad Libr. 2020;46(2):102115.
- Martyshkin Al, Perekushikhina AN, Zotkina AA. Research groups of users in social networks based on their interests and behavior based on a variety of data sources. XXI Century: Resumes of the Past and Challenges of the Present Plus; 2020. Available from: https://repository.kvantor.org/public/92/2694?lang=en.
- Mahmoudi A. Identifying biased users in online social networks to enhance the accuracy of sentiment analysis: A user behavior-based approach. Social and Information. Networks. 2021;20(12):25-52. doi: 10.48550/arXiv.2105.05950.
- Wang J, Niu X, Wan L. Research on user behavior of online learning based on meta-analysis. J Mod Inf. 2020;40(1):58-68.
- [10] Gareau BJ, Huang X, Gareau TP, DiDonato S. The strength of green ties: Massachusetts cranberry grower social networks and effects on climate change attitudes and action. Clim Change. 2020;162:1613-36.
- [11] Rosa RL, Silva M, Silva DH, Ayub MS, Carrillo D, Nardelli PHJ, et al. Event detection system based on user behavior changes in online social networks: Case of the COVID-19 pandemic. IEEE Access. 2020;8:158806-25.
- [12] Wu YK, Huang HY, Wu NY, Wang Y, Bhuiyan MZA, Wang T. An incentive-based protection and recovery strategy for secure big data in social networks. Inf Sci. 2020;508(15):79-91.
- [13] Amoruso M, Anello D, Auletta V, Ferraioli D. Contrasting the spread of misinformation in online social networks. J Artif Intell Res. 2020;69(12):847-79.
- [14] Ryu S, Choi H, Lee H, Kim H. Convolutional autoencoder based feature extraction and clustering for customer load analysis. IEEE Trans Power Syst. 2020;35(2):1048-60.
- [15] Ulyanin S, Vazquez-Canteli J, Park JY, Nagy Z. SCAFE: Automated simultaneous clustering and non-linear feature extraction of building energy profiles. J Phys Conf Series. 2020;1343(1):012037. (p. 6).
- [16] Maddumala V, Arunkumar R. Big data-driven feature extraction and clustering based on statistical methods. Traitement du Signal. 2020;37(3):387-94.
- [17] Zabielski M, Tarapata Z, Kasprzyk R. Adaptive method of similarity detection of user profiles on online social networks. Bull Mil Univ Technol. 2020;68(2):43-57.
- [18] Yu J, Li H, Liu D. Modified immune evolutionary algorithm for medical data clustering and feature extraction under cloud computing environment. J Healthc Eng. 2020;2020:1051394.
- [19] Nguyen VX, Xiao G, Zhou J, Li GQ, Li BB. Bias in social interactions and emergence of extremism in complex social networks. Chaos. 2020;30(10):103110.
- [20] Qiao SB, Pang SC, Wang M, Zhai X, Dai F. Online video popularity regression prediction model with multichannel dynamic scheduling based on user behavior. Chin J Electron. 2021;30(5):876-84.
- [21] Canteloup C, Puga-Gonzalez I, Sueur C, Waal EVD. The effects of data collection and observation methods on uncertainty of social networks in wild primates. Am J Primatol. 2020;82(7):12-6.