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Abstract: This article attempts to study cost minimizing multi-objective fractional solid transportation

problem with fuzzy cost coefficients c̃ijk
r , fuzzy supply quantities ãi, fuzzy demands b̃j, and/or fuzzy con-

veyances ẽk. The fuzzy efficient concept is introduced in which the crisp efficient solution is extended. A
necessary and sufficient condition for the solution is established. Fuzzy geometric programming approach
is applied to solve the crisp problem by defining membership function so as to obtain the optimal com-
promise solution of a multi-objective two-stage problem. A linear membership function for the objective
function is defined. The stability set of the first kind is defined and determined. A numerical example is
given for illustration and to check the validity of the proposed approach.

Keywords: solid transportation problem, multi-objective, fuzzy number, fuzzy efficient solution, fuzzy
programming, optimality, parametric study

1 Introduction

Solid transportation problem (STP) is a generalization of the well-known classical transportation problem
(TP), where three item properties are taken into account in the constraint set of the STP (namely, supply,
demand, and mode of transportation or conveyance) instead of two constraints (source and destination).
The STP was first proposed by Shell [1] in his work by introducing the distribution of a product by some
properties. Later many researchers discussed the STP in different aspects. Haley [2] introduced a solution
procedure for STP as an extension of the modified distribution method. Patel and Tripathy [3] investigated a
computationally superior method for an STP with mixed constraints. Bit et al. [4] applied fuzzy program-
ming approach to solve the multi-objective STP with real-life applications. Vejda [5] developed an algo-
rithm for a multi-index TP, which is the extension of the distribution modification method. The zero-point
method for finding the optimal solution of TP was introduced by Pandian and Natarajan [6]. Pandian and
Anuradha [7] developed an efficient methodology to determine the optimal solution of STP with the help of
the principle of zero-point method.

Fuzzy sets theory was first introduced by Zadeh [8]. Dubois and Prade [9] extended the use of algebraic
operations on real numbers to fuzzy numbers. Jimenez and Verdegay [10] applied two ways under
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uncertainty for STP: interval and fuzzy STP. Orlovski [11] formulated general multi-objective non-linear
programming problems with fuzzy parameters. Sakawa and Yano [12] introduced the concept of -α pareto
optimality of fuzzy parametric programs. Recently, Das et al. [13] introduced an STP with mixed type of
constraints under different environment: crisp, fuzzy, and intuitionistic fuzzy. Baidya et al. [14] introduced
anewconcept safety factor in a TPandalso consideredanSTPwith imprecise unit cost, sources, destinations,
and capacities of conveyances represented by triangular and trapezoidal fuzzy numbers. Kundu et al. [15]
studiedmulti-objective STPunder different uncertain environment, inwhich theunit transportation costs are
represented as fuzzy, random, and hybrid variables, respectively. Numerous researchers presented their
work on STP by introducing new method, for example, Sinha et al. [16], Aggarwal and Gupta [17], Sinha
et al. [16], etc. addressed anovel concept regarding theTPwhere theymaximized theprofit andminimized the
transporting time subject to constraints. They considered all the parameters as trapezoidal interval type-2
fuzzynumbers.Aggarwal andGupta [17] introducedanew ranking system for signeddistanceof intuitionistic
fuzzynumbers and formulated anSTP in intuitionistic environment to compute initial basic feasible solution.
Acharya et al. [18] applied an interactive fuzzy goal programming approach for solving multi-objective
generalized STP. Sobana andAnuradha [19] used the -α cut under imprecise environment, and they proposed
a new algorithm to find an optimal solution for STP. Singh et al. [20] formulated a general model of themulti-
objective STP with some random parameters and they proposed a solution method by using the chance-
constraint programming technique to solve the model of multi-objective STP. Kumar et al. [21] proposed a
new computing procedure for solving fuzzy Pythagorean TP, where they extended the interval basic feasible
solution, then existing optimality method to obtain the cost of transportation. Khalifa et al. [22] investigated
a neutrosophic programming using lexicographic order to determine the optimal solution. Arqub and
Al-Smadi [23] presented the fractional differential equation and solved by using the fuzzy approach.

Fractional programming (FP) is considered as one of the various applications on non-linear program-
ming, and it is applicable in numerous fields such as finance, economic, financial and corporate planning,
and health care. Normally, the minimization or maximization of objective functions such as return on
investment, return/risk, time/cost, or output/input under a limitation of constraints are some other exam-
ples of the applications of FP. Charnes and Cooper [24] introduced the linear fractional programming (LFP).
Tantawy [25] investigated an iterative method using the conjugate gradient projection method for solving
LFP problems. Stanojevic and Stanojevic [26] applied the efficiency test introduced by Lotfi et al. (2010) to the
proposed two procedures for deriving weakly and strongly efficient solutions in multi-objective LFP pro-
blems. They started from any feasible solution and introduced its applications in the multi-criteria decision-
making process. Das and Mandal [27] addressed an efficient approach for solving a class of single-stage
constraint LFP problems, based on the transformation of the objective value and the constraints also. Dutta
and Kumar [28] presented an application of FP approach to inventory control problem. Simi and Talukder
[29] introduced a new method for solving LFP problem. In their work, they first transformed the LFP into
linear programming and hence solved this problem algebraically using the duality concept. Rubi and Pitam
[30] proposed an iterative fuzzy approach for solving LFP.

In this research article, the cost minimizing fuzzy multi-objective fractional STP is studied under
uncertainty. Fuzzy programming approach is applied to solve the corresponding crisp problem and hence
the notions of solvability set and the stability set of the first kind are defined and characterized.

The rest of the article is organized as follows: in Section 2, multi-objective two-stage fuzzy STP is
formulated. Section 3 proposes a solution procedure for solving the problem. Section 4 provides a numerical
example to illustrate the efficiency of the solution procedure. Finally, some concluding remarks are
reported in Section 5.

2 Problem formulation and solution concepts

Let p q˜ and ˜ijk
r

ijk
r be the coefficients of the objective functions, ai be the availability of the product at the

source i, b̃j be theminimum requirement at the destination j, and ẽk be the conveyance. All of p q a b˜ , ˜ , ˜ijk
r

ijk
r

i j,
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and ẽk are represented as triangular fuzzy numbers. ( ) = { ( ) ( ) … ( )}Z x Z x Z x Z x˜ ˜ , ˜ , , ˜r K1 2 is a vector r objective
function and the subscript on both Zr, p q˜ , ˜ijk

r
ijk
r identified the number of objectives ( = …r K1, 2, , ). Without

loss of generality, it is assumed that:

≻ ≻ ∀ ≻ ∀ ≻

p q a i b j e˜ , ˜ 0, ˜ 0; , 0; , ˜ 0.ijk
r
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r

i j k
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It is assumed that the feasible region G̃ is compact and all of p q a b e˜ , ˜ , ˜ , , ˜ijk
r

ijk
r

i j k are triangular fuzzy
numbers.

Definition 1. (Kaufmann and Gupta [31]) The -α level set of fuzzy number ã is defined as the ordinary set ( )ã α

for which the degree of their membership function exceeds the level ∈ [ ]α 0, 1 :

( ) = { ∈ ( ) ≥ = … }�a a μ a α i m˜ : , 1, 2, , .α
m

ã

Alternatively, defining the interval of confidence at level α, the triangular fuzzy number is character-
ized as:

= [( − ) + −( − ) + ] ∈ [ ]A q p α p r s α r α˜ , ; for all 0, 1 .α

Definition 2. A feasible solution vector ∈x G̃0 (feasible domain) is called the fuzzy feasible solution of
problems (1a and 1b)–(2) if and only if there is no X such that
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for some r, = …r K1, 2, , .

Definition 3. A fuzzy feasible solution ∈x G̃⁎ is said to be fuzzy efficient solution of problem (1), if and only

if ∈x G̃⁎ and ( ) ≤ ∧ ( )

∈

Z x Z x˜ ˜r x F r
⁎ ˜ , where F̃ denotes the set of all fuzzy efficient solutions and ∧ is the

minimum.
For a certain degree of α, the non-fuzzy form of problem (1) is as follows:
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Definition 4. A point ( ) ∈ ( )X p q G a b eˆ ˆ , ˆ ˆ, ˆ, ˆ is called an α-parametric efficient solution of problem (2) if and
only if there is no ( ) ∈ ( )X p q G a b eˆ , ˆ ˆ, ˆ, ˆ such that
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Theorem 1. A point ( ) ∈ ( )x p q G a b e, , ,⁎ ⁎ ⁎ ⁎ ⁎ ⁎ is an -α fuzzy efficient solution of problem (1) if and only if for

∈ ( ) ∈ ( ) ∈ ( ) ∈ ( ) ∈ ( )p p q q a a b b e e˜ , ˜ , ˜ , ˜ , ˜ijk
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cient solution of problem (2).

Proof. (Necessity) Let ( ) ∈ ( )x p q G a b e, , ,⁎ ⁎ ⁎ ⁎ ⁎ ⁎ be an -α fuzzy efficient solution to problem (1) and not an
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From the continuity and convexity of the membership function, we get
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For each =r K1, , applying Zadeh’s min operator [8], problem (3) reduces to the following model (5).
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It clear that the constraints in (6) may be reduced into the following form:
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δMax

Subject to

∑ ∑

∑ ∑

∑ ∑

∑ ∑ ∑

=

≤ = …

= = …

= = …

= = … ≤ ≤

≤ >

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

= = ≥ ∀

= =

= =

= =

−

+ −

+

− + − + − +

= = =



























































˘˘ ˘

G

δ μ t f
y
t

p r K

y a i m

y b j n

y e k l δ

tg
y
t

q t

M p M H q H
H a H H b H H e H

a b e y i j k

, , 1, 2, ,

, 1, 2, , ,

, 1, 2, , ,

, 1, 2, , , 0 1,

, 1, 0,

,
, , ,

0; , , .

r r
ijk

ijk
r

j

n

k

l

ijk i

i

m

k

l

ijk j

i

m

j

n

ijk i

r
ijk

ijk
r

ijk
r

ijk
r

ijk
r

ijk
r

ijk
r

ijk
r

i i i j j j k k k

i

m

i
j

n

j
k

l

k ijk

1 1

1 1

1 1

1 1 1

(6)

Here, in Model (6), − − − − −M H H H H, , , ,ijk
r

ijk
r

i j k are the lower bounds, + + + + +M H H H H, , , ,ijk
r

ijk
r

i j k are the upper
bounds, and G is the set of all constraints.

3 Solution procedure

The steps of the solution procedure for solving the STP can be summarized as follows:
Step 1: Calculate the individual minimum and maximum of each objective function subject to the given
constraints so as to determine the lower and upper bounds of the objectives Zr using the variable trans-
formation method.
Step 2: Using the variable transformation method, problem (2) can be converted into problem (3).
Step 3: Determine the membership function as in (4).
Step 4: By introducing an auxiliary variable δ, problem (5) is equivalent to the following classical linear
programming (6).
Step 5: Solve problem (6) using any software package (say, MATLAB), to obtain the optimal compromise
solution.
Step 6: Combining stage I and stage II to obtain the optimal solution for the two-stage problem.

Step 7: Determine ( )S x p q a b eˆ, ˆ , ˆ, ˆ, ˆ, ˆ by applying the following condition:

( − ) = = …

( − ) = =

( − ) = = …

( − ) = =

γ p d r K
η d p r K
ζ q g r K
ξ g q r K

ˆ 0, 1, 2, , ;
ˆ 0, 1, ;

ˆ 0, 1, 2, , ;
ˆ 0, 1, ;

r
r

r

r r
r

r
r

r

r r
r

2

1

2

1
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( − ) =

( − ) =

( − ) =

( − ) =

( − ) =

( − ) =

x a h i m
ρ h a i m

ϱ b u j n

σ u b j n
τ e v k l
π v e k l

ˆ , 1, ;
ˆ , 1, ;

ˆ , 1, ;
ˆ , 1, ;

ˆ , 1, ;
ˆ , 1, ;

i i i

i i i

j j j

j j j

k k k

k k k

2

1

2

1

2

1

≥   = ≥ =γ η ζ ξ r K ϖ ρ i m, , , 0, 1, ; , 0, 1,r r r r i i ; ≥ = ≥ϱ σ j j n τ π, , 0, 1, ; , 0,j j k k =k l1, .
Here, [ ] = [ ]d d p p, ,r r

rC rR
1 2 and [ ] = [ ] [ ] ∈ ( ) =g g q q h h L a i m, , , , , 1, ;r r

rC rR
i i α i1 2 1 2 [ ] ∈ ( )u u L b, ,j j α j1 2

= [ ] ∈ ( ) =j m v v L e k l1, ; , , 1, .k k α k1 2

Consider the following three cases:
(i) >γ 0,r ∈ ⊂ { … }r J K1, 2, , ;1 = ∉ >γ r J ϖ0, ; 0r i1 , ∈ ⊂ { … } = ∉ > ∈ ⊂i J m ϖ i J ϱ j J1, 2, , 0, ; 0,i j2 2 3

{ … } = ∉n ϱ j J1, 2, , , 0,j 3; = ∉ > ∈ ⊂ { … } = ∉γ r J ϖ i J m ϖ i J0, ; 0, 1, 2, , 0, ;r i i5 6 6 > ∈ ⊂τ k J0,k 4

{ … } = ∉ > ∈ ⊂ { … }k τ k J γ r J K1, 2, , , 0, ; 0, 1, 2, ,k r4 5 ,
> ∈ ⊂ { … } = ∉ >ϱ j J n ϱ j J τ0, 1, 2, , , 0, ; 0,j j k7 7 ∈ ⊂ { … }k J k1, 2, , ,8 = ∉τ k J0, .k 8

Let N be the set of all proper subsets of { … }K1, 2, , . Then, we obtain

( )

=

( ) ∈ = ∈ ≥ ∉

= ∈ ≤ ∉ = ∈ ≥ ∉

= ∈ ≤ ∉ = ∈ ≤ ∉ = ∈

≤ ∉ = ∈ ≤ ∉ = ∈ ≤ ∉

…

( × × × )























�

S x p q a b e

d d g g h h u u v v p d r J d p i J
d p r J d p i J a h i J h a i J

h a r J h a i J b u j J u b j J u b j J

u b j J e v j J v e j J v e j J v e j J

ˆ, ˆ , ˆ, ˆ, ˆ, ˆ

, ; , ; , ; , ; , : ˆ , , ˆ , ;
ˆ , , ˆ , ; ˆ , , ˆ , ;

ˆ , , ˆ , , ˆ , , ˆ , ˆ , ;
ˆ , ; ˆ , , ˆ , ; ˆ , , ˆ ,

.

J J

K m n l r
r r

r

r
r

r
r

i i i i

i i i i j j j j j j

j j k k k k k k k k

, ,

1 2 1 2 1 2 1 2 1 2
4

2 1 2 1

1 2 1 2 2 3 2 3

1 4 1 4 2 5 2 5 1 6

1 6 2 7 2 7 1 8 1 8

1 8

Hence,

( ) = ⋃ ( )

…

…

S x p q a b e S x p q a b eˆ, ˆ , ˆ, ˆ, ˆ, ˆ ˆ, ˆ , ˆ, ˆ, ˆ, ˆ
J J

J J1
, ,

, ,
1 8

1 8

(ii) = =γ ζ η ξ r K, ; , ; 0, 1,r r r r . Then, we have

( ) =

( ) ∈ ≥ =

= ∈ ≤ = ≥

≤ =

















�

S x p q
d d g g d p r K

d p r J d p r K g q
g q r K

ˆ, ˆ , ˆ
, ; , : ˆ , 1, ;

ˆ , , ˆ , 1, ; ˆ ;
ˆ , 1,

,

K
r

r

r
r

r
r

r
r

r
r

2

1 2 1 2
4

2

1 2 1 2

1

(iii) > =γ ζ η ξ r K, ; , 0, 1,r r r r . Then, we have

( ) =

( ) ∈ = =

= ∈ = = =

= =

















�

S x p q
d d g g d p r K
d p r J d p r K g q

g q r K
ˆ, ˆ , ˆ

, ; , : ˆ , 1, ;
ˆ , , ˆ , 1, ; ˆ ;

ˆ , 1, .

K
r

r

r
r

r
r

r
r

r
r

3

1 2 1 2
4

2

1 2 1 2

1

Thus, we have

( ) = ⋃ ( )

=

S x p q S x p qˆ, ˆ , ˆ ˆ, ˆ , ˆ .
w

w
1

3

Step 8: Stop.
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4 Numerical example

Consider the following multi-objective two-stage cost minimizing STP with supplies, demands, and con-
veyances represented by triangular fuzzy numbers as:
• Supplies: = ( ) = ( ) = ( )a a a˜ 3, 5, 7 , ˜ 4, 7, 9 , ˜ 4, 6, 8 .1 2 2

• Demands: = ( ) = ( ) = ( )b b b˜ 9, 12, 14 , ˜ 14, 17, 19 , ˜ 16, 19, 22 .1 2 3
• Conveyances: = ( ) = ( ) = ( )e e e˜ 13, 15, 18 , ˜ 15, 18, 20 , ˜ 16, 17, 21 .1 2 3

• Penalties:

=

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

















s̃
6 , 7, 8 4, 10, 15 8, 11, 18
5, 13, 24 1, 12, 14 2, 9, 20
7, 13, 19 11, 17, 20 11, 12, 18

,ijk
1

=

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

















t̃
1, 4, 9 1, 2, 5 2, 5, 8
2, 4, 9 0, 6, 8 4, 7, 9
4, 8, 12 4, 7, 9 8, 9, 12

,ijk
1

=

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

















s
3, 12, 15 6, 7, 9 4, 7, 10
1, 6, 11 3, 9, 11 2, 6, 8
1, 2, 4 5, 7, 12 1, 3, 9

,ijk
2

=

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

















t̃
0, 2, 4 0, 6, 8 2, 4, 9
2, 5, 9 4, 9, 13 4, 9, 19
8, 12, 16 7, 9, 12 4, 6, 8

,ijk
2

=

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

















s̃
2, 4, 6 3, 4, 6 4, 8, 9
2, 3, 5 1, 5, 6 3, 6, 9
8, 9, 10 3, 8, 9 5, 7, 11

,ijk
3

=

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

















t̃
0, 1, 4 0, 2, 8 7, 9, 12
6, 8, 10 4, 9, 13 5, 8, 18
9, 13, 28 12, 20, 27 5, 10, 15

.ijk
3

• At =α 0.8, we get
• Supplies: ≤ ≤ ≤ ≤ ≤ ≤a a a4.6 5.4, 6.4 7.4, 5.6 6.4;1 2 3
• Demands: ≤ ≤ ≤ ≤ ≤ ≤b b b11.4 12.4, 16.4 17.4, 16.8 17.8;1 2 3
• Conveyances: ≤ ≤ ≤ ≤ ≤ ≤e e e14.6 15.6, 17.4 18.4, 16.8 17.8.1 2 3

Stage I
Steps 1–3:

= = = = = = = = =a a a b b b e e e3, 5, 4; 4, 3, 5; 5, 3, 4.1 2 3 1 2 3 1 2 3

Now, by solving ( )Z xR
1 with respect to the given constraints

∑ ∑ ∑
=

=

+ + + + + + + +

+ + + + + + + +

= = =

Z
s

t
x x x x x x x x x

x x x x x x x x x

Min
˜
˜

8 15 18 24 14 20 19 20 18
9 5 8 9 8 9 12 9 12

R

i j k

ijk

ijk
1

1

3

1

3

1

3 1

1

111 121 131 211 221 231 311 321 331

111 121 131 211 221 231 311 321 331

Subject to

+ + + + + + =

+ + + + + + =

+ + + + + + =

+ + + + + + =

x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x

3,
5,
4,

4,

111 121 131 122 132 133 123

211 212 213 222 223 233 231

311 312 313 321 331 332 333

111 211 311 212 213 312 313

(7)
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+ + + + + + =

+ + + + + + =

+ + + + + + =

+ + + + + + =

+ + + + + + =

≥ = = =

x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x

x i j k

3,
5

5,
3,
4,

0, 1, 2, 3.ijk

121 221 321 221 222 223 323

131 231 331 132 133 233 333

111 121 131 221 231 331 321

112 122 222 212 312 322 332

113 123 133 213 223 313 333

To solve problem (7), we used MATLAB R2020a, which is operated on a computer with the specifica-
tions. CPU: Intel_Core_i3-9100F_3.60 GHz; Memory: 16 GB DDR4 dual-channel RAM; and Operating system:
Windows 10.

The solution of problem (7) is as follows:

= = = = = = = = =Z x x x x x x x x0.0134328 at 3, 1.5, 0.5, 1, 4.R
1 111 332 113 221 331 333 211 233

By solving ( )Z xR
2 with respect to the given constraints

∑ ∑ ∑
=

=

+ + + + + + + +

+ + + + + + + +

= = =

Z
s

t
x x x x x x x x x

x x x x x x x x x

Min
˜
˜

15 9 10 11 11 8 4 12 9
4 8 9 9 13 19 16 12 8

.

R

i j k

ijk

ijk
2

1

3

1

3

1

3 2

2

112 122 132 212 222 232 312 322 332

112 122 132 212 222 232 312 322 332

(8)
Subject to

( )Constraints in 7 .

The solution is =Z 0.00443787R
2 at = = = = = =x x x x x x3, 1.234568, 1.765432, 3.765432312 131 223 123 323 231 ,

= = =x x x0.08984136, 0.9101586.311 113 313

Solving ( )Z xR
3 with respect to the given constraints

∑ ∑ ∑
=

=

+ + + + + + + +

+ + + + + + + +

= = =

Z
s

t
x x x x x x x x x

x x x x x x x x x

Min
˜
˜

6 6 9 5 6 9 10 9 11
4 8 12 10 13 18 28 27 15

.

R

i j k

ijk

ijk
3

1

3

1

3

1

3 3

3

113 123 133 213 223 233 313 323 333

113 123 133 213 223 233 313 323 333

(9)
Subject to

( )Constraints in 7 .

The solution is =Z 0.3471503R
3 at = = = = = = = =x x x x x x x x4, 3, 5, 0.5, 1, 4.313 323 122 231 331 333 211 233

In the same way, by solving we have Model (10) as follows:

∑ ∑ ∑
=

=

+ + + + + + + +

+ + + + + + + +

= = =

Z
s

t
x x x x x x x x x

x x x x x x x x x

Min
˜
˜

7 10 11 13 12 9 13 17 12
4 2 5 4 6 7 8 7 9

.

C

i j k

ijk

ijk
1

1

3

1

3

1

3 1

1

111 121 131 211 221 231 311 321 331

111 121 131 211 221 231 311 321 331

(10)
Subject to

( )Constraints in 7 .

The solution is Z C
1 = 1.285714, with = =x x5, 0.9396557,231 122

= = = =x x x x2.060344, 1.939656, 3.123 321 313 323
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By solving ( )Z xC
2 with respect to the given constraints

∑ ∑ ∑
=

=

+ + + + + + + +

+ + + + + + + +

= = =

Z
s

t
x x x x x x x x x

x x x x x x x x x

Min
˜
˜

12 7 7 6 9 6 2 7 3
2 6 4 5 9 9 2 9 6

.

C

i j k

ijk

ijk
2

1

3

1

3

1

3 2

2

112 122 132 212 222 232 312 322 332

112 122 132 212 222 232 312 322 332

(11)
Subject to

( )Constraints in 9 .

The solution is given by

= = = × = = = = =Z x x x x x x x0.6666667, with 2, 0.2230347 10 , 0.5, 3, 1.5.C
2 132 232

11
322 213 231 331 221

Solving ( )Z xC
3 with respect to the given constraints

∑ ∑ ∑
=

=

+ + + + + + + +

+ + + + + + + +

= = =

Z
s

t
x x x x x x x x x

x x x x x x x x x

Min
˜
˜

4 4 8 3 5 6 9 8 7
2 9 8 9 8 13 20 10

.

C

i j k

ijk

ijk
3

1

3

1

3

1

3 3

3

113 123 133 213 223 233 313 323 333

113 123 133 213 223 233 313 323 333

(12)
Subject to

( )Constraints in 7 .

The solution is given by

( ) = = = = = = = =Z x x x x x x x x0.3750000, with 4, 1.5, 1, 3,C
3 213 131 132 221 231 331 332

i.e.,

≤ ( ) ≤  

≤ ( ) ≤  

 ≤ ( ) ≤  

Z x
Z x

Z x

0.0134328 1.285714,
0.00443787 0.6666667,
0.3471503 0.3750000.

1

2

3

The membership function for ( ) ( )Z x Z x, ,1 2 and ( )Z x3 are as follows:

( ) =

−

−

=

−

( ) =

−

−

=

−

μ Z Z Z

μ Z Z Z

1.285714
1.285714 0.0134328

1.285714
1.2722812

,

0.6666667
0.6666667 0.00443787

0.6666667
0.2228797

,

1 1
1 1

2 2
2 2

and

( ) =

−

−

=

−μ Z Z Z0.3750000
0.3750000 0.3471503

0.3750000
0.0278497

.3 3
3 3

Step 4: Let us solve the following mathematical problem.

δMax

Subject to

+ + + +

+ + + + +

≥

+ + + +

+ + + + +

≥

+ + + +

+ + + + +

≥































y y y y y
y y y y δ

y y y y y
y y y y δ

y y y y y
y y y y δ

7 10 11 13 12
9 13 17 12 1.2722812

1.285714,

12 7 7 6 9
6 2 7 3 0.2228797

0.6666667,

4 4 8 3 5
6 9 8 7 0.0278497

0.3750000,

111 121 131 211 221

231 311 321 331

112 122 132 212 222

232 312 322 332

113 123 133 213 223

233 313 323 333

(13)
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+ + + + + + + + ≤

+ + + + + + + + ≤

+ + + + + + + + ≤

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

≥ = = = ≥ < ≤

y y y y y y y y y
y y y y y y y y y

y y y y y y y y y
y y y y y y y t
y y y y y y y t
y y y y y y y t
y y y y y y y t
y y y y y y y t
y y y y y y y t
y y y y y y y t
y y y y y y y t
y y y y y y y t

y i j k t δ

4 2 5 4 6 7 8 7 9 1,
2 6 4 5 9 9 2 9 6 1,

2 9 8 9 8 13 20 10 1,
3 0,
5 0,
4 0,

4 0,
3 0,
5 0

5 0,
3 0,
4 0,

0, 1, 2, 3; 0, 0 1.ijk

111 121 131 211 221 231 311 321 331

112 122 132 212 222 232 312 322 332

113 123 133 213 223 233 313 323 333

111 121 131 122 132 133 123

211 212 213 222 223 233 231

311 312 313 321 331 332 333

111 211 311 212 213 312 313

121 221 321 221 222 223 323

131 231 331 132 133 233 333

111 121 131 221 231 331 321

112 122 222 212 312 322 332

113 123 133 213 223 313 333

Step 5: Using MATALAB package, the solution of problem (13) is as follows:
= = = = = = =x x x x x x x1.5, 3.5, 0.6702, 4,121 112 132 222 231 232 313

and the overall satisfaction =δ 1. Thus, =Z 2.3751 , = =Z Z1.61298, and 0.692312 3 .
Stage II
Step 1:

Let us take the following data:

= = = = = = = = =a a a b b b e e e2, 3, 3; 2, 1, 2; 2, 1, 3.1 2 3 1 2 3 1 2 3

Now, by solving ( )Z xR
1 with respect to the given constraints

∑ ∑ ∑
=

=

+ + + + + + + +

+ + + + + + + +

= = =

Z
s

t
x x x x x x x x x

x x x x x x x x x

Min
˜
˜

8 15 18 24 14 20 19 20 18
9 5 8 9 8 9 12 9 12

.

R

i j k

ijk

ijk
1

1

3

1

3

1

3 1

1

111 121 131 211 221 231 311 321 331

111 121 131 211 221 231 311 321 331

Subject to

+ + + + + + =

+ + + + + + =

+ + + + + + =

+ + + + + + =

+ + + + + + =

+ + + + + + =

+ + + + + + =

+ + + + + + =

+ + + + + + =

≥ = = =

x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x

x i j k

2,
3,
3,

2,
1,
2

2,
1,
3,

0, 1, 2, 3.ijk

111 121 131 122 132 133 123

211 212 213 222 223 233 231

311 312 313 321 331 332 333

111 211 311 212 213 312 313

121 221 321 221 222 223 323

131 231 331 132 133 233 333

111 121 131 221 231 331 321

112 122 222 212 312 322 332

113 123 133 213 223 313 333

(14)

∑ ∑ ∑
=

=

+ + + + + + + +

+ + + + + + + +

= = =

Z
s

t
x x x x x x x x x

x x x x x x x x x

Min
˜
˜

15 9 10 11 11 8 4 12 9
4 8 9 9 13 19 16 12 8

.

R

i j k

ijk

ijk
2

1

3

1

3

1

3 2

2

112 122 132 212 222 232 312 322 332

112 122 132 212 222 232 312 322 332

(15)
Subject to

( )Constraints in 14 .
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Also,

∑ ∑ ∑
=

=

+ + + + + + + +

+ + + + + + + +

= = =

Z
s

t
x x x x x x x x x

x x x x x x x x x

Min
˜
˜

6 6 9 5 6 9 10 9 11
4 8 12 10 13 18 28 27 15

.

R

i j k

ijk

ijk
3

1

3

1

3

1

3 3

3

113 123 133 213 223 233 313 323 333

113 123 133 213 223 233 313 323 333

(16)
Subject to

( )Constraints in 14 .

We have, = = =Z Z Z1.857143, 0.4210923, and 0.5000000.R R R
1 2 3

In the same way, solving

∑ ∑ ∑
=

=

+ + + + + + + +

+ + + + + + + +

= = =

Z
s

t
x x x x x x x x x

x x x x x x x x x

Min
˜
˜

7 10 11 13 12 9 13 17 12
4 2 5 4 6 7 8 7 9

.

C

i j k

ijk

ijk
1

1

3

1

3

1

3 1

1

111 121 131 211 221 231 311 321 331

111 121 131 211 221 231 311 321 331

(17)
Subject to

( )Constraints in 14 .

∑ ∑ ∑
=

=

+ + + + + + + +

+ + + + + + + +

= = =

Z
s

t
x x x x x x x x x

x x x x x x x x x

Min
˜
˜

12 7 7 6 9 6 2 7 3
2 6 4 5 9 9 2 9 6

.

C

i j k

ijk

ijk
2

1

3

1

3

1

3 2

2

112 122 132 212 222 232 312 322 332

112 122 132 212 222 232 312 322 332

(18)
Subject to

( )Constraints in 14 ,

and

∑ ∑ ∑
=

=

+ + + + + + + +

+ + + + + + + +

= = =

Z
s

t
x x x x x x x x x

x x x x x x x x x

Min
˜
˜

4 4 8 3 5 6 9 8 7
2 9 8 9 8 13 20 10

.

C

i j k

ijk

ijk
3

1

3

1

3

1

3 3

3

113 123 133 213 223 233 313 323 333

113 123 133 213 223 233 313 323 333

(19)
Subject to

( )Constraints in 14 .

We obtain the following solution:

= = =Z Z ZMin 1.466667, 0.5000000, and 0.8500000,C C C
1 2 3

i.e.,

≤ ( ) ≤ ≤ ( ) ≤ ≤ ( ) ≤Z x Z x Z x1.466667 1.857143, 0.4210923 0.5000000, 0.5000000 0.8500000.1 2 3

The membership function for ( ) ( )Z x Z x,1 2 , and ( )Z x3 are as follows:

( ) =

−

−

=

−

( ) =

−

−

=

−

μ Z Z Z

μ Z Z Z

1.857143
1.857143 1.466667

1.857143
0.390476

,

0.5000000
0.5000000 0.4210923

0.5000000
0.0789077

,

1 1
1 1

2 2
2 2
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and

( ) =

−

−

=

−μ Z Z Z0.8500000
0.8500000 0.5000000

0.8500000
0.35

.3 3
3 3

Step 2: Let us solve the following problem:
δMax

Subject to

+ + + +

+ + + + +

≥

+ + + +

+ + + + +

≥

+ + + +

+ + + + +

≥

+ + + + + + + + ≤

+ + + + + + + + ≤

+ + + + + + + + ≤

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

+ + + + + + − =

≥ = = = ≥ < ≤































y y y y y
y y y y δ

y y y y y
y y y y δ

y y y y y
y y y y δ

y y y y y y y y y
y y y y y y y y y

y y y y y y y y y
y y y y y y y t
y y y y y y y t
y y y y y y y t
y y y y y y y t
y y y y y y y t
y y y y y y y t
y y y y y y y t
y y y y y y y t
y y y y y y y t

y i j k t δ

7 10 11 13 12
9 13 17 12 1.2722812

1.285714,

12 7 7 6 9
6 2 7 3 0.2228797

0.6666667,

4 4 8 3 5
6 9 8 7 0.0278497

0.3750000,

4 2 5 4 6 7 8 7 9 1,
2 6 4 5 9 9 2 9 6 1,

2 9 8 9 8 13 20 10 1,
2 0,
3 0,
3 0,

2 0,
0,

2 0
2 0,

0,
3 0,

0, 1, 2, 3; 0, 0 1.ijk

111 121 131 211 221

231 311 321 331

112 122 132 212 222

232 312 322 332

113 123 133 213 223

233 313 323 333

111 121 131 211 221 231 311 321 331

112 122 132 212 222 232 312 322 332

113 123 133 213 223 233 313 323 333

111 121 131 122 132 133 123

211 212 213 222 223 233 231

311 312 313 321 331 332 333

111 211 311 212 213 312 313

121 221 321 221 222 223 323

131 231 331 132 133 233 333

111 121 131 221 231 331 321

112 122 222 212 312 322 332

113 123 133 213 223 313 333

(20)

Step 5: The solution is = = = = = = = =x x x x x x x x1.5, 4.4, 2,211 231 321 332 233 313 232 132 and the overall satisfac-
tion =δ 1. Thus, =Z 20.89471 , = =Z Z0.64474, and 0.69231.2 3

By combining stage I and stage II, the optimal values of the objectives are = + =Z 2.375 20.89471
23.2697, = + =Z 1.61298 0.64474 2.257722 , and = + =Z 0.69231 0.69231 1.38462.3
Step 6: The stability set S can be determined as

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

γ d γ d γ d
γ d γ d γ d
γ d γ d γ d
γ d γ d γ d
γ d γ d γ d
γ d γ d γ d
γ d γ d γ d

γ d γ d γ d

γ d γ d γ d

ζ d ζ d ζ d
ζ d ζ d ζ d
ζ d ζ d ζ d
ζ d ζ d ζ d
ζ d ζ d ζ d

7 0, 10 0, 11 0,
13 0, 2 0, 9 0,
13 0, 17 0, 12 0,
12 0, 7 0, 7 0,
6 0, 9 0, 6 0,
2 0, 7 0, 3 0,
4 0, 4 0, 8 0,

3 0, 5 0, 6 0,

9 0, 8 0, 7 0,

4 0, 2 0, 5 0,
4 0, 6 0, 7 0,
8 0, 7 0, 9 0,
12 0, 7 0, 7 0,
6 0, 9 0, 6 0,

1
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(21)
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( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

( − ) = ( − ) = ( − ) =

… ≥ … ≥ … ≥ ≥

… ≥ … ≥ … ≥

≥   ≥ ≥

ζ d ζ d ζ d
ζ d ζ d ζ d

ζ d ζ d ζ d

ζ d ζ d ζ d

ϖ h ϖ h ϖ h
ϱ u ϱ u ϱ u
τ v τ v τ v
γ γ γ γ γ γ γ

ζ ζ ζ ζ ζ ζ ζ
ϖ ϖ ϖ ϱ ϱ ϱ τ τ τ

2 0, 7 0, 3 0,
1 0, 2 0, 9 0,

8 0, 9 0, 8 0,

13 0, 20 0, 10 0,

5 0, 6 0, 9 0,
6 0, 11.9 0, 16.9 0,
15.1 0, 17.9 0, 17.3 0,
, , , 0; , , 0; , , 0 0;

, , , 0; , , 0; , , 0;
, , 0; , , 0; , , 0.
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We have ⊂ { }J 1, 2, 3 .1 For = ∅ … = … =J γ γ γ γ γ, , , , 0; , , 01 1
11

1
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1
33

2
11

2
33 ; … =γ γ, , 03

11
3
33 ; ⊂ {J 1, 2, 3,1

}4, 5, 6, 7, 8 . For = ∅ … = … = … =J γ γ γ γ γ γ γ, , , , 0; , , 0; , , 01 1
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1
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11
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In view of this, we obtain

= ⋃

=

S S .
q

J
1

3

q (22)

The objective function value obtained with the proposed approach is better compared with that
obtained by Radhakrishnan and Anukokila [32].

5 Concluding remarks

Solid fractional TP has wide application in supply chain and logistics so as to reduce the cost. In this article,
a two-stage cost minimizing fuzzy STP with multi-objective constraints has been studied. Fractional fuzzy
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geometric programming approach has been applied to determine the optimal compromise solution for a
multi-objective two-stage fuzzy STPs in which sources’ availabilities and destination’s demands are trian-
gular fuzzy numbers, and membership function for the objective functions has been defined rather than the
crisp value provides more information for the decision-maker. MATALB software has been used to find out
the optimal compromise solution. This approach provides an easy and simple analyst mathematical pro-
gramming problem.
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