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Abstract: Radiography images are widely utilized in the health sector to recognize the patient health
condition. The noise and irrelevant region information minimize the entire disease detection accuracy
and computation complexity. Therefore, in this study, statistical Kolmogorov—Smirnov test has been inte-
grated with wavelet transform to overcome the de-noising issues. Then the cat swarm-optimized deep belief
network is applied to extract the features from the affected region. The optimized deep learning model
reduces the feature training cost and time and improves the overall disease detection accuracy. The network
learning process is enhanced according to the AdaDelta learning process, which replaces the learning
parameter with a delta value. This process minimizes the error rate while recognizing the disease. The
efficiency of the system evaluated using image retrieval in medical application dataset. This process helps
to determine the various diseases such as breast, lung, and pediatric studies.

Keyword: radiography images, statistical Kolmogorov—Simonov test, cat swarm-optimized deep belief net-
works, AdaDelta learning process.

1 Introduction

Radiography [1] is nothing but the imaging technique that utilizes the gamma, X-rays, and nonionizing and
ionizing radiations to analyze and view the objects’ internal structure. This radiographic process is widely
applied in industrial and medical diagnostic purposes. Initially, the X-ray generators are used to pass the
X-ray on items [2]. The object absorbed the specific amount of radiation (depends on the object density),
and the internal structure has been viewed successfully. Among the various applications, the radiography
process is widely applied in the medical sector in different formats [3,4] such as projectional radiography,
computed tomography, dual-energy X-ray absorptiometry, contrast radiography, and fluoroscopy. The
radiographic method is used on the human body for capturing the internal body structure and changes.
The human body consists of various level substances with varying density information; therefore, non-
ionizing and ionizing radiations are utilized to capture the human organs [5,6]. This process is carried out
by the radiographers, who are called the radiologists. The captured medical radiography images [7] are
used to perform the different clinical analyses [8,9] such as dental examination, mammography analysis,
orthopedics evaluation, verifying the surgical markers, spot film identification, chiropractic examination,
and invasive procedure analysis. The clinical analysis process requires the radiographic or medical imaging
because the healthcare specialists access the patient’s organs, bones, blood vessels, and tissues via only the
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noninvasive technique. Only with the help of theses images, the treatment effectiveness, tumor location,
blood clot identification, and other treatment procedures are handled with minimum risk [10]. Based on the
discussion, here, few radiographic images are illustrated in Figure 1.

Figure 1: Sample medical radiography images.

The collected radiography images are processed by various machine learning techniques [10-13] for
predicting the changes in the internal organs. However, conventional image processing techniques ensure
poor performance due to inconsistent details and noisy information. Therefore, deep learning (DL) [14]
concepts are widely utilized in the computer vision field to resolve the image processing problems. The
traditional image analysis and machine learning techniques are mostly depending on the high number of
features that require the clinical experts, labor-intensive process, and preprocessing because the experts
need to know [15]. However, the DL model can catch the image features’ internal and hidden representation
with minimum medical experts’ knowledge. Therefore, the DL process ensures superior performance
although the system examines the high-dimensional and complex data analysis [16—18]. Although the
DL model works effectively, the radiographic images have noisy details that cause the wrong feature
extraction and pattern identification process. The false identification of image features and patterns leads
to a further increase in feature training time, cost, and computation complexities. For overcoming these
issues, the DL model performance should be enhanced by applying the effective optimization technique. In
this article, the statistical Kolmogorov—-Smirnov test (KSt) [19] has been integrated with wavelet transform
to overcome the de-noising issues.

This method effectively examines every pixel in the radiographic images, and the unwanted or noise
information is removed by performing the decomposition process. The features are then extracted
according to the cat swarm-optimized DL model [20,21] that utilizes the various layers and learning func-
tions to derive the image features. During the learning process, the system uses the AdaDelta learning
process to enhance the network training process. Then the effective and optimized technique minimizes the
deviations while deriving the medical features from the radiographic images. Finally, the same DL
approach is applied to making clinical decisions. The discussed system has been implemented using the
MATLAB tool, and the system uses Medical Segmentation Decathlon dataset [22]. The optimized DL model
performance’s effectiveness is evaluated by extracting the various medical images features and patterns
with a minimum error rate and maximum accuracy metrics.



42 —— AmerS. Elameer et al. DE GRUYTER

The manuscript is arranged as follows: Section 2 discusses the different research works and analyses
the medical radiographic images; Section 3 explains the working process of the optimized DL model for
retrieving the clinical patterns; Section 4 evaluates the excellence of the introduced system; and Section 5
defines the conclusion.

2 Related works

Pandya et al. [23] applied DL techniques for analyzing medical images and detecting diseases. This process
uses the medical images (computerized tomography (CT), magnetic resonance imaging (MRI), etc.), bio-
medical signaling (electrocardiogram, electroencephalogram, and omics (DNA, RNA, etc.) to examine the
clinical diseases. The captured medical images are processed by different DL models such as deep belief
networks (DBNs), long short-term memory, stacked autoencoder, convolution networks, and recurrent
networks. In addition to this, deep hybridized approaches such as multidimensional recurrent networks,
deep spatiotemporal networks, and recurrent bidirectional networks classify the diseases from the medical
images. Thus, the different DL model ensures promising results while analyzing the medical images with a
minimum error rate and human efforts.

Debelee et al. [24] created the breast cancer medical images analyzing system using a deep learning
approach (DLA). This process obtains the breast images via the magnetic resonance imaging, digital
mammography, ultrasound, and breast tomosynthesis. The gathered medical images are processed using
the DL model that predicts the breast cancer patterns with minimum involvement of domain experts.

Wuestemann et al. [25] examined the bone scans to diagnose the tumor entities by applying the DL-
based neural network algorithm. This study uses the bone scan imaging (BSI) index values to examine the
bone radiographic images. The prostate, lung, breast, and hepatocellular carcinoma cancer entities are
examined using DL model from the BSI values. This process helps to minimize the working load also to
improve the workflow process in the medical department.

Rehman et al. [26] implemented the brain tumor detection system using the transfer learning with deep
learning framework (TLDLF), which uses three convolution networks such as VGGNet, GooglLeNet, and
AlexNet for analyzing the various brain tumors such as pituitary, glioma, and meningioma. During the
analysis, MRI images are examined with the help of freeze and fine-tune transfer learning process. Data
augmentation techniques are applied to generalize the MRI slice image, which helps minimize data over-
fitting and enhance overall brain tumor recognition accuracy.

Sharma et al. [27] segmented brain tumor-affected region from MRI images using the different evaluations
with the OTSU method and neural networks. Initially, in the MRI image, global threshold values are estimated to
recognize the tumor-affected region. The optimal threshold value is selected according to the introduced algo-
rithm. This process is continuously trained using neural networks, which effectively minimizes the error rate.

Abid et al. [28] identified lung cancer nodules from CT images using multiview convolution recurrent
neural networks (MCRNN). This system is used to resolve the cost-intensive and inconsistent results while
recognizing lung cancer nodules. The introduced method utilizes the effective learning process, which
examines the image size, shape, and cross-slice variations that improve the accuracy of lung cancer
identification. The system’s performance was evaluated using Lung Image Database Consortium and Image
database resource initiative database with the respective performance metrics.

Azizi et al. [29] examined temporal-enhanced ultrasound images for detecting prostate cancer using
deep recurrent neural networks (DRNN). The introduced DRNN approach is analyzing the temporal details
from ultrasound images. The extracted information is further investigated with long-term neural networks
recognizing the benign and malignant with higher accuracy.

Masud et al. [30] diagnosed breast cancer from ultrasound images using convolution neural networks
(CNN). Initially, the ultrasound images are trained by eight different fine-tune models that help to identify
the test images related to clinical results. This process utilizes the 10-fold cross-validation process to evaluate
the excellence of the system. In addition to this, various research studies are summarized in Table 1.
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According to the above research studies, DL techniques are widely utilized in the medical field to recognize
various clinical diseases. The DL models with effective learning techniques and activation functions to
identify the disease-affected region. The DL model requires the optimization process to improve the overall
clinical analysis process by reducing the cost, labor intensive, and computation complexity. Moreover, the
captured radiographic images are having several noises while gathering the images. Then, the de-noising
process also played a crucial role while investing the medical images. So, in this article, we applied the
optimized techniques to examine the different radiographic images. The detailed working process of cat
swarm-optimized DBNs-based radiography image analysis is discussed in the following section.

3 Radiography image analysis using optimized DBNs

The detailed working process of optimized DBN-based radiography image analysis is explained in this
section. The system aims to increase the radiography image analysis accuracy by reducing the time, error
rate, and computation complexity. This process uses different steps such as image noise removal, segmen-
tation, feature extraction, and classification process. According to the discussion, the working process is
shown in Figure 2.
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Figure 2: Radiography image analysis structure.

Radiography image analysis structure is demonstrated in Figure 2. This system uses the two phases:
training and testing; each stage has image preprocessing, segmentation, feature extraction, and classifica-
tion processes. The training phases use effective learning functions while deriving the medical features and
classification process. During the training process, labels are provided and stored in the database. With the
help of training images, testing has to be performed to identify the new image patterns. The detailed
working process of radiography image analysis is discussed in the following section.

3.1 Medical image preprocessing

Preprocessing is nothing but improving the image’s quality by applying statistical analysis in a comparable
and repeatable manner [1,2]. In medical image processing, the noise removal process consists of
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resampling, intensity normalization, and co-registration methods. These processes are more helpful to
improve further radiographic image analysis. The co-registration is the way of mapping the images with
respective reference coordinate system; resampling is performing the voxel size of images with the unique
voxel resolution. Therefore, the collected radiographic images are resized into 160 x 160 dimension, and the
one-row matrix need to be reshaped.

Further, the complexity of the original images has to be reduced by applying the single-level discrete two-
dimensional wavelet transform approach, which examines the highly discriminative coefficient values from the
medical images; the best coefficient values are selected according to the statistical KSt. Initially, the wavelet
transform is applied to the image for reducing the dimensionality of the images by examining the image pixel
density value. The density values are derived by using high and low pass filters. Here, Haar wavelet function is
applied to the image because of the orthogonality property, which effectively examines the image wavelet
coefficients. Considering the mother Haar wavelet function is ¢(x) that is defined by equation (1).

<p[(";—b)], (a,b) € R* x R. 1)

In equation (1), a and b are parameters having the value as a = 27 and b = 27k-k € N. The Haar
wavelet ¢(x) dilation and translation values are estimated from equation (2) that has the orthogonal basis
value as L*(R). Then, the elements presented in the orthogonal basis values are computed using equation

).
@) = const. (2x - k) )

Based on equations (1 and 2), image intensity corresponding coefficient values are computed, and coeffi-
cient values are estimated. Then best coefficient values are selected according to the statistical KSt. It is one
of the nonparametric tests comparing the two coefficients values from the extracted image coefficient
values. This section process is performed according to the location and shape of pixels and cumulative
distribution value. Then the empirical distribution function (F,) is computed from the distributed observa-
tions X;, which is computed using equation (3).

E(x) = % S Heint () 3)
i=1

In equation (3), n is independent; the indicator function is denoted as I. From the computed F,(x) value, KSt
is examined using equation (4).

Dy = supy[Fy(x) - F(x)] (4)

In equation (4), the supremum of set distance is denoted as supy. From the computed distance D,, value, the
KSt samples are analyzed using equation (5).

Dy, = sup,[Fi(x) - F(x)] (5)

According to the KSt test similarity values, each pixel was examined with the alternative and null hypoth-
esis. If the pixel has an HO (null) hypothesis, then both pixels have the same distribution, and there is no
need to replace or remove the pixel. If the pixel belongs to the alternative (H1) hypothesis, then pixel has a
different population that needs to be removed from the image and replaced by using a median value. After
removing the medical image’s noise, the disease-affected region must be extracted according to the Prewitt
kernel operator.

3.2 Region of interest (ROI) region segmentation

The next step is to extract the disease-affected region by applying the Prewitt kernel operator. This process
examines the medical image regions by investigating the image edge-related features. The medical image
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edge features are placed a crucial role while predicting the disease-affected region. This process works
similar to the Sobel operator, which means it uses the 3 x 3 kernel. With the kernel details, image left-right
adjustment points and upper—lower limit pixels are estimated to identify the edge relevant information.
This process eliminates the edge information and smoothens the edge information, which causes to
improve the overall ROI segmentation process. Here, the edges are investigated according to the horizontal
and vertical direction. Therefore, the horizontal Dy, is estimated by convoluting the two kernel values with

+1 0 -1
the original image Dy, = | +1 0 —1]| x Img. Then the vertical D, approximation values are estimated by
+1 0 -1
+1 +1 +1
convoluting the kernel value with the original image Dy, =| 0 0 0 | x Img. After computing the two-
-1 -1 -1

directional approximation derivatives, the Prewitt kernel value is calculated for gradient smoothing

+1 0 -1 1

[+1 0 —1‘ = [1] [+1 0 -—1]. Along with this, edge directional changes are computed as D = /D2 + D,? The
+1 0 -1 1

estimated gradient approximation values are concatenated to get the edge magnitude value calculated using

equation (6).

O = a tan 2(Dy, Dy) (6)

From the computed magnitude orientation, the edge gradient direction value should be estimated
according to equations (7 and 8).

Dh:%;]/):f(h-kl’v)_f(h’v) (7)
D= TED 1) finy) ®

The computed edge gradient direction value, derivatives of gradient, and vector gradient values are esti-

mated as grad(f(h, v)) = [Dy, DI = [ 35, & | This has been written as

|grad(f(h, v))| = yDu® + Dy? &)

Finally, the computed values are examined to predict the gradient direction 6(h, v) = arctan % . According
to the Prewitt kernel values, image edge-relevant details are extracted. Similar edge information is grouped.

This Prewitt kernel extracted process is applied continuously to the images for extracting the affected regions.

3.3 DBN-based feature derivation

The third important step is feature extraction, which is done by applying the cat swarm optimization
algorithm-based deep belief network (CSA-DBN). The extracted edge regions are fed as the input to this
process, and the meaningful features are derived. The DBN approach works according to the multilayer
restricted Boltzmann machine (RBN) approach that extracts the in-depth image features. During this
process, the input data and first hidden layers related to the probability distribution value are estimated
in the visible layer computed via equation (10).
n-2
P(v, k!, k2, ....h") = (ZP(h”|h”+1)]P(h”‘1, h) (10)

k=0

The joint probability distribution (h"-1, i) between visible and hidden layer values is computed from the
RBN model’s topmost layer. The RBN has two layers: a visible or input layer and a hidden layer, as shown in
Figure 3. The RBN has the connection between the entire visible layer and hidden layer but having no
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Visible Layer

J-_; Hidden Layer

Figure 3: RBN structure.

connection within the layer and no connection between the invisible and visible layers. Then the prob-
ability distribution of hidden and visible layers is defined as p(v, h) here; input image features are obtained
from the output layer h. According to the discussion, p(v, h) is estimated using equation (11a) and (11b).

1
p(v, h) = 70 exp(-E(v, h)), (11a)
— 1 W,—,-v,-h]- biVi C/'h,'
P = Zey LI []e Ue : (11b)

The p(v, h) value is estimated from the network energy function E(v, h) and the normalization factor Z(8),
which are derived from equation (11c) and (11d).

E(v,h) = -b'v - c'h - "Wy, (11c)

Z(9) = ) exp(=E(v, h)). (11d)
h,v

Here, h and v denoted as hidden and visible layer units, visible and hidden layer connections are having W
weight, ¢’ is the hidden layer bias value, and b’ is the visible layer bias value. After computing the p(v, h)
value, the network needs to be trained according to the learning parameters such as weight (W) and a bias
value. Initially, the RBM network first layer was trained by fixed training parameters, and the output is
passed to the next layer (hidden layer) to predict the image features. The last layer of the network utilizes
the SoftMax regression function with supervised gradient descent algorithm. According to RBM algorithm,
the training process is performed that helps to investigate the new medical images. In the training process,
input samples are analyzed by computing the p(v, h) value and contrast divergence value of learning
parameter that is calculated as follows:

W=W+e(hxy - Qlhy = 1|0)%), (12)
b=b+e(x-x), (13)
c=c+eh - Qh, = 1x)). (14)

Here, W is weight value, the learning rate of contrast divergence process is denoted as &, and x, X% is
denoted as the input vectors in the training process. The computed values belong to 1. The samples are
trained effectively; the learning parameters should be converged. It has to be updated to improve the overall
image training process. In the testing process, the last layer’s output is fed into the SoftMax regression
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function to estimate the image’s features. During the input vector training process, AdaDelta learning
process is utilized to minimize the convergence value. It is worked according to the squared delta’s expo-
nential moving average value. The new weight value is estimated by taking the difference between the
newly updated weight value and current value. Therefore, the learning parameter values are replaced by
the computed delta value. Then the new weight value is estimated using equation (15).

\/Dt—l + & i (15)
Jite ow

After computing the AdaDelta value, the RBM network trained again to improve the system’s overall
performance. Further, the current weight value detection process should be enhanced by applying the
cat swarm optimization algorithm (CSA). The CSA algorithm works better than other optimization algo-
rithms and can resolve the optimization problem during input training and classification. This algorithm
works according to food searching behavior of cat, such as seeking and tracing mode. Initially, the cat
investigates the surroundings and passes to the next position in the seeking mode. In the tracing process
mode, the cat chases a specific target by identifying the location. The cat identifies the global solution in the
seeking mode and the local solution in the tracking mode from the searching process. The cat has the
seeking memory pool, mixed ratio, and dimension change count parameters during the searching process.
In this process, the fitness value is computed for entire candidate points, and the most relevant probability
values are chosen as the fitness value. Else, the seeking and tracking probability value is calculated to select
the candidate value, which is done by equation (16).
FSy - FS,

Pp=— k=" (16)
Fsmax - FSmin

Wil = Wy —

The seeking mode probability value Py is computed from the fitness value, and the velocity of the cat
chasing process is estimated in tracking mode using equation (17).

Vid = B X Viga + € X 11 X (Xpest,d — Xk,d)- (17)

Here, d is the dimension, and position of the prey or weight value is estimated as xi 4 = Xk 4 + Vi 4. Inertia
weight values are denoted as S, the constant acceleration value is ¢, and r; represented as the random value
from O to 1. The present and global positions are indicated, respectively, as xi 4 and Xpest 4. This process is
repeated every time during the image analysis because the right selection and updating of weight value
minimize the deviations while extracting features from the image. Then the overall working process of CSA-
DBN-based image feature extraction process is illustrated in Figure 4.

Figure 4 shows that the region segmented image pixels are transmitted as the input represented as T1,
T2, T3 ... Tn. The network processes the input pixels, and the output is obtained as

y(n) = o(T(n) x WT(n)). (18)

The computed output features are compared with the desired characteristics for investigating the error
value done according to equation (19).

e(n) = d(n) — y(n). (19)

If the network produces the error value, then the optimized weight values are selected according to the CSA
optimization algorithm process. The algorithm fitness value is estimated using equation (20).

FS = d(n) - p((n) x WT(n)). (20)

The new velocity is computed using equation (17), and the latest weight value is calculated based on the
fitness function. The identified weight values are compared with the current weight value defined in
equation (15), and the delta value is used to update the process. This process is repeated until the optimized
features from the medical images are extracted. The extracted features are further examined by optimized
classifiers such as DL techniques or other classifiers to recognize the affected region’s condition. This
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Figure 4: Structure of CSA-DBN feature extraction process.

process effectively identifies the radiographic image’s deviation due to the effective examination of each
image pixel.

4 Results and discussion

This section examines the effectiveness of the CSA-DBN-based radiographic image analysis process. The
discussed system uses the Medical Segmentation Decathlon dataset for evaluating the proficiency of a
defined system. The dataset consists of several radiographic images like hepatic vessel, prostate, liver,
heart, brain tumor, spleen, pancreas, and colon. For every medical image, the massive number of radio-
graphic details is illustrated in Table 2.

These medical images’ segmented regions are investigated pixel by pixel in CSA-DBN algorithm for
extracting the optimized features. The derived features are utilized to further image analysis by various

Table 2: Dataset description

Medical imaging Images Training Testing
Liver tumor 201-3D images 131 70
Brain tumor 750-3D images 484 266
Hippocampus 394-3D volume 263 131
Lung tumor 96-3D images 64 32
Prostate 48-4D volumes 32 16
Cardiac 30-3D images 20 10
Pancreas tumor 420-3D images 282 139
Colon cancer 190-3D images 126 64
Hepatic vessels 443-3D images 303 140
Spleen 61-3D images 41 20
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postimage processing techniques. The efficiency of the created system is determined using the following
performance metrics:
Accuracy rate:

TrPo + TrNe

Acc = , (21)
TrPo + TrNe + FaPo + FaNe
Recall (Rec) = &. (22)
TrPo + FaPo
Precision rate:
pre - — 11PO 23)
TrPo + FaPo
F-score:
2 x Pre x Rec
fi= —/———. (24)

Pre + Rec

In equations (21), (22), and (23), TrNe represents the true-negative rate, TrPo represents the true-positive
rate, FaPo indicates a false-positive rate, and the FaNe indicates a false-negative rate.

The medical image’s features are examined effectively from the computation of accuracy in equation
(21). The CSA-DBN technique obtained results are compared with the existing research studies such as a
DLA [24], TLDLF [26], MCRNN [28], and DRNN [30]. The obtained feature extraction accuracy (Acc) value is
shown in Figure 5.

100 o | _—®— DLA—#—TLDLF—A— MCRNN—y— DRNN—4— CSA-DBN | ===DLA ===TLDLF MCRNN DRNN =3 CSA-DBN —— Expon. (CSA-DBN)
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Figure 5: Accuracy analysis: (a) # images and (b) different images.

Figure 5 illustrated that the Acc value of various medical image analysis methods. Here the accuracy is
determined in terms of the different number of images and the various medical images. The introduced
CSA-DBN approach successfully examines the segmented image region pixels, and the effective features are
extracted with maximum accuracy. The method computes the image features according to the convergence
diverge learning parameter (W, b, and c), and probability distribution value of the hidden and visible layers
is p(v, h). The introduced method continuously examines the deviation between the computed and desired
image features e(n) = d(n) — y(n), which helps to update the network performance. Therefore, the intro-
duced CSA-DBN approach ensures the high accuracy (99.32%) value collated with existing methods such as
DLA(95.17%), TLDLF(95.91%), MCRNN(96.89%), and DRNN (97.94%). The accuracy value indicates that the



DE GRUYTER Radiography image analysis using deep belief networks = 51

00— [ ™ DLA e TLDLF A MCRNN v DRNN ¢ CSA-DBN |

L 4

©
©
1

Precision (%)

T T 1
0 100 200 300 400 500 600 700 800 900 1000 1100

# Images

(@ (b)

Figure 6: Precision analysis: (a) # images and (b) different images.

introduced CSA-DBN approach derives the disease-related features from the Prewitt kernel-based seg-
mented region. In addition to these metrics, the presented method’s precision value should be examined
on the different number of images and another type of medical images. The obtained results are illustrated
in Figure 6.

Figure 6 illustrated the precision value of various medical image analysis methods. Here the precision
values are investigated in terms of the different number of images and the various medical images. The CSA-
DBN approach recognizes each pixel characteristics in hidden and visible layers according to the prob-
ability distribution function. Based on the p(v, h) value, the network has been trained, and the delta values
are used to update the network weight value. Due to the effective computation of pixel characteristics, the
affected region-related features are extracted with the help of desired features in the training set. Hence, the
introduced CSA-DBN approach ensures the high precision (99.22%) value collated with existing approaches
such as DLA (95.67%), TLDLF (96.18%), MCRNN (96.9%), and DRNN (98.21%). The CSA-DBN approach not
only recognizes the entire feature but also selects the right features from the extracted feature list. The

obtained recall values are illustrated in Figure 7.
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Figure 7: Recall analysis: (a) # images and (b) different images.
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Figure 7 illustrated the recall values of various medical image analysis methods. Here, the recall values
are investigated in terms of the different number of images and the various medical images. The disease-
related optimized features are selected from the extracted features according to the CSA seeking and
tracking mode. The algorithm determines the best features by computing the fitness value-related
weight-updating process. Hence, the introduced CSA-DBN approach ensures the high recall (99.41%) value
collated with existing methods such as DLA (95.93%), TLDLF (96.23%), MCRNN (97.01%), and DRNN
(98.25%). Due to the effective retrieval and selection of features, improves the overall image feature extrac-
tion process. Then the obtained F1-score values are illustrated in Table 3.

Table 3: Fi-score

S. no Methods Training Testing Overall accuracy (%)
1 DLA [24] 96.83 96.13 96.48

2 TLDLF [26] 97.28 96.72 97

3 MCRNN [28] 97.92 97.38 97.65

4 DRNN [29] 98.28 98.13 98.205

5 CSA-DBN 99.24 99.41 99.325

Table 3 clearly shows that the CSA-DBN obtained high feature extraction accuracy (99.32%) compared
to existing researchers works DLA (96.48%), TLDLF (97%), MCRNN (97.65%), and DRNN (98.20%).
Although these methods attain high accuracy values, the introduced CSA-DBN approach has a minimum
deviation value, which means the extracted features are almost the same as the desired image features. This
effectiveness is evaluated using the error rate value. The obtained result is illustrated in Figure 8.
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Figure 8: Error value analysis: (a) # images and (b) different images.

Figure 8 illustrated the error values of various medical image analysis methods. The effective utilization
of the seeking mode and tracing mode processes defined in CSA helps in selecting the correct weight value.

. . JDi1+€ oL . s
Moreover, the chosen weight values are further examined wy,; = w; — % Ca which causes to mini-
t t

mize the deviation between predicted and desired image features. Among the several approaches, CSA-
DBN attains the minimum error value (0.11) compared to other methods. Thus, the introduced system
successfully recognizes the disease-affected region-related features using optimized learning and training
parameters.
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5 Conclusion

Thus, the study analyzes the CSA-DBN-based radiographic image analysis process. In this study, the
Medical Segmentation Decathlon dataset was utilized for gathering the medical images. The images are
decomposed into approximation and detailed coefficient, which helps remove the noise from the image.
Then the KSt test has been conducted to determine the similarity between the pixels. According to the
value, the deviated pixels are computed and removed from the image. Then the Prewitt kernel operators are
applied to identify the disease-affected region fed into the DBN. The DBN approach recognizes image
features by utilizing the AdaDelta learning process. Further, the network process improved by updating
the new weight value computed according to the cat swarm optimization technique’s seeking and tracking
mode. This effective process minimizes the deviation and enhances the feature detection accuracy up to
99.32%. In the future, the excellence of the system is enhanced by using meta-heuristic optimization
algorithm based postradiographic image analysis.
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