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Abstract: Gearbox is one of the vital components in aircraft engines. If any small damage to gearbox, it can
cause the breakdownof aircraft engine. Thus it is significant to study fault diagnosis in gearbox system. In this
paper, two deep learning models (Long short term memory (LSTM) and Bi-directional long short term mem-
ory (BLSTM)) are proposed to classify the condition of gearbox into good or bad. These models are applied
on aircraft gearbox vibration data in both time and frequency domain. A publicly available aircraft gearbox
vibration dataset is used to evaluate the performance of proposed models. The results proved that accuracy
achieved by LSTM and BLSTM are highly reliable and applicable in health monitoring of aircraft gearbox sys-
tem in time domain as compared to frequency domain. Also, to show the superiority of proposed models for
aircraft gearbox fault diagnosis, performance is compared with classical machine learning models.
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1 Introduction
Gears are the vital part of the mechanical transmission systems. It is used in rotating machinery and in the
design of transmission systems for automobiles. In the field of rotating machinery and mechanical transmis-
sion systems, the application of gears is essential. So, the proper monitoring of the gear system is crucial
to ensure the performance of the mechanical transmission systems. In any production industries, the break-
down of such vital components leads to production losses and increases the cost of maintenance. Therefore,
it is very essential to detect the faults of gears proactively to prevent breakdowns, accidents and to ensure the
operation of mechanical transmission systems with no faults.

Impacting and friction canoccur in gearboxes because of a crack in a gear and that canalso causes a slight
change in the speed. Cracks in a gearbox systemwill occur due to the continuous usage over a period of time.
This will leads to defects in a gearbox. Hence, periodic maintenance and feedback are necessary to prevent
defects in gearboxes. Defects in gearbox are the source of vibration in machinery. Mechanical transmission
systemswill exhibit high level of vibration at some point in their lifetime. The defects in themechanical trans-
mission system can be detected by analysing vibration data of mechanical devices. The analysis of vibration
data is extensively used to diagnose mechanical machine’s health condition. Vibration data analysis is a pro-
cess of looking for deviations from the standard condition of the mechanical devices. Hence, these defects
can be identified by analysing the vibration data of gearbox system collected through electronic sensors. In
the following section, some of the attempts have been traced on diagnosis of gearbox system using machine
learning and deep learning techniques.
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2 Related work
In connection with this, few attempts have been made on classification of gearbox system’s health condition
using classical machine learning algorithms. Gearbox health diagnosis model was proposed based on Con-
tinues Wavelet Transform (CWT) coefficients, which were extracted from vibration data of gear box system.
Further, Gaussian Mixture Model (GMM) and KNN (K- Nearest Neighbor) classifier are used separately for the
purpose of classification [1]. The statistical features were extracted from vibration data of gearbox system and
support vectormachine (SVM) classifier was used [2]. Spectral correlation density was estimated from signals
of vibration data of gear system and used as an input to the SVM classifier to classify the gear’s health condi-
tion into good or bad [3]. Statistical features extracted out of vibration data of gearbox system were used to
build a SVM classifier for gearbox diagnosis [4]. However, the limitation of KNN and GMM is that these will
not perform well when the dimensionality of data is high. Also, KNN does not perform well when dataset is
large. The limitation in building gearbox health monitoring system using SVM classifier is that it is not suit-
able for large datasets [5]. A rotating machinery fault diagnosis method based on local mean decomposition
was proposed to analyze vibration signal in time-frequency domain [6]. A PCA based model was proposed
to diagnose rotatory machine faults using statistical features extracted out of vibration data [7]. An adaptive
neuro-fuzzy inference systemwas proposed for identification and classification of gear’s health condition [8].
In this model, discrete wavelet transform (DWT) method was used to extract the features from the spectrum
of vibration signals. A back propagation neural network (BPNN) model was designed and implemented to
diagnose the gearbox systems. The model was trained using selected FFT features extracted from vibration
data [9]. Ensemble Empirical mode decomposition (EEMD) based Deep Briefs Network (DBN) was proposed.
In this, the vibration data is decomposed in to a set of IMFs (intrinsicmode functions) using EEMDand signals
are reconstructed from main IMFs. These reconstructed signals are used as input to the DBN [10].

Explicit feature extraction from raw data is the first step in building classification model in the above
said classical machine learning techniques. But, there is an option to eliminate explicit feature extraction
step by using deep learning techniques i.e., deep learning techniques automatically extract required learning
parameters independent of number of training samples. A Convolution Neural Network (CNN) was designed
to learn features automatically from vibration data of gearbox system [11]. Statistical features (standard de-
viation, skewness, and kurtosis) were extracted in the time domain of vibration data and CNN was used for
classification [12]. An adaptive multi-sensor data fusion method based on Deep Convolutional Neural Net-
works (DCNN) was proposed for fault diagnosis in gearbox systems [13]. Hybrid-deep model was proposed
to diagnose faults in rotary machines [14]. This model consists of multi-channel CNN followed by stack of
denoising encoders. The model was validated on benchmark vibration dataset. An intelligent mechanical
fault diagnoses method based on DTCWT (Dual-Tree Complex Wavelet Transform) and CNN was proposed to
identify mechanical faults [15]. CNN architectures are designed to process spatial data such as image data
whereas recurrent neural network (RNN) architectures are designed to process time series and sequence data
[16]. However, RNN exhibits vanishing gradient and long term dependency problems. These problems are
overcome by forming LSTM network (modified version of RNN) [17]. LSTM cells are connected in chain like
structure and each cell has the ability to remove or add information to cell state and passes the updated cell
state to the next cell. Therefore, LSTM network is more suitable for problems involving long sequential data
processing. Therefore, in this paper, a LSTM based aircraft gear-box diagnosis model is proposed to classify
health condition of gearbox system into good or bad based on the analysis of vibration data (time series data).
We have also proposed a BLSTM model which is LSTM version Bidirectional RNN (BRNN) structure. Unlike
the standard LSTM structure, two different LSTM networks (forward and backward) are trained for sequen-
tial inputs in the BLSTM architecture [18]. This BRNN version of LSTM (BLSTM) improved the performance of
classification of Gearbox health condition.

For both LSTM and BLSTM based model, the input can be raw data signal. The raw data can be in either
time domain or frequency domain. Hence, in this work, we explore the suitability of input data to LSTM or
BLSTM in both time and frequency domain.

With this, the following objectives are addressed in this paper.
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1. We design LSTM and BLSTM based architecture for the analysis of gearbox vibration data.
2. We study the suitability of input data in time and frequency domain to the proposed architectures.
3. Comparing the performance of proposed models with classical machine learning models.

3 Proposed Model
LSTM and BLSTM based gear-box diagnosis model is proposed to classify the health condition of gearbox
into good or bad. Section 3.1 describes the architecture of LSTM cell. Section 3.2 presents the design of gen-
eral LSTM based learning model and proposed LSTM and BLSTM based models in both time and frequency
domain.

3.1 Architecture of LSTM Cell

LSTM network is comprised of different memory blocks called LSTM cells and each cell has hidden state.
These states are responsible for transferring previous time-step information from one cell to the next cell in
the LSTM network. This is achieved by three different gates viz, input, forget and output gates. These gates
are embedded in each cell as shown in the Figure 1. The function of each gate is illustrated as follows.

Figure 1: LSTM Cell Structure

The forget gate is responsible for removing insignificant information from the cell state received from the
previous cell. The input gate is responsible for addition of information to the cell state. The output gate is
responsible for selecting useful information from the current cell state and showing it gives as an output. The
respective function of each gate is achieved by the following equations.

ft = σ
(︀
Wf .ht−1 +Wf .xt + bf

)︀
(1)

it = σ (Wi .ht−1 +Wi .xt + bi) (2)
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ot = tanh (Wo .ht−1 +Wo .xt + bo) (3)

ct = ft * ct−1 + it · tanh (Wc · [ht−1, xt] + bc) (4)

ht = ot * tanh(ct) (5)

Where,
ft = Forget gate at time step t
it = Input gate at time step t
ot = Output gate attime step t
ct−1 = Previous cell state
ht−1 = Previous hidden state
ct = Current cell state
ht = Current hidden state
σ = Sigmoid function
tanh = Hyperbolic tangent function
bf , bi, bo = bias of foerget gate, input gate and output gate respectively
Wf ,Wi,Wo = Weight matrices of forget, input and output gate respectively

3.2 Design

Given any vibration of time step T with d output labels, a LSTM based model can be built as shown in the
Figure 2.

Figure 2: General LSTM based learning model
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Figure 3: Proposed LSTM based model for classification of gearbox health conditions.
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Figure 4: Proposed BLSTM based model for classification of gearbox health conditions.
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Given any LSTM architecture, we can have any number of LSTM layers. Let’s say we have ‘γ’ number of
layers. In each layer, we have ‘N’ number of LSTM cells. From each layer, we can take ‘K’ number of LSTM cells
output as input to the next layer. The output of the last layer can be used as a compressed representation of
the input data. The obtained representation of the data can be feed to any learning algorithm, such as Support
Vector Machine (SVM), K-Nearest Neighbor (KNN), or Neural Network (NN). We proposed to use simple fully
connected NN to have better representation. The last layer of the LSTM network is considered as input layer
for the fully connected neural network. The number of neurons in the output layer of fully connected neural
network is equal to the number of classes need to be predicted.

Based onabove general architecture, for the considered aircraft gearboxdata vibration,wehavedesigned
the model in time domain as follows:

(1) Number of LSTM layers = 3 (𝛾 = 3)
(2) Number of LSTM cells in

– Layer 1 = 100 (N1 = 100)
– Layer 2 = 50 (N2 = 50)
– Layer 3 = 30 (N3 = 30)

(3) We have taken two layer fully connected layers with L1 = 30 and L2 = 2, as our problem is a two class
problem.

The block diagram of the proposedmodel is as shown in the Figure 3. It consists of 3-layer LSTM network
followed by fully connected two layer neural network. The values 𝛾, N1, N2, N3 andK are obtained empirically
(Refer experiment section 4).

The design of proposed BLSTMmodel is same as proposed LSTMmodel. The only changes in BLSTM are
that it tries to understand the data in both directions (forward and backward) to have better representation.
The proposed BLSTM based model for classification of gearbox health conditions is as shown in the Figure 4.

In order to design proposed models in frequency domain, the raw vibration data (time series vibration
data) of aircraft gearbox is converted in to frequency domain data using Fast Fourier Transform [19]. The
representation of good and bad conditioned sample signals of aircraft gearbox system in frequency domain
is depicted in Figure 5 and Figure 6 respectively. By observing signals of good and bad conditioned samples in
frequency domain, discrimination between good and bad samples are found in terms of amplitude levels in
the frequency range 1hz - 50hz. Therefore, each sample is considered of vector length 50 with corresponding

Figure 5: A sample signal representation of bad conditioned aircraft gearbox system in frequency domain
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Figure 6: A sample signal representation of good conditioned aircraft gearbox system in frequency domain

amplitude levels against to the frequency range 1hz - 50hz. The following changes are made for proposed
LSTM and BLSTMmodels in the frequency domain.

(1) Number of LSTM layers = 3 (𝛾 = 3)
(2) Number of LSTM cells in

– Layer 1 = 50 (N1 = 50)
– Layer 2 = 50 (N2 = 50)
– Layer 3 = 50 (N3 = 50)

(3) We have taken two layer fully connected layers with L1 = 50 and L2 = 2, as our problem is a two class
problem.

The values 𝛾, N1, N2, N3 and K are obtained empirically (Refer experiment section 4).

4 Experimentation and Results
In order to conduct the experimentation, we have used publicly available aircraft gearbox vibration dataset
[20]. Vibration data taken on the exterior of an aircraft as it climbed from 23,000 feet to 40,000 feet. The
dataset consists of 13 samples of vibration data of good condition and 11 samples of vibration data of bad
condition aircraft gear. Each sample is captured at a rate of 2500 time steps per second with duration of 38
seconds. Dataset is tabulated in the following Table 1.

Table 1: Aircraft gearbox vibration dataset

Air craft gear box
condition

Number of samples Time steps per second Time steps
per sample

Good 13 2500 97000Bad 11
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From the above Table 1, each sample consists of 97000 time steps. As the length of the sequence is too
large we split the data into subsamples, where each subsample is of 1000 time steps. Hence, from each origi-
nal sample of length 97000 time steps, we derive 97 samples by considering 1000 time steps for each individ-
ual sample. From this we have a total of 1261 (97 × 13) good condition gearbox samples and a total of 1067 (97
× 11) bad condition gearbox samples. Hence, the derived dataset consists of 2328 samples as tabulated in the
following Table 2. The reason for selecting the time step of subsample as 1000 is by convenience for experi-
mentation; however the length of the subsample can be varied. We have chosen 2000 samples randomly out
of 2328 samples for experimentation.

Table 2: Derived Aircraft gearbox vibration dataset

Air craft gear box condition Number of samples Total Number of samples

Good 1261 2328Bad 1067

Proposedmodels are evaluated in both time and frequency domain using performancemeasures such as
Precision, Recall, F-measure and classification accuracy. In order to conduct the experimentation, we have
done in two folds. In the first fold, dataset is split into 70% training (1400 samples) and 30% testing (600
samples). In the second fold dataset is split into 80% training (1600 samples) and 20% testing (400 samples).
The number of epochs used is 100.

In order to select the number of cells in three hidden layers for the proposed BLSTM architecture (Fig-
ure 4), we carry out experimentation by varying the number of cells in each layer and classification accuracy
has been estimated for 80% training. The experimentation results under varying cells are tabulated in the
Table 3 and the same is graphically shown in Figure 7.

Table 3: Classification Accuracy under varying number of cells in three hidden layer for the proposed BLSTM architecture

Test Case BLSTM Cells (N1, N2, N3) Classification Accuracy

1 100,100, 100 80.37
2 100, 75, 55 96.25
3 100, 50, 30 99.75
4 90,45,25 97.75
5 80,40,20 83.5

From the Table 3 and Figure 7, it is observed that the best accuracy is obtained for N1 = 100, N2 = 50, N3
= 30 cells (Test Case 3) and hence we have used the same in the article. We have adopted a simple technique
of using only 10% of actual data in the first layer and in further layers we have reduced the number of cells
approximately by 50%. However, one can think of using grid search algorithm for selecting these parameters.

Similarly, we have also selected the number of cells in three hidden layers in the proposed LSTM archi-
tecture using above said empirical method. It is found that the best accuracy is obtained for N1 = 100, N2 = 50,
N3 = 30 cells. In frequency domain, best accuracy is obtained for N1 = 50, N2 = 50, N3 = 50 cells in the both
the proposed architectures.

Performance results of the proposedmodels are tabulated in Table 4. The ROC curves of proposedmodels
are depicted in Figure 8 to Figure 15. From Table 4, it is evident that BLSTM in time domain performs better
than LSTM and we have achieved an accuracy of 99.75% and error rate is about 0.25%.

We also build classical machine learning models such as K-Nearest Neighbour (KNN), Linear SVM, RBF
(Radial Basis Function) SVM, Gaussian Process (GP), Decision Tree (DT), Random Forest (RF), Multilayer
Perceptron (MLP), AdaBoost, Gaussian Naive Bayesian (NB) and Quadratic Discriminant Analysis (QDA) for
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Figure 7: Classification accuracy versus varying number of cells in three hidden layers for the proposed BLSTM architecture

Table 4: Performance results of proposed models

Models Training Samples Precision Recall F-measure Classification
accuracy

LSTM in time domain 70% 0.978 0.977 0.977 97.83%
80% 0.983 0.980 0.981 98.38%

BLSTM in time domain 70% 0.982 0.981 0.981 98.25%
80% 0.997 0.997 0.997 99.75%

LSTM in frequency domain 70% 0.923 0.924 0.923 92.25%
80% 0.934 0.934 0.934 93.25%

BLSTM in frequency domain 70% 0.935 0.930 0.932 93.08%
80% 0.937 0.938 0.937 93.75%

Figure 8: ROC curve for 70% training using LSTM in time domain
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Table 5: Comparison of performance of Proposed models with classical machine learning models

Models Training Samples Classification accuracy

K-Nearest Neighbour 70% 71.83%
80% 75.75%

Linear SVM 70% 60.16%
80% 59.75%

RBF (Radial Basis Function) SVM 70% 77.83%
80% 78.00%

Gaussian Process 70% 78.50%
80% 79.75%

Decision Tree 70% 74.83%
80% 76.25%

Random Forest 70% 77.16%
80% 77.50%

Multilayer Perceptron 70% 77.33%
80% 78.25%

AdaBoost 70% 76.50%
80% 78.75%

Gaussian Naive Bayesian 70% 70.33%
80% 70.75%

Quadratic Discriminant Analysis 70% 76.33%
80% 75.00%

Proposed Model (LSTM in time domain) 70% 97.83%
80% 98.38%

Proposed Model (BLSTM in time domain) 70% 98.25%
80% 99.75%

Figure 9: ROC curve for 80% training using LSTM in time domain
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Figure 10: ROC curve for 70% training using BLSTM in time domain

 

 

 

 

 

 

 

 

 

 

  

         

   

         

   

 
 

        

     

        

    

Figure 11: ROC curve for 80% training using BLSTM in time domain

gearbox diagnosis and compared the performance of proposedmodels with these classical machine learning
models. Hence, Statistical features such as min, max, mean, standard deviation, variance, autocorrelation,
quantile, skewness and entropy are extracted from the raw vibration data (time series vibration data) of bad
and good conditioned samples of aircraft gearbox system. The classical machine learning classifiers are used
separately for the purpose of classification of samples of aircraft gearbox vibration data into good or bad. We
made a same experimental setup as in the proposed models. Comparison of performance of the proposed
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models (LSTM and BLSTM) with classical machine learning models is tabulated in Table 5. From Table 5, it is
evident that best classification accuracy is achieved using proposed models in time domain as compared to
classical machine learning models.

Figure 12: ROC curve for 70% training using LSTM in frequency domain

Figure 13: ROC curve for 80% training using LSTM in frequency domain
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Figure 14: ROC curve for 70% training using BLSTM in frequency domain

Figure 15: ROC curve for 80% training using BLSTM in frequency domain

5 Conclusion
In this paper, we have proposed LSTM and BLSTM basedmodel for analysis of aircraft gearbox vibration data
to diagnose healthiness of gearbox. We conducted experimentation on publicly available aircraft gearbox
data set. The experimental results show that BLSTM model is superior to LSTM model in both time domain
and frequency domain. Proposed models outperform the classical machine learning models in diagnosing
the gearbox system’s health conditions in both time and frequency domain.
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