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Abstract: This article attempts to study cost minimizing multi-objective fractional solid transportation
problem with fuzzy cost coefficients ¢jjy, fuzzy supply quantities &;, fuzzy demands Bj, and/or fuzzy con-
veyances é;. The fuzzy efficient concept is introduced in which the crisp efficient solution is extended. A
necessary and sufficient condition for the solution is established. Fuzzy geometric programming approach
is applied to solve the crisp problem by defining membership function so as to obtain the optimal com-
promise solution of a multi-objective two-stage problem. A linear membership function for the objective
function is defined. The stability set of the first kind is defined and determined. A numerical example is
given for illustration and to check the validity of the proposed approach.

Keywords: solid transportation problem, multi-objective, fuzzy number, fuzzy efficient solution, fuzzy
programming, optimality, parametric study

1 Introduction

Solid transportation problem (STP) is a generalization of the well-known classical transportation problem
(TP), where three item properties are taken into account in the constraint set of the STP (namely, supply,
demand, and mode of transportation or conveyance) instead of two constraints (source and destination).
The STP was first proposed by Shell [1] in his work by introducing the distribution of a product by some
properties. Later many researchers discussed the STP in different aspects. Haley [2] introduced a solution
procedure for STP as an extension of the modified distribution method. Patel and Tripathy [3] investigated a
computationally superior method for an STP with mixed constraints. Bit et al. [4] applied fuzzy program-
ming approach to solve the multi-objective STP with real-life applications. Vejda [5] developed an algo-
rithm for a multi-index TP, which is the extension of the distribution modification method. The zero-point
method for finding the optimal solution of TP was introduced by Pandian and Natarajan [6]. Pandian and
Anuradha [7] developed an efficient methodology to determine the optimal solution of STP with the help of
the principle of zero-point method.

Fuzzy sets theory was first introduced by Zadeh [8]. Dubois and Prade [9] extended the use of algebraic
operations on real numbers to fuzzy numbers. Jimenez and Verdegay [10] applied two ways under
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uncertainty for STP: interval and fuzzy STP. Orlovski [11] formulated general multi-objective non-linear
programming problems with fuzzy parameters. Sakawa and Yano [12] introduced the concept of a-pareto
optimality of fuzzy parametric programs. Recently, Das et al. [13] introduced an STP with mixed type of
constraints under different environment: crisp, fuzzy, and intuitionistic fuzzy. Baidya et al. [14] introduced
anew concept safety factor in a TP and also considered an STP with imprecise unit cost, sources, destinations,
and capacities of conveyances represented by triangular and trapezoidal fuzzy numbers. Kundu et al. [15]
studied multi-objective STP under different uncertain environment, in which the unit transportation costs are
represented as fuzzy, random, and hybrid variables, respectively. Numerous researchers presented their
work on STP by introducing new method, for example, Sinha et al. [16], Aggarwal and Gupta [17], Sinha
etal. [16], etc. addressed a novel concept regarding the TP where they maximized the profit and minimized the
transporting time subject to constraints. They considered all the parameters as trapezoidal interval type-2
fuzzy numbers. Aggarwal and Gupta [17] introduced a new ranking system for signed distance of intuitionistic
fuzzy numbers and formulated an STP in intuitionistic environment to compute initial basic feasible solution.
Acharya et al. [18] applied an interactive fuzzy goal programming approach for solving multi-objective
generalized STP. Sobana and Anuradha [19] used the a-cut under imprecise environment, and they proposed
anew algorithm to find an optimal solution for STP. Singh et al. [20] formulated a general model of the multi-
objective STP with some random parameters and they proposed a solution method by using the chance-
constraint programming technique to solve the model of multi-objective STP. Kumar et al. [21] proposed a
new computing procedure for solving fuzzy Pythagorean TP, where they extended the interval basic feasible
solution, then existing optimality method to obtain the cost of transportation. Khalifa et al. [22] investigated
a neutrosophic programming using lexicographic order to determine the optimal solution. Arqub and
Al-Smadi [23] presented the fractional differential equation and solved by using the fuzzy approach.

Fractional programming (FP) is considered as one of the various applications on non-linear program-
ming, and it is applicable in numerous fields such as finance, economic, financial and corporate planning,
and health care. Normally, the minimization or maximization of objective functions such as return on
investment, return/risk, time/cost, or output/input under a limitation of constraints are some other exam-
ples of the applications of FP. Charnes and Cooper [24] introduced the linear fractional programming (LFP).
Tantawy [25] investigated an iterative method using the conjugate gradient projection method for solving
LFP problems. Stanojevic and Stanojevic [26] applied the efficiency test introduced by Lotfi et al. (2010) to the
proposed two procedures for deriving weakly and strongly efficient solutions in multi-objective LFP pro-
blems. They started from any feasible solution and introduced its applications in the multi-criteria decision-
making process. Das and Mandal [27] addressed an efficient approach for solving a class of single-stage
constraint LFP problems, based on the transformation of the objective value and the constraints also. Dutta
and Kumar [28] presented an application of FP approach to inventory control problem. Simi and Talukder
[29] introduced a new method for solving LFP problem. In their work, they first transformed the LFP into
linear programming and hence solved this problem algebraically using the duality concept. Rubi and Pitam
[30] proposed an iterative fuzzy approach for solving LFP.

In this research article, the cost minimizing fuzzy multi-objective fractional STP is studied under
uncertainty. Fuzzy programming approach is applied to solve the corresponding crisp problem and hence
the notions of solvability set and the stability set of the first kind are defined and characterized.

The rest of the article is organized as follows: in Section 2, multi-objective two-stage fuzzy STP is
formulated. Section 3 proposes a solution procedure for solving the problem. Section 4 provides a numerical
example to illustrate the efficiency of the solution procedure. Finally, some concluding remarks are
reported in Section 5.

2 Problem formulation and solution concepts

Let pj; and gjy be the coefficients of the objective functions, @; be the availability of the product at the

sourcei, 5,- be the minimum requirement at the destination j, and é; be the conveyance. All of ﬁi§k, (jgk a;, l;,-,
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and &, are represented as triangular fuzzy numbers. Z,(x) = {Z(x), Zx(x), ..., Zg(x)} is a vector r objective
function and the subscript on both Z,, ﬁi§k, q,,k identified the number of objectives (r = 1, 2,..., K). Without
loss of generality, it is assumed that:

Pi» @y > 0,3 > 0; Vi, b; > 0; Vj, & > O.

The problem can be formulated as:

- S Ve Plixi f 74
Min Z, (x, §', §7) = Min| - L LS [ Min Lp} r=1,2,., K. (1a)
Zm Zi=1 Zj=] Zk=1 Gijk Xijk 8 (x q"
Subiject to
n 1 m _
x e R™MU: N N o =@, i=T,m, ) Yyxu=b, j=Tn;
- j=1k=1 i=1k=1
G=1 R (1b)
zxijk:ék§ X205 i=1,m; j=1, n; k=1,1; Z@': ij= Zék
k=1 i=1 j=1 k=1

It is assumed that the feasible region G is compact and all of Diics Giies Gis 5, é are triangular fuzzy
numbers.

Definition 1. (Kaufmann and Gupta [31]) The a-level set of fuzzy number d is defined as the ordinary set (@),
for which the degree of their membership function exceeds the level a € [0, 1]:
@y ={aeR™: ps(a) za,i=1, 2,..., m.

Alternatively, defining the interval of confidence at level a, the triangular fuzzy number is character-
ized as:

A, = [((gq-pa+p, —(r-s)a+r];for all a € [0,1].

Definition 2. A feasible solution vector x° € G (feasible domain) is called the fuzzy feasible solution of
problems (1a and 1b)—(2) if and only if there is no X such that

l ~ 1 ~
Z;il Z?:l Zkzl pi;kxifk - 221 Z?:l Zk=1 pigkxi?k .

I~ = 1 =~ ’
Z?:H Z?:l Zk=1 qi;kxi]'k Z,ril Z}Ll Zk=1 Qiykxi?k

and

1 ~ 1 ~
2?;1 Z?ﬂ zk=1pi1r'kxijk . 21";1 Z?ﬂ zk=1pi]r'kxi?k

l ~ 1 ~
221 2?21 Zk:l qi;kxijk Z:L 2?21 Zk:l qi;kxi?k

for somer,r=1,2,..., K.

Definition 3. A fuzzy feasible solution x* € G is said to be fuzzy efficient solution of problem (1), if and only
if x* € G and Z,(x*) < AveiZ,(x), where F denotes the set of all fuzzy efficient solutions and A is the
minimum.

For a certain degree of a, the non-fuzzy form of problem (1) is as follows:

m n l r
1 Y01 Yyt Pl .
Min ZY(X, pr, qr)a = Mln Zlil Z]fl Zk*l ik — Mln fY(X)p ) —.

z;& z;l=1 z;(=1 Qi;:kxi]'k gr(X’ q)

Subject to

Xe G(a’ b’ e)’ pi;k € (ﬁi;k)as qi;k € (qi;k)a = 1, m; j: 1’ n; k= 1’ I’ r= 1’ I(; (2)

a; € (di)m i: 1’ m; b] € (51)0(,] = L_n; €y € (ék)a’ k =1, l’
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m 1
Sa=3n-Ye
i=1 j=1 k=1

Definition 4. A point X(5, §) € G(a, b, é)is called an a-parametric efficient solution of problem (2) if and
only if there is no X(p, q) € G(a, b, é) such that

I A I ar 20
z;il z;‘lzl zk:lpi;'kxiik < z:”:!l z;l:l zk:l pi;kxijk .

mon T o S vmosn T a0 Vo bk
Yic1 zj:l Yk D Xiny Z]’:l D1 DK
and
ZZl 27:1 Zi:lﬁiir'kxiik 4 ZZl 27:1 z;(:lﬁi;k)?i?k
S s T @i Tty Ty i ke
for some r.

Theorem 1. A point x* (p*, q*) € G(a*, b*, e*) is an a-fuzzy efficient solution of problem (1) if and only if for
Pi € Bi)es Tx € @5)as @i € (@)as by € (B €x € (€)as X* (0", q°) € G(a', b, €") is an a-parametric effi-
cient solution of problem (2).

Proof. (Necessity) Let x*(p*, ¢*) € G(a*, b*, €*) be an a-fuzzy efficient solution to problem (1) and not an
a-parametric efficient solution of problem (2), then there exist x(p*, ") € G(a", b", ") for pj € (Biji)a
Gk € (Gi)as ai € (@i)as bj € (bj)as ex € E)a such that Z, (x,p™,§") < Z,(x", p'", ¢™), for r=1,2,..., K,

and Z, (x, p™, §") + Z, (x*, p*, §"™) for some r.
This leads to

Mg, i, @) € RKmxx) ;7 (x, p*1, ¢™)

<SPG, L (X, P GY

< Za P, G, Z (%, BT, Y

< Z, (X BT, Gy Zya (X, P, G

< Zpa X P, G, Zk (%, BUK GYF)

< Zx (", pK, )}

>a,a € [0,1],
and with strict inequality holds for at least one r, which is contradiction. x* (p*, ¢*) € G (a*, b*, e*) is an
a-fuzzy efficient solution to problem (1), then x*(p*, ¢*) € G(a*, b*, e*) is an a-parametric efficient solution
of problem (2).

Sufficiency: Let x* (p*, ¢*) € G(a*, b*, €*) be an a-parametric efficient solution of problem (2), but not an
a-fuzzy efficient solution to problem (1). Then there exist X (p*, q*) € G(a*, b*, €*) such that

Mo, (P @) € RE0 2 2%, L, )
<20 B G, e Za (B 7, Y
AN AN A RS AN
<20 B G L (LB )
< 21 O BT G e TR G
< Ze (¢, B, G

>a,a € [0,1].



624 —— Hamiden Abd El-Wahed Khalifa et al. DE GRUYTER

From the continuity and convexity of the membership function, we get

20,5, N < 20,9 G,y o Z (X, P GY)
<Za (LGN, Z (XL P, 4
<Z, (X BTG, Zra (X, P, )
< Zra O, P G, Ze (R, R, K

< Zx (0, 5%, 49,

fori=1,2,..., m; j=1, 2,..., n; k=1, 2,..., I, which is a contradiction. O

By the transformation Vi = ijies i=T,m; j=T,n; k=1,1, problem (3) is equivalent to the following
problem:

Max th (Y /t), th(V/), ..., the Y/}
Subject to
y € G(a, b, e), pfy € Bfidas G € @) 1=1,2,..,m; j=1,2,..,n; k=1,2,..,;r=1,2,.., K;
ai € (Gi)a, 1=1,2,..., m; bj € (E,-)a, j=1,2,...,n; ex€ (Ex)as k=1,2,..,1,
tg, Wu/t, 4') < 1, y,-jk 20; i=1,2.3j=1,2,.,1m k=1,2,.,5y; 20,t>0, 3)
m
Ya-Yb- Z e
i=1 j=1

The membership function of each objective function can be constructed as:

O’ tfl[%’prjgﬂr
YVijk
YViik th(=—,p")-N 3 B
u,(tfr( D D= ( )- S ) T N,,>tﬁ(ﬂ,pr]< . (4)
N, - N, t
0, tfy (y”k ] >N,
For each r = 1, K, applying Zadeh’s min operator [8], problem (3) reduces to the following model (5).
Max 6
Subject to

5 < yr(tﬁ(yuk, rD r=1,2..,K

!
> Vi = @i 1=1,2,..,m,
1

M=

[N
=~
Il

-

Yijk = b, j=12,..,n,

M3
M~

i
—
~
Il

1

s
M=

I

—-
-

Il

5
Vg =en k=1,2..,L0<86<1, ®

j=1
Pl € Bl e @k € (@5)as @i € (@)as by € (B)as €k € (Ek)as

y..
tg,(%k, q’j <1, t>0,

m n 1
Z z Z €k Yijk >0; Vi, j,k.
=1 =1 pa}
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It clear that the constraints in (6) may be reduced into the following form:

SN, - N,) < (N, = (v ©),
(N, — N,) + fi(y/O) < N,

(N, - N,)
T [ ]f,(yuk/t) <1
Model (5) can be rewritten as in the equivalent form as in Model (6):
Max 6
Subject to
[t fr(yyk, ka} r=1,2,..,K
n 1
Y Y vu=an i=12..,m,
j=1 k=1
m
Zzyl}k_b ]:1’21 » 1,
i=1 k=1
m n
G = Zzyuk_e” k=1,2.,1,0<6<1, )

r

Mijk < pijk < Mijk s Hl]k = qz]k < Hz}k

H; <a; < H, Hy < b; < H, H < e, < Hy,
N

m n
ZZ{I‘: ijZ z Ek }/iijO;Vi,j,l(.
i=1

j=1 k=1

Here, in Model (6), My, Hj, H;, H;, Hy are the lower bounds, Mjy, Hj, H;, Hj, H¢ are the upper
bounds, and G is the set of all constraints.

3 Solution procedure

The steps of the solution procedure for solving the STP can be summarized as follows:

Step 1: Calculate the individual minimum and maximum of each objective function subject to the given
constraints so as to determine the lower and upper bounds of the objectives Z, using the variable trans-
formation method.

Step 2: Using the variable transformation method, problem (2) can be converted into problem (3).

Step 3: Determine the membership function as in (4).

Step 4: By introducing an auxiliary variable §, problem (5) is equivalent to the following classical linear
programming (6).

Step 5: Solve problem (6) using any software package (say, MATLAB), to obtain the optimal compromise
solution.

Step 6: Combining stage I and stage II to obtain the optimal solution for the two-stage problem.

Step 7: Determine S (%, p, 4, 4, b, &) by applying the following condition:
yr(ﬁr_er):O, r=1,2,.., K;
rlr(dlr_ﬁr) :0’ rzl, K;
(r(dr_gb’) = 0, r= 1, 2,...,K;
sr (glr - @’) =0, r=1,K;
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X (@ — hy), i=1,m;
pi(h — @), i=1,m;

obj-wy), j=Tm

0j (W — Bj), j=1n;

T (6 —vi), k=1,1;
mvik— &), k=11

Yo s Gp 6,20, T=L, K@, p 20, i=1T,m; g, 05, j20, j=1,m 5, m =0, k=1,1L
Here, [dy,dy] =[P, p®] and (g, 8] = [@'C @', (i, hai) € Lo(a@), i=T,m;  [wy, wy] € Lo(by),
j=T1,m; [vig, v € Lalex), k=1,
Consider the following three cases:
i) y>0,rehcfl, 2,..,K}; b,=0,1r¢J;; w; >0, iehc{l, 2,..m}, w;=0,1i¢kh; o; > 0,jelsc
{1, 2,..., n},gjzo, je¢ b ¥%=0,r¢hw>0,icfc{l,2,..m, wj=0,i¢J); w>0,ke],c
{1, 2,..., k},5=0, k¢ I,;5,>0,re s c{l, 2,..., K},
0;>0,jeJ; c{l,2..,n,0,=0,j¢ ;51 >0,kefci{l, 2. ,klw=0,k¢s.
Let N be the set of all proper subsets of {1, 2,..., K}. Then, we obtain

Js ()?’ﬁa qu fl, b’ é)
(di, d>;8y, 83ty hosun, Ussvy, v2) € R4UxmxnxD) P =dyreh,dy>p,i¢h;
dy=p,reh,dy<pi¢h; G=hyickhhy=a;,i¢h;

hy=a,re,h<a,id¢l, Ej = wy,je s, uy< byj¢Jsuwy=bjjele

S]l

.....

wij<b,jtls ée=va,jel,va<ér,jtl; vike=E€cjel, vik<énjtls

Hence,

(i) v, ¢s 1, &3=0, r=1,K. Then, we have

(d, d3; 8,8) eR¥: dy2pir=1,K;
52(2923’ Q) = dlr :ﬁr! re ]2) dlr Sﬁra r=1K; &y 2 qr; s
&ir < qr’ r= l’—K

(i) y, ¢sn,. & >0, r=1,K. Then, we have

(d, dy; 8,8) € R : dyy =P, 1 =1,K;
83()25139@): dlr:ﬁr’rEJZ’dlrzﬁr’r:L_K; gzr:qr;
g, =4q,r=1K.

Thus, we have

Step 8: Stop.
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4 Numerical example

Consider the following multi-objective two-stage cost minimizing STP with supplies, demands, and con-
veyances represented by triangular fuzzy numbers as:

e Supplies: &, =3, 5, 7),d = (4, 7, 9), G, = (4, 6, 8).

e Demands: b, = (9, 12, 14), b, = (14, 17, 19), b; = (16, 19, 22).

e Conveyances: é; = (13, 15, 18), &, = (15, 18, 20), é; = (16, 17, 21).

e Penalties:

6,7,8) (4,10,15) (8,11,18)
Sk =|(5,13,24) (1,12,14) (2,9,20) |,
(7,13,19) (11,17,20) (11,12,18)

1,4,9 @1,2,5) (2,5,8)
t’:’ijl'k = (2’ 45 9) (O’ 65 8) (4’ 7) 9) s
(4,8,12) (4,7,9) (8,9,12)

(3,12,15) (6,7,9) (4,7,10)
sijz'k = (1’ 61 11) (31 9’ 11) (23 6’ 8) )
1,2,4) (6,7,12) (1,3,9)

0,2,4) (0,6,8) (2,4,9)
=259 (4,913 49,19,
(8,12,16) (7,9,12) (4,6,8)

(2,4,6) (3,4,6) (4,8,9)
§i?k = (2’ 3; 5) (1’ 5a 6) (3a 6; 9) )
(8,9,10) (3,8,9) (5,7,11)

0,1,4) (0,2,8) (7,9,12)
f=16,8,10) (4,9,13) (5,8,18)
(9,13, 28) (12,20, 27) (5,10, 15)

e Ata = 0.8, we get

e Supplies: 4.6 < a; < 5.4, 6.4 <a, <7.4, 5.6 < a3 < 6.4

e Demands: 11.4 < b; < 12.4, 16.4 < b, < 17.4, 16.8 < b3 < 17.8;

e Conveyances: 14.6 < e; < 15.6, 17.4 < e, < 18.4, 16.8 < e3 < 17.8.

Stage I
Steps 1-3:

(11:3, a2=5, a3=4; b1=4, b2=3, b3=5; 9125, 9223, 9324.

Now, by solving Z{f(x) with respect to the given constraints

33 3 gl
Minzf=Y ¥ ¥ 2Kk
i=1 j=1 k=1 bijk
_8xqn1 + 15xpp1 + 18x131 + 24011 + 142091 + 20X31 + 19511 + 20x37 + 18X334
9xan + 5xi21 + 8x331 + 911 + 8Xox + 931 + 12611 + Iy + 1263

Subject to

Xn + X2 + %3+ Xan + X3 + X33 + X3 =3,

Xu + X% + %3 + X0 + X3 + X33+ X031 =5, )
B+ B+ B3+ X+ X33+ B3+ B33 = 4,

Xn +%n + B+ % + 013 + B + 813 =4,
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X1+ X1 + X321 + X2 + X + X3 + X33 = 3,

X314+ Xp31 + X331 + Xi32 + Xi33 + X33 + X333 = 5

X+ X2 + X3+ X + X31 + X331 + X1 = 5,

X+ Xp +t X%+ Xt B+ B+ X8 =3,

X3 + X3 + X33 + 13 + X3 + 13 + X333 = 4,
Xi)'k > O,i=j=k: 1,2,3.

To solve problem (7), we used MATLAB R2020a, which is operated on a computer with the specifica-
tions. CPU: Intel_Core_i3-9100F_3.60 GHz; Memory: 16 GB DDR4 dual-channel RAM; and Operating system:
Windows 10.

The solution of problem (7) is as follows:

ZlR = 0.0134328 at X111 = X332 = X113 = 3, X = 1.5, X331 = X333 = 0.5, Xn =1, X33 = 4.

By solving Z&(x) with respect to the given constraints
3 3 3 32
Mnzf=Y Yy ¥y %
i=1 j=1 k=1 Gjk
_ 15X112 + 9X122 + 10X132 + 11X212 + 11X222 + 8X232 + 4X312 + 12X322 + 9X332
" hxip + 8X2 + Mz + Dor + 13X + 1903 + 16X, + 12X + 8X33;

Subject to

Constraints in (7). (8)

The solution is ZZR = 0.00443787 at X312 = 3, X131 = Xo3 = 1.234568, X123 = X333 = 1.765432, X231 = 3.765432,
X311 = %13 = 0.08984136, x313 = 0.9101586.
Solving Z&(x) with respect to the given constraints

Min ZR

Il
™M
e
z|~m
YR

6X113 + 6X123 + 9X133 + 5X213 + 6X223 + 9X233 + 10)(313 + 9X323 + 11)(333
4X113 + 8X123 + 12)(133 + 10X213 + 13X223 + 18X233 + 28X313 + 27X323 + 15X333

Subject to

Constraints in (7). 9

The solution is Z3R = 0.3471503 at X313 = 4, X33 = X122 = 3, X231 = 5, X331 = X333 = 0.5, %11 =1, X33 = 4.,
In the same way, by solving we have Model (10) as follows:

_ 7X111 + 10X121 + 11X131 + 13X211 + 12X221 + 9X231 + 13X311 + 17X321 + 12X331
4xn1 + o1 + 5X131 + AXo11 + 6Xop1 + TXo31 + 8Xa11 + Tz + g3y

Subject to
Constraints in (7). (10)

The solution is Z£ = 1.285714, with X3 = 5, X2, = 0.9396557,
X123 = X391 = 2060344, X313 = 1939656, X323 = 3.
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By solving Z$(x) with respect to the given constraints

Min Z§ = Z Z z Uk

i=1 j=1 k=1 1]k
1249 + X + TXiz + 6012 + Do + 6Xo3 + 2610 + TX3p + 3X33;
412 + 6Xi0 + 4Xazp + 5X10 + Iy + I3y + 2i31p + Iy + 6X33;

Subject to
Constraints in (9). 11)

The solution is given by
ch = 0.6666667, with X132 = 2, X3 = 0.2230347 x 1011, X33 = 0.5, X013 = 3, X331 = X331 = X091 = 1.5.

Solving Z3C(x) with respect to the given constraints

3 &3

Minzf - Y Yy Sk

i=1 j=1 k=1 1]k
4xq13 + 4Xip3 + 8Xi33 + 3X13 + 5Xop3 + 6Xo33 + Ixg13 + 8X3p3 + X33

X113 + 2X123 + 9X133 + 8X213 + 9X223 + 8X233 + 13X313 + 20X323 + 10X333

Subject to
Constraints in (7). (12)

The solution is given by
Z§(x) = 0.3750000, with X3 = 4, X31 = Xi32 = X021 = 1.5, Xo31 = X331 = 1, X330 = 3,
i.e.,

0.0134328 < Zj(x) < 1.285714,
0.00443787 < Zy(x) < 0.6666667,
0.3471503 < Z5(x) < 0.3750000.

The membership function for Z;(x), Z>(x), and Z3(x) are as follows:

) - 1.285714 - 7, 1285714 - Z;
M) = 1585714 — 0.0134328 1.2722812
Z) = 0.6666667 — Z, _0.6666667 — Z;
W) = 6666667 — 0.00443787 0.2228797
and
2 - 0.3750000 -~ Z; _ 0.3750000 - Z3
K3 = 53750000 - 03471503 0.0278497

Step 4: Let us solve the following mathematical problem.
Max 6
Subject to

Vi + 10V + 11y + 13y, + 12055

> 1.285714,
+ o3 + 13y + 175 + 12y55, + 1.27228126]

Ry + TV + TVi3p + 6Yo15 + Wy

> 0.6666667, 13)
+ 6Yy3y + 2315 + 7Yz + 3)33, + 0.22287976

Y113 + WYio3 + 8Vi33 + Va3 + 53
+ Y533 + 9313 + 8Yzp5 + 7¥335 + 0.02784976

j > 0.3750000,
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Y11 + Vo1 + SViz + Aon + 6o + T¥oz + 8V + TV + W53 < 1,
Yy + Y + WYizp + Vo + o + Wasa + Wi + W + 633, < 1,
Vizs + Wiz + Wizz + 8Vorz + Wans + 8Yp33 + 13Y513 + 20)555 + 105335 < 1,
Ynt Y t Vst Vi t Vit Vs + Vi — 3t =0,
You + Yaur + Va3 + Voo + Va3 + Vazz + Vo3 — 56 =0,
Vo + Va2 ¥ Va3 + Vs Yozt Vs + V33 — 46 =0,
Yin Yo + Vst Vo2 + Vous + Vs + Va3 — 4t =0,
Vir t Vo + Ve + Yoou + Voo + Va3 + V33 — 3t =0,
Vit Vst Vst Visa t Vi3t Vo3 + V333 — 5t =0
Yin v Yin Vst Yan + Vs + Va3 + Vs — 56 =0,
Vi ¥ Vit Voo + Voo + Va2 + Vi + Va3 — 3t =0,
Vist Vin + Viszs+ Vo3 + Vo3 + Va3 + V333 — 4t =0,
Y 20,i=j=k=1,2,3;t>0,0<6< 1

Step 5: Using MATALAB package, the solution of problem (13) is as follows:
X1 = X2 = X2 = X = 1.5, X1 = 3.5, X032 = 0.6702, X313 = 4,

and the overall satisfaction é§ = 1. Thus, Z; = 2.375, Z, = 1.61298, and Z; = 0.69231.
Stage 11
Step 1:

Let us take the following data:

a1:2, (1223, a3=3; b1=2, b2=1, b3:2; 61:2, 6221, 9323.

Now, by solving Z{&(x) with respect to the given constraints

3 3 3 gl
Minzf=Y Yy ¥y 2%
i=1 j=1 k=1 Lijk
_ 8X111 + 15x31 + 18X131 + 24X211 + 14X221 + 20X231 + 19X311 + 20)(321 + 18X331
M + 5Xi1 + 8X31 + Mot + 8% + Mozt + 1261 + My + 1263

Subject to
X+ X2+ X3+ X + X3 + X33 + X3 = 2,
X1 + X + %13+ %0 + X3 + X33 + X031 = 3,
X+ B+ X3+ X+ X331 + B3 + X333 = 3,
X+ %n + X+ X% + %13 + B + X613 =2,
X1+ X1 + X1 + X1+ X + X3 + 3= 1, (14)
Xi31 + Xo31 + X331 + X132 + X133 + X033 + X33 = 2
X1 + X2+ X3+ X + X3t + X331 + X1 = 2,
X+ Xn tXnt Xt Bt B t+an=1,
X3 + X3+ X33 + X013 + X3 + X313 + 333 = 3,
Xj=20,i=j=k=1,2,3.
. 3 3 S
Minzy = ) » » -%
i=1 j=1 k=1 Lijk

15X112 + 9X122 + 10X132 + 11X212 + 11X222 + 8)(232 + 4X312 + 12X322 + 9X332
4X112 + 8X122 + 9X132 + 9X212 + 13X222 + 19X232 + 16)(312 + 12X322 + 8X332

Subject to
Constraints in (14). (15)



DE GRUYTER Solution for multi-objective fractional two-stage STP under fuzzy environment —— 631

Also,

_ 6X113 + 6X123 + 9X133 + 5X213 + 6X223 + 9X233 + 10X313 + 9X323 + 11X333
4X113 + 8X123 + 12X133 + 10X213 + 13)(223 + 18X233 + 28)(313 + 27X323 + 15X333

Subject to
Constraints in (14). (16)
We have, ZR = 1.857143, ZR = 0.4210923, and ZF = 0.5000000.
In the same way, solving
3 3 3 §i}k
< C
Minzf=) > Y -
i=1 j=1 k=1 Gjk
_ X + 10)(121 + 11)(131 + 13X211 + 12)(221 + 9X231 + 13X311 + 17X321 + 12X331
4xqny + 261 + 5X131 + o1 + 6Xop1 + TX31 + 8311 + TX3p1 + I3
Subject to
Constraints in (14). 17)
303, 2, 82
Minzf- 33 3 2
i=1 j=1 k=1 Gjk
_ 1241 + a0 + T3 + 612 + 9% + 6Xo32 + 2612 + T2 + 353
a1p + 6Xi0 + 4Xgzp + 5Xo12 + Iopy + I3y + 2i31p + Iy + 6X33;
Subject to
Constraints in (14), (18)
and
ERNENNE N =Y
MinzZf =y y Y
i=1 j=1 k=1 ik
_ _fan + 4% + 8X33 + 3013 + 5Xo3 + 6X33 + M1z + 833 + 7333
X113 + 2X123 + 9X133 + 8)(213 + 9)(223 + 8X233 + 13X313 + 20)(323 + 10)(333
Subject to
Constraints in (14). (19)
We obtain the following solution:
Min Z{ = 1.466667, Z5 = 0.5000000, and Z§ = 0.8500000,
i.e.,

1.466667 < Z;(x) < 1.857143, 0.4210923 < Z,(x) < 0.5000000, 0.5000000 < Z5(x) < 0.8500000.

The membership function for Z;(x), Z>(x), and Z5(x) are as follows:

iz - LTV -Z 1857143~ 2
VT 1.857143 — 1.466667 0.390476
(20 0.5000000 — Z, 0.5000000 — Z,

\&2) = =

0.5000000 — 0.4210923  0.0789077
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and

0.8500000 — Z3 _0.8500000 - Z3

Z3) = =
(%) 0.8500000 — 0.5000000 0.35

Step 2: Let us solve the following problem:
Max 6
Subject to

Vi + 10y + 11yg31 + 13y + 12y,

> 1.285714,
+ 9y + 13y, + 175, + 1255, + 1.27228126

12Y115 + Tz + TYi30 + 6Y1p + o

> 0.6666667,
+ 6Yo3r + W5pp + T30 + V53, + 0.22287976

4y113 + AY1p3 + 8Yi33 + 3Voi3 + SYas
+ 6Yy33 + Wa3 + 8503 + 7333 + 0.02784976

Y1 + Wiy + Vit + WYanr + 6¥oyr + Tozy + 8V + Vs + 351 < 1,
2y + Vi + AYiza + Voo + Woma + Wazz + Wiy + W + 6)33, < 1,
Yiz + 23 + Wiz3 + 8Yar3 + W + 8Y33 + 13313 + 20y355 + 10y333 < 1,
Yin+t Yt Vit Vim t Vit Viss + iz — 24 =0,
You ¥ You ¥ Vo3 + Yoo + Vo3 + Vg3 + Vo3 — 3t =0,
Vot Va2 ¥ Va3t Vs t Va3t Vs + Y533 — 3t =0,
Yt Yoar ¥ Van t Yo + Yoz + Ve + Va3 — 2t =0,
Yin t Yot Vsu t Vo ¥ Yoo + Vo3 + Va3 — £ =0,
Vistt Vst Vst Vit Vst Vst V53— 2t=0
Vin t Vit Vis t Yot Yozt Ysa1 + Y — 2t =0,
Vet Y tYm t Y t Vst Vsm + V52 — =0,
Yis+ Vst Viss + Yoz + Yoz + Vaz + V333 — 3t =0,
Y 20,i=j=k=1,2,3;t>20,0<5<1.

J > 0.3750000,

(20)

Step 5: The solution is xo1; = %31 = X321 = X332 = X033 = X313 = 1.5, X3 = 4.4, X3, = 2, and the overall satisfac-
tion 6 = 1. Thus, Z; = 20.8947, Z, = 0.64474, and Z3 = 0.69231.

By combining stage I and stage II, the optimal values of the objectives are Z; = 2.375 + 20.8947 =
23.2697, Z, = 1.61298 + 0.64474 = 2.25772, and Z3 = 0.69231 + 0.69231 = 1.38462.
Step 6: The stability set S can be determined as

W7 -dn)=0, ¥(10-d)=0, y’(11-dy)=0,
W3-dp) =0, y?@-di)=0, y’(-d7)=0,
1B -di)=0, y17-dp)=0, y’(12-d3y)=0,
B (2-dp) =0, B (T-d)=0, ' (7-dy)=0,
v, (6-d3) =0, ¥ (O-d3)=0, y’(6-d37) =0,
¥ @-dp) =0, y’(7-d3)=0, y’G-d3)=0,
BU-dp) =0, y4-dg) =0, y’B8-d3=0,
P G-d=0, yEG-daD=0, yP6-dP=0,
;19 -d3) =0, y*@®-d3) =0, y’(7-d3) =0,
N4 -dh)=0, {PQ-d4H=0, {PG-dyp) =0,
A4 -di)=0, (P6-dp)=0, (Z(7-dy) =0,
131 (8 - d3l) =0, 132 (7 - d2?) =0, 133 9-dd =0,
Na2-dh=0, (27-dd=0 (P7T-dP =0,
7 (6-dp) =0, {P(9-dp)=0, (P6-d3)=0,

21
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12 -dY) =0, 32(7—d232)= , 33(3— 33)=
H1-dy) =0, {PQR-d3 =0, {FO-dy) =
7@-dy) =0, (FO-dp)=0, ({F(8-dy) =
3(13—d22)= , (PRo-dB =0, (10—dzz3)=
@ (5-h) =0, @(6-h)=0, @(9-hy=0
0,6 -uh) =0, 0,19 -ud)=0, 05169 -u})=0
G(151-vh) =0, B(17.9-v3) =0, B(17.3-v})=0
WLV 205y yz33 >0; ¥, y3°2020;
111’ 112, 133 > O ( 33 > 0 ;1,“., 333 > 0;
W, W, 01 20; 0, 05,03 2 0, T, D, 3 = 0.
We have J; < {1, 2, 3}. For 1 =@,y v .2 =0 ph o, 2 =055, ¥ =0; 1 c{l, 2, 3,
4,5 6,7, 8.For =@,y v . v2 =00, . =0y v =05 L (2 LB =0500
2 =0;4..., {57 =0.Then

(dyy hoy U, v2) € R3: dil > 7,d3} >10,d3 > 11,d3 > 13,d5 > 12,d% > 9,
A3l >13,d52 > 17,d3 > 12,:d05 > 12,d3 > 7, dy > 7
Sp=1d3>6d5>9,d5>6,d3>2,d3>7,d5>3,d3>4,d3>4
dy3>8,d% >3,d5 >6,d5 >9,d3 >7,d% >8,d55>7, 4 >5,a, > 6,
as>9,b;>6,b, 2119, b3 > 169, ¢; > 15.1, e, >17.9, e3 > 17.3.

For , ={1, 3, 4, 5, 6, 7, 8}. Then
(dy hyyup, vy) € R3: d) =7,d} =10,dy; = 11,d35 = 13, 7 =12,d3 =9,
Bl=13,d52=17,d5 =12, :d3 > 12,d? > 7,d5 >
Sp=4d2>6d2>9,d3>6,d2>2,d2>7,d3 > d23_4 d2 =4
A3 =8,d5 =3,d5=6,d5 =9,d3 =7,d3% = 8,d5; _7,a1=5,a2=6,
a;=9,b;=6,b, =119, b3 = 16.9, e; = 15.1, &, = 17.9, €3 = 17.3.
For  =1{1, 2, 4, 5, 6, 7, 8}. Then

(dy, hy, Up, V) €R3: dil =7,dE =10,d =11,d3 = 13,d2 = 12,d¥ = 9,
Al =13,d52 =17,d3 = 12,:d5 > 12,d2 > 7,dp > 7
Sp=1d3>6d%>9,d5 >6,d5 >2,d55 >7,d% >3,dn > 4,d2 > 4
dp>8,d3 >3,d5>6,d5>9,dA>7,d5>8,d5>7,a,=5,a, = 6,
as=9,b;=6,b, =119, b3 = 16.9, ; = 15.1, e, = 17.9, e3 = 17.3.

In view of this, we obtain

S =

Cw

Sy (22)

g=1

The objective function value obtained with the proposed approach is better compared with that
obtained by Radhakrishnan and Anukokila [32].

5 Concluding remarks

Solid fractional TP has wide application in supply chain and logistics so as to reduce the cost. In this article,
a two-stage cost minimizing fuzzy STP with multi-objective constraints has been studied. Fractional fuzzy
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geometric programming approach has been applied to determine the optimal compromise solution for a
multi-objective two-stage fuzzy STPs in which sources’ availabilities and destination’s demands are trian-
gular fuzzy numbers, and membership function for the objective functions has been defined rather than the
crisp value provides more information for the decision-maker. MATALB software has been used to find out
the optimal compromise solution. This approach provides an easy and simple analyst mathematical pro-
gramming problem.
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