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Abstract:This paper introduce a newvariant of theGenetic Algorithmwhich is developed to handlemultivari-
able, multi-objective and very high search space optimization problems like the solving system of non-linear
equations. It is an integer coded Genetic Algorithm with conventional cross over and mutation but with In-
verse algorithm is varying its search space by varying its digit length on every cycle and it does a �ne search
followed by a coarse search. And its solution to the optimization problem will converge to precise value over
the cycles. Every equation of the system is considered as a single minimization objective function. Multiple
objectives are converted to a single �tness function by summing their absolute values. Some di�cult test
functions for optimization and applications are used to evaluate this algorithm. The results prove that this
algorithm is capable to produce promising and precise results.

Keywords: Genetic Algorithm, Roulette Wheel selection, Cross over, Mutation, Multi Objective optimization,
Multi variable optimization„ Genetic Algorithm, Multi Objective optimization, Multi variable optimization
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1 Introduction
Genetic algorithm (GA) can be chosen as ameta-heuristic search algorithmwhen a best possible solution/s of
non-linear and discontinuous functions is to be found. GA does not require complex mathematics to execute
and it can �nd the global optimum evenwhenmany local optima available. Genetic algorithm is probabilistic
optimization method, that mimics the process of natural selection and it is a kind of evolutionary algorithms
(EA). GA generates the solutions using operators such as Selection, Cross Over and Mutation which are in-
spired by natural evolution. This evolution is governed by a simple law which Charles Darwin named as
–“Survival of the Fittest”.

In the computer science �eld of arti�cial intelligence, a genetic algorithm (GA) is a search heuristic [8].
This heuristic (also sometimes called a meta-heuristic) is routinely used to generate useful solutions to op-
timization and search problems. Genetic algorithm is probabilistic optimization method, which generate so-
lutions to optimization problems using techniques inspired by natural evolution, such as inheritance, muta-
tion, selection, and crossover. The term genetic algorithm, almost universally abbreviated nowadays to GA,
was �rst used by John Holland [6], whose book Adaptation in Natural and Arti�cial Systems of 1975 was in-
strumental in creating what is now a �ourishing �eld of research and application that goes much wider. John
Holland’s original GA is called as Simple Genetic Algorithm (SGA) which has its limitations to handle multi
variable and multi objective functions. Subsequently in [7] JR Koza had extended his work and proposed Ge-
netic Programming, the Programming of Computers by Means of Natural Selection.
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Later, Akira Oyama et al. [1] have developed a Real-coded Adaptive Range Gas (ARGAs) to �nd a solu-
tion to an aerodynamic airfoil shape optimization problem. The results show that the real-coded ARGAs �nd
better solutions than the conventional real-coded GAs. Subsequently, F.Herrera and M.Lozano [2] have de-
veloped a Two-loop Real-coded GA with Adaptive Control of Mutation Step Sizes (TRAMSS). TRAMSS adjusts
the step size of a mutation operator applied during the inner loop, for producing e�cient local turning, thus
avoids premature convergence. It also controls the step size of a mutation operator used by a restart opera-
tor performed in the outer loop, for re-initializing the population in order to ensure that di�erent promising
search zeroes are focused by the inner loop throughout the run. Solving di�cult nonlinear equation using
evolutionary technique is an important research area [11]. Many researcher have attempted this by using neu-
ral network and genetic algorithms. The work carried by Crina Grosan and Ajith Abraham [3], presents an
evolutionary approach for Solving Nonlinear Equations Systems. They propose an evolutionary technique
for solving systems of complex nonlinear equations by simply viewing them as a multi-objective optimiza-
tion problem. Their approach has given good results for benchmark problems compared to earlier results.
Later Satoshi Tomioka et al. [4] also proposed an adaptive domain method (ADM) using real-coded GAs to
solve non-linear problems. They have demonstrated the e�ectiveness of the new method by citing an exam-
ple problem. Recently parameter optimization in GA found to be very important. The book [5] describes in
detail some aspects of GA parameter optimization for recent applications.

Solving system of equations is very old and an important research problem and many researchers have
given important consideration [14–17]. In 2002 the paper [18] deploys a gradient descent approach to solve
nonlinear system of equations. Authors in [24, 25] have used a Hop�eld type neural network and energy func-
tion approach for �nding roots of characteristic equation. The computational cost in GA based nonlinear
equations solver is an important concern there are many variants to GA have been proposed in the past. An
excellent survey on various methods can be found at [26]. Authors in this paper did an excellent job on sum-
marizing the various works related to this area. The article [20] presents the estimation of roots of nonlinear
equations using Genetic Algorithm varying the population size, crossover rate, degree of mutation, and co-
e�cient size. In this paper [21], the author �rst converted single and simple set of nonlinear system of equa-
tions into unconstrained optimization problem, and complex set of systems into constrained optimization
problem. Afterward, Genetic Algorithm tool is applied to solve the system. In a recent work [22] the author
developed a new approach in which optimum solution of nonlinear system of equations is obtained by a
method based on variants of Genetic Algorithm using evolutionary computational technique. The paper [23]
describes a novel application of Genetic Algorithm for approximating solution of optimum problems by in-
troducing pairs of harmonious and symmetric individuals. Althoughmanymethods have been proposed this
paper tries to propose the application of variable search space in �nding the solutions of system of equations.
While �nding solution to system of non-linear equations, the search algorithm has to handle multiple vari-
ables, multiple objectives and a very high search space. Hence a new Genetic Algorithm named as ‘Variable
Search Space Converging Genetic Algorithm (VSSCGA)’ is developed, which e�ciently handles multiple vari-
ables, multiple objectives and high search space. The VSSCGA has been validated with benchmark problems
and got very good results compared to previous results.

2 Search Space
Let the VSSCGAhas integer coded representation and each variable (x) is a chromosome and its each gene has
integer numbers from 0 to 9. Here the chromosome’s length or number of genes in a chromosome is called as
Digit Length (nD), which is similar to Bit Length in binary representation. Let nD = 1. Hence the only possible
chromosome representations are 0, 1, 2, 3, .., 9 . Here it can be say that the VSSCGA’s Representation Range
(VRR) is 0 to 9. And if nD = 2, the possible chromosome representations are 00, 01, 02, ..., 09, 10, 11, ..., 99.
Here the VRR is 00 to 99. Thus if =3, then the VRR is [000, 999], and so on.

It is assumed that the integer coding representation of chromosome is following the ‘base 10’ number
system. If the Search Space (Ω)′s Range (SSR) is assumed as [0, 1), and nD = 1, then each chromosome
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representation’s Value within Range (VR) in SSR would be 0 → 0.0, 1 → 0.1, 2 → 0.2,..., 9 → 00.9. And if
SSR is [0, 1), and nD = 2, then each chromosome representation’s Range value in SSR would be 00 → 0.00,
01 → 0.01, 02 → 0.02,..., 09 → 0.09, 10 → 0.10, 11 → 0.11,...,99 → 0.99. Here, if a chromosome is
having representation as , it is actually a string of ‘36’. This value can be named as Value of String (′36′). For
example, if nD = 5, SSR=[0, 1) and if one chromosome’s representation is 36159, its String Value =‘36159’ and
Range Value within SSR =0.36159. In general, if nD = n and a variable string is ‘dndn−1, ..., d2, d′1, the String
Value Vs = dn × 10n−1 + dn−1 × 10n−2, . . . , +d2 × 101 + d1 × 100 . For example, if a variable is having string as
‘5 2 6 2 4 6’, its decimal value is 5 × 105 + 2 × 104 + 6 × 103 + 2 × 102 + 4 × 101 + 6 × 100 = 526246. Then the
Value within Range can be computed as

VR = VS
SSRmax − SSRmin

10nD + SSRmin

For example if SSRmin = 0, SSRmax = 10, nD = 6 and VS = 526246, then VR = 5.26246.
Consider n objective functions such away that, fi(xj) : Ω → R, where xj ∈ Ω, andΩ ∈ Rm, i =, 1, 2, . . . , n

and j = 1, 2, . . . ,m
To visualize the search spaceΩ , �rst let i = 1 and j = 1, i.e. Single Objective and Single Variable function.

Then if nD = 1, the variable xi can pick a value from 10 number of solutions. Thus if nD = n, the variable
xi can pick a value from 10n number of solutions. It means the Search Space has 10n number of possible
solutions. These explanations show that in integer coding, by varying the Digit Length, the Search Space Size
(SSS) can be varied.

As another example let us assume that the problem has 8 variables and all the 8 variables of the solution
are rounded to 3 decimal places. Then the GA has to �nd amost �tted solution among 103×8 = 1024 solutions
or combinations. If the solution set is rounded to 6 decimal places, then the GA has to �nd a most �tted
solution among 106×8 = 1048 solutions. Hence the required GA should have very high searching capability.
And since it needs to handle multi variables, it should have better capability to exit/jump from the local
minima than themutationoperator provides.With these requirements anewGAcalled ‘Variable SearchSpace
Converging Genetic Algorithm’ is developed.

3 Variable Search Space Converging Genetic Algorithm
Themain concept of this VSSCGA is, it varies its digit length over its cycles and thus it varies its search space.
In its �rst cycle (i.e. �rst digit cycle), its population is represented with a single (which can be varied) digit
number (integer) ranging from 0 to 9, for each variable of the population individual. Its second cycle works
with two digit numbers ranging from 0 to 99 and the third cycle works with three digit numbers ranging
from 0 to 999 and so on. The initial/lower cycles provide a platform for coarse search and higher digit cycles
account for �ne search. The term converging here meant is that the process of growth chromosome will not
be of �xed length. It will gradually attain the maximum allowed length. It may also happen that the growth
of chromosome digit length will be stopped when the algorithm attains the desired solutions.

3.1 Algorithms and Features

The VSSCGA has many advantages over conventional binary coded GA, which can be summarized as fol-
lows [3]:

• The solutions can be representedmore precisely and thus the computation complexity is amended and
the computation e�ciency is improved.

• Since during initial cycles the SSS is low, the execution time is faster. It takes lesser time to arrive the
solution to the expected precision and �tness.

• It avoids the premature convergence always by its selection procedure.
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• As the design variables are coded by�oating numbers in classical optimization algorithms, theVSSCGA
is more convenient for combination with classical optimization algorithms.

The algorithmic details of the proposed VSSCGA are presented in the Appendix: A. Here, we describe the
various important variables are the necessary steps involved to reproduce the proposed algorithm. The salient
features of VSSCGA:

1. It works on three types of loops, one over another.
2. The inner loop is Iteration Loop, which is based on SGA.
3. The middle loop is Round. Multiple iterations form a Round. Every new Round starts with a random

newpopulation.Multiple Rounds are designed to introducemultiple randomnewpopulations over the
complete run.

4. The outer loop is Digit Cycle. Multiple rounds form a Digit Cycle. Multiple Digit Cycles of Rounds is
designed to take care of coarse search and �ne search.

5. Inverse Ranked Roulette wheel selection is designed to take care of premature convergence and thus to
improve the search capability.

6. Elitism between Iterations and Migration between Rounds are designed to avoid the best solution get-
ting destroyed.

7. Stopping criterion based on Maximum Iteration, Consistency of best solution over the iterations and
Saturation of Fitness over the population of a generation are designed to stop the algorithm.

Figure 1: Structure of one Population Individual

3.2 Structure of Population Individual

In order to GA operators work well with the Population Matrix, and to the objective and �tness values also to
get integrated with the Population Matrix, it’s structure is designed in Matlab as shown Figure 1. An example
of the structure of a Population Individual for nV = 4, nD = 6, nP = 5, nO = 1 is shown in Figure 1 and its
corresponding total population structure is shown in Figure 2. It is a three dimensional matrix having its �rst
dimension (row) as nV , second dimension (column) as nD + 2 and third dimension (page) as nP. The value
within variable’s range VR is computed with an assumption of SSR=[0, 10). The advantage of this integrated
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Figure 2: Structure of total Population

structure is when the population individuals are sorted out based on their �tness it needs to operate only one
matrix. Similarly when the best population individual having best �tness is getting selected and when the
elitism and migration operations are carried out, it is easy to handle/select the population individual matrix
which has all its details including its values in the range, objective values and �tness value. On the other
hand, if the population and its properties are maintained in separate matrices, handling them in the code is
di�cult and may give wrong results.

3.3 Initial Population Generation

At the beginning of every round a new population is initialized with random numbers (single digit integers)
with dimension nV × nD × nP. An example of a new random new population is shown in Figure 3.

Figure 3: Random Population Initialization
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3.4 Value Computation

After new population generation, the values VS and VR of each variable of the population individual is com-
puted as explained in section ‘Search Space’.

3.5 Fitness Computation

The Value in range (VR) of all variables of an individual is fed to Fitness function to evaluate the objective
function value. Here it is assumed that all objective function values are of positive values or cost/distance
value in nature or it is made as positive by adding ‘absolute’ function or by introducing suitable o�set or by
some other alternative methods possible.

If the objective of the optimization problem is tomaximize, and if there is only one objective function, the
Value of the Objective function is directly taken as the Fitness function value . And if more than one objective
function is there, the sum of each objective function value is taken as i.e. VF = Vo1 + Vo2 + Vo3.

If the objective of the optimization problem is tominimize, and if there is only one objective function, the
value of the Fitness function VF is calculated as VF = 1

1+Vo . And if more than one objective function is there,
the Fitness function value VF is calculated as VF = 1

1+(Vo1+Vo2+Vo3) . Fitness function value is very important in
GA, as it plays a vital role in selection of population for next generation.

3.6 Selection – Inverse Ranked Roulette Wheel

Selection operator selects individuals in the population for reproduction. The �tter the individuals, the more
times it is likely to be selected to reproduce. Selection operator works on the principle of Charles Darwin’s
‘Survival of the Fittest’. Many types of selection are discussed in the literature including Roulette wheel se-
lection, Rank selection, Tournament selection etc. Each method has its own advantages and disadvantages.

Here a combination of Roulette wheel selection with Rank selection is introduced. This algorithm as-
sumes that all VF ≥ 0. First the individuals are sorted in descending order depending on their �tness value.
In this order, the highest �t individual has the �rst place and the lowest �t individual has the last place (i.e.
nPth place). Then each individual is assignedwith a rank of 1/(1+ itsplacevalue). Hence the name is Inverse
Ranked. The highest �t individual or �rst individual is having rank 1

2 , the jth individual has the rank 1/(1+ j)
and the last individual has the rank 1/(1 + nP).

Similar to the normal roulette wheel algorithm, in this method also, the probability of �tness of each
individual is computed and expected count of each individual is calculated. Then the Ranked Expected Count
(rec) of each individual is computed bymultiplying expected count with its rank and the value is rounded up
(ceil) to integer values.

The Ranked Expected Count of jth individual

recj = ceil
(
Fvj × nP∑np
i=1 Fvj

× 1
1 + j

)

The rec of an individual who is having VF = 0, is assigned as 1. With this expected count the remaining
procedure of roulette wheel is carried out. Each individual is reproduced their corresponding rec times. Then
�rst/top nP individuals are selected for the next generation.

This IRRW selection improves the searching capability of the GA. Its main advantage is no single individ-
ual canmake the complete population saturated throughout the generations, thus it always avoids premature
convergence.
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3.7 Cross Over – Binary Imitative

The crossover operator is themost important operator of GA, because it leads to convergence [9]. In crossover,
generally two chromosomes, called parents, are combined together to form new chromosomes, called o�-
spring. Random pairs are selected for cross over from the complete population of IRRW selection. Many real
coded cross over types are discussed in the literature. To get advantage of complete randomness, the binary
imitative uniform single point cross over is used. Two pseudo random numbers are generated, �rst being real
�oating number having range 0 to 1, to check the ‘go ahead status’ of the cross over and second being integer
having range 1 to nD, to decide the cross over point. If the �rst random number is less than or equal to Pc, the
cross over is carried out. The second random integer number gives the place/position of the cross over point.
The genes after the cross over points of both parents are interchanged. An example of cross over is shown in
Figure 4.

Figure 4: An example of Cross Over

3.8 Mutation – Binary Imitative

In genetic algorithms, mutation realized as a random deformation of alleles with a certain probability. Muta-
tion can occur at each bit position in a string with very small probability (e.g., 1%). Mutation plays a critical
role in GA. As discussed earlier, crossover leads the population to converge by making the chromosomes in
the population alike. Mutation reintroduces genetic diversity back into the population and assists the search
escape from local optima. Many real coded mutation types are discussed in the literature. Similar to cross
over to get advantage of complete randomness, the binary imitative uniform single point mutation is used.
All individuals from cross over undergomutation operation. Instead of considering all genes, thewhole chro-
mosomes (i.e.variables) are considered for mutation with probability Pm. Thus in each chromosome a single
gene may have the chance to get mutated. This will reduce the number of random numbers to be generated
and thus improves the execution speed. In order to get the samemutation performance, the mutation proba-
bility Pm may be increased. Typically it may have value from 5to10%. Here inmutation three pseudo random
numbers are generated, �rst being real �oating number having range 0 to 1, to check the ‘go ahead status’
of the mutation and second being integer having range 1 to nD , to decide the mutation point and third also
being integer having range 0 to 9, is the value of the digit to be interchanged. If the �rst randomnumber is less
than or equal to Pm, the mutation is carried out. The second random integer number gives the place/position
of the mutation point. The gene at the mutation point of the parent is interchanged with the third random
integer. An example of mutation is shown in Figure 5.
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Figure 5: An example of Mutation

3.9 Rounds of Iterations

In this VSSCGA, multiple iterations are called as a round. Each round starts with a new random population.
As such to introduce random new components to the overall algorithm, the algorithm can be run for many
rounds. Since it re-initializes the whole population after every round, this prevents premature convergence
and gives greater searching capability.

3.10 Varying Digit Length (Precision)

Many rounds form a digit cycle. The new aspect of this VSSCGA is the varying precision (decimal fractions)
of variables in every digit cycle of the GA. Each gene of the GA is formed with single digit integer which has
range 0 to 9. Multiple genes form the chromosome. Each chromosome represents a variable. In single variable
problem, each chromosome/variable forms an individual in a population. Inmulti variable problem,multiple
chromosomes form an individual. The number of genes (or digit length) in a chromosome is decided based
on the digit cycle settings. For example, if the digit cycle setting has Stdgt = 1 and Spdgt = 6, in the �rst digit
cycle, each chromosome has only one gene (i.e. nD = 1), second digit cycle has two genes and the last/sixth
cycle has 6 genes (i.e. nD = 6) in every chromosomes. Throughout a digit cycle, which has multiple rounds
and iterations, the number of genes in a chromosome is �xed.

If the range of the GA �tness function variables is SSRmin = 0 and SSRmax = 10, and when nD = 1, the
variables may have values like 0, 1, 2, . . . . . .8, 9 (full rounded integer). Here if each individual has number of
variables nV = 8, the search space size is only 108. If nD = 2, the variables have values like 0, 0.1, 0.2 . . . .1.0,
1.1, 1.2. . . . . .9.8, 9.9 and here the search space size is 108×2. And similarly for nD = 3, the variable values are
0, 0.01, 0.02,. . . ..1.00, 1.01, 1.02, . . . . . . 9.98, 9.99 and the search space size is 108×3, and so on.

In the �rst digit cycle, since the search space is less, GA can �nd the rounded or approximate value of the
solution easily. It is similar to coarse search. In the successive digit cycles, as the search space increase, GA
does a �ne search or �ne tuning of the solution.

3.11 Elitism

De Jong (Jong) [10] suggested a policy to always include the best individual of one generation into next gen-
eration in order to prevent losing it due to sampling e�ects or operator disruption. This strategy, which can
be extended to copy the one or more best solutions to the next generation, is denoted as elitism. The idea is
to avoid that the observed best-�tted individuals dies out just by selecting it for the next generation without
any random experiment. Elitism is widely used for speeding up the convergence of a GA. The negative e�ect
of the elitism i.e. premature convergence is taken care in VSSCGA by introducing IRRW selection.
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In order to havemore randomness and searching capability, VSSCGAhas the provision to start the elitism
operator at any iteration (i.e. at �rst iteration or at higher iterations less thanMaxItr). Two settings are speci-
�ed regarding elitism. First one is number of best individuals (nElit) to be preserved for elitismand the second
one is iteration count (ElitItr) from which the elitism operation starts. The recommended value for nElit is at
least 2 and at themaximumof 0.1×nP. And the recommended value for ElitItr is 0.5×MaxItr, which gives equal
chance for non converging search and converging search. It means that in every round until 0.5 × (MaxItr)th
iteration, elitism is not working, hence GA works on complete random search in each iteration, with very
little probability for convergence.

3.12 Migration

Elitism operator takes care of carrying the best individuals to next iterations. An another operator like elitism
is required to take care of carrying the best individuals/solution to next rounds and digit cycles. This operator
is named as Migration operator. In the �rst digit cycle migration works after Round > 1, and for other digit
cycles migration works on all rounds. That is, migration preserves the best individual of the �rst round of
the �rst digit cycle and carries to the next rounds and next digit cycles. Elitism operator introduces the best
individuals in every iteration after ElitItr. But the migration operator injects the best individuals only once
at the iteration MigrItr in a round. If it is ensured that MigrItr > ElitItr, after the injection of best individuals
by migration, the elitism carry them to next iterations. In order to get best converged result, the stopping
criterion other than MaxItr, will get activated only after MigrItr + 1 and ElitItr + 1.

The best individuals of migration are carrying forward to next rounds within a digit cycle without any
scaling or modi�cation. But when the migration works to next digit cycle, the best individuals of the current
digit cycle have to be transformed (i.e. to undergo scaling or suitable transformation) based on the �tness
function and variable range, in such a way that the values of variables of the best individual in the current
cycle is equal to the values of variables in next cycle.

3.13 Best Solution Selection

The best solution selection operator gives the answer of the GA optimization. Initially the maximum �tness
(MaxFit) of the population of the �rst iteration of the �rst round of the �rst digit cycle is stored as BestFit,
and its corresponding individual is stored as BestPop. From the next iteration on-wards if the MaxFit of the
current iteration is greater than the BestPop, it replaces the BestFit and corresponding individual replaces
the BestPop. The BestPop gives the solution from one round.

Similarly the BestFit and BestPop of the �rst round are stored as RBestFit and RBestPop. If the next
round’s BestFit is greater than the RBestFit, it replaces the RBestFit and corresponding individual replaces
the RBestPop. The RBestPop gives the solution of one digit cycle. Thus the RBestFit and RBestPop of the �rst
digit cycle are stored as FBestFit and FBestPop. If the next digit cycle’s RBestFit is greater than the FBestFit,
it replaces the FBestFit and corresponding individual replaces the FBestPop. The FBestPop gives the solution
of the optimization problem or the �tness function.

3.14 Stopping criterion

Three stopping criterion are available within the iteration loop. Two stopping criterion are available within
the rounds. And one stopping criterion is there for digit cycle. The stopping criterion of the iteration loop are
based on,

1. Maximum number of iterations,
2. Consistency of best �t over the speci�ed number of iterations and
3. Saturation of �tness over the number of individuals in a generation.



VSSC-GA | 151

The stopping criterion of the round loop are based on,

1. Maximum number of rounds
2. Consistency of best �t over the speci�ed number of rounds.

The stopping criterion of the digit cycle is only based on stop digit.
The iteration loop stops at the MaxItr, irrespective of any other condition of the GA. The iteration loop

stops, when the best �t of iterations is consistent over the speci�ed number of iterations (nConsItr). If the
speci�ed number of individuals (nSatuPop) in a generation population are having the same �tness value
(�tness saturation), then also the iteration loop stops. A minimum �tness (minFit) threshold is provided and
until GA achieves this threshold, the last two stopping criterion will not get activated. To implement this
provision, the user should have the knowledge of minimum �tness value which can be achieved as BestFit.
As it is discussed in the migration section, the last two stopping criterions (i.e. other than MaxItr) will get
activated only after MigrItr + 1 and ElitItr + 1 to get best converged result.

The round loop stops at the MaxRnd, irrespective of any other condition of the GA. And the round loop
stops, when the best �t of rounds is consistent over the speci�ed number of rounds (nConsRnd). The digit
cycle starts at Stdgt and stops with Spdgt.

4 Tests and Results
In order to verify the e�ectiveness of this VSSCGA, it is tested with two E�ati and Nazemi examples, 4 test
functions for optimization and two benchmark optimization problems and the results are obtained.

4.1 E�ati and Nazemi Examples

4.1.1 E�ati and Nazemi Example 1

The E�ati and Nazemi example 1 (E�ati.S) [11] contains a system of two equations with two variables. The
variable’s range used in VSSCGA is 0 ≤ x1, x2 ≤ 1.

f1(x1, x2) = cos(2x1) − cos(2x2) − 0.4 = 0
f2(x1, x2) = 2(x1 − x2) + sin(2x1) − sin(2x2) − 1.2 = 0

The settings of VSSCGA for this example are given in Table 1. The results of every digit cycle are shown
in Table 2. The comparison of VSSCGA’s results with earlier results (Abraham) is shown in Table 3. In Table 3
we have performed a comparison of the popular numerical methods and GA based methods including the
proposed one on E�ati and Nazemi Example function. We show here the values of xi and Functions values
and moreover, the function values with the proposed method are very accurate. Further, it is interesting to
observe in Table 2 that on how the variations in nD a�ect the accuracy and precision of the solution. It is also
seen here that going to a higher digit length is not required in certain cases. Hence, the variable search space
idea does help in reducing the complexity implicitly without a�ecting the solution accuracy.

Table 1: VSSCGA Settings for E�ati and Nazemi example 1

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
2 2 1 10 100 100 4 0.9 0.1

The result achieved in Table 2 is only upto Spdgt = 10. If the VSSCGA is allowed to do more number of
digit cycles, it can give better precise results.
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Table 2: Digit Cycle Results for E�ati and Nazemi example 1

nD Solution xi Function Value fi Fitness Value
1 0.2, 0.5 −0.0192413118652547, −0.147947357500754 0.85675951647404
2 0.17, 0.51 0.0193887142766966, −0.00137907019145156 0.979654741475831
3 0.157, 0.494 0.000744905890763, 0.000061407460612 0.999194336266051
4 0.1571, 0.4941 0.000850110156655, −0.000018752041260 0.999131892068250
5 0.15652, 0.49338 0.000006092467513, 0.000011522010458 0.999982385832294
6 0.15652, 0.493376 −0.000000581465550, −0.000000889181838 0.999998529354774
7 0.1565201, 0.4933764 0.000000024335686, −0.000000038340559 0.999999937323759
8 0.1565201, 0.49337641 0.000000041020483, −0.000000007312525 0.999999951666995
9 0.1565201, 0.493376412 0.000000044357443, −0.000000001106918 0.999999954535641
10 0.1565201, 0.4933764123 0.000000044857987, −0.000000000176077 0.999999954965938

Table 3: Comparison of VSSCGA’s results with earlier results for E�ati and Nazemi example 1

S.no. Method Solution xi Functions values fi
1 Newton (0.15, 0.49) (−0.00168, 0.01497)
2 Secant (0.15, 0.49) (−0.00168, 0.01497)
3 Broyden (0.15, 0.49) (−0.00168, 0.01497)
4 E�ati (E�ati.S) (0.1575, 0.4970) (0.005455, 0.00739)
5 E. A. (Abraham) (0.15772, 0.49458) (0.001264, 0.000969)
6 VSSCGA (0.1565201, 0.4933764123) (0.000000044857987, −0.000000000176077)

4.1.2 E�ati and Nazemi Example 2

The E�ati and Nazemi Example 2 (E�ati.S) also contains a system of two equations with two variables. The
variable’s range used in VSSCGA is 0 ≤ x1, x2 ≤ 10 .

f1(x1, x2) = ex1 + x1x2 − 1 = 0
f2(x1, x2) = sin(x1x2) + x1 + x2 − 1 = 0

The settings of VSSCGA for this example are given in Table 4. The results of every digit cycle are shown in
Table 5 . The comparison of VSSCGA’s results with earlier results (Abraham) is shown in Table 6.

Table 4: VSSCGA Settings for E�ati and Nazemi example 2

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
2 2 1 4 20 50 4 0.9 0.1

Table 5: Digit Cycle Results for E�ati and Nazemi example 2

nD Solution xi Function Value fi Fitness Value
1 0, 1 0, 0 1
2 0, 1 0, 0 1
3 0, 1 0, 0 1
4 0, 1 0, 0 1
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Table 6: Comparison of VSSCGA’s results with earlier results for E�ati and Nazemi example 2

S.no. Method Solution xi Functions values fi
1 E�ati (E�ati.S) (0.0096, 0.9976) (0.019223, 0.016776)
5 E. A. (Abraham) (−0.00138, 1.0027) (−0.00276,−0.0000637)
6 VSSCGA (0, 1) (0, 0)

Figure 6: Flow of maxFit over iterations, for E�ati and Nazemi Example 2

The �ow ofMaxFit over iterations, rounds and digit cycles is shown in Figure 6. It can be noted that VSS-
CGA has found the solution in 10th iteration of the �rst round and �rst digit cycle itself. This graph explains
many concepts of VSSCGA.

4.2 Test functions for optimization

Since the e�ciency of VSSCGA for two variables and two objective test functions is proved, the VSSCGA is
going to be tested with higher dimension test functions and to precisely estimate the values of Scha�er 4
function than the values given in the literature [13].

4.2.1 Ackley’s function

The function de�nition of Ackley’s function [12] (wikipedia.org) is

min f (xi , xi+1) =
∑

−20 exp
[
] − 0.2

√
0.5(x2i + x2i+1)

]
− exp(0.5(cos(2πxi) + cos(2πxi+1)) + e + 20

where i = 1, 3, 5, ..., n−1. n is the number of variable. It is a single objective, fundamentally 2 variable system.
The variable range used is −5 ≤ xi ≤ 5. The function minimum is 0 at xi = 0. First 2 variables are considered
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for this function. The settings of VSSCGA for this example are given in Table 7. The results of every digit cycle
are shown in Table 8.

Table 7: VSSCGA Settings for Ackley’s function with 2 variables

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
2 1 1 4 20 50 4 0.9 0.1

Table 8: Digit Cycle Results for Ackley’s function with 2 variables

nD Solution xi Function Value fi Fitness Value (Digit Cycle, Round, Iteration) at which the solution
obtained

1 0, 0 0 1 1, 1, 1
2 0, 0 0 1
3 0, 0 0 1
4 0, 0 0 1

Second 4 variables are considered for this function. The settings of VSSCGA for this example are given in
Table 9. The results of every digit cycle are shown in Table 10.

Table 9: VSSCGA Settings for Ackley’s function with 4 variables

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
4 1 1 4 20 50 4 0.9 0.1

Table 10: Digit Cycle Results for Ackley’s function with 4 variables

nD Solution xi Function Value fi Fitness Value (Digit Cycle, Round, Iteration) at which the solution
obtained

1 0, 0,0,0 0 1 1, 1, 27
2 0, 0,0,0 0 1
3 0, 0,0,0 0 1
4 0, 0,0,0 0 1

At last 8 variables are considered for this function. The settings of VSSCGA for this example are given in
Table 11. The results of every digit cycle are shown in Table 12.

Table 11: VSSCGA Settings for Ackley’s function with 4 variables

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
8 1 1 4 20 50 4 0.9 0.1
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Table 12: Digit Cycle Results for Ackley’s function with 4 variables

nD Solution xi Function Value fi Fitness Value (Digit Cycle, Round, Iteration) at which the
solution obtained

1 (0, 0, 0, 0, 0, 0, 0, 0) 0 1 1, 4, 43
2 (0, 0, 0, 0, 0, 0, 0, 0) 0 1
3 (0, 0, 0, 0, 0, 0, 0, 0) 0 1
4 (0, 0, 0, 0, 0, 0, 0, 0) 0 1

4.2.2 Rosenbrock’s function

The function de�nition of Rosenbrock’s function (wikipedia.org) is

min f (xi , xi+1) =
∑[

100(xi+1 − x2i )2 + (xi − 1)2
]

where i = 1, 3, 5, ..., n − 1 It is a single objective, fundamentally 2 variable system. The variable range used
is−5 ≤ xi ≤ 5. The function minimum is 0 at xi = 0.

First 2 variables are considered for this function. The settings of VSSCGA for this example are given in
Table 13 11. The results of every digit cycle are shown in Table 14.

Table 13: VSSCGA Settings for Rosenbrock’s function with 2 variables

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
2 1 1 4 20 50 4 0.9 0.1

Table 14: Digit Cycle Results for Rosenbrock’s function with 2 variables

nD Solution xi Function Value fi Fitness Value (Digit Cycle, Round, Iteration) at which the solution
obtained

1 (1, 1) 0 1 1, 1, 3
2 (1, 1) 0 1
3 (1, 1) 0 1
4 (1, 1) 0 1

Second four variables are considered for this function. The settings of VSSCGA for this example are given
in Table 15. The results of every digit cycle are shown in Table 16.

Table 15: VSSCGA Settings for Rosenbrock’s function with 2 variables

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
4 1 1 4 20 50 4 0.9 0.1

Finally eight variables are considered for this function. The settings of VSSCGA for this example are given
in Table 17. The results of every digit cycle are shown in Table 18.
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Table 16: Digit Cycle Results for Rosenbrock’s function with 4 variables

nD Solution xi Function Value fi Fitness Value (Digit Cycle, Round, Iteration) at which the solution
obtained

1 (1, 1, 1, 1) 0 1 1, 2, 5
2 (1, 1, 1, 1) 0 1
3 (1, 1, 1, 1) 0 1
4 (1, 1, 1, 1) 0 1

Table 17: VSSCGA Settings for Rosenbrock’s function with 8 variables

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
8 1 1 4 20 50 4 0.9 0.1

Table 18: Digit Cycle Results for Rosenbrock’s function with 8 variables

nD Solution xi Function Value fi Fitness Value (Digit Cycle, Round, Iteration) at which the
solution obtained

1 (1, 1, 1, 1, 1, 1, 1, 1) 0 1 1, 3, 44
2 (1, 1, 1, 1, 1, 1, 1, 1) 0 1
3 (1, 1, 1, 1, 1, 1, 1, 1) 0 1
4 (1, 1, 1, 1, 1, 1, 1, 1) 0 1

4.2.3 Himmelblau function

The function de�nition of Himmelblau’s function (K. Rajan) is

min f (xi , xi+1) =
∑[

(x2i + xi+1 − 11)2 + (xi + x2i+1 − 7)2
]

where i = 1, 3, 5, ..., n−1 This is also a single objective, fundamentally 2 variable system. The variable range
used is 0 ≤ xi ≤ 10. The function minimum is 0 at xi = (3, 2) for n = 2.

First 2 variables are considered for this function. The settings of VSSCGA for this example are given in
Table 19. The results of every digit cycle are shown in Table 20.

Table 19: VSSCGA Settings for Himmelblau’s function with 2 variables

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
2 1 1 4 20 50 4 0.9 0.1

Table 20: Digit Cycle Results for Himmelblau’s function with 2 variables

nD Solution xi Function Value fi Fitness Value (Digit Cycle, Round, Iteration) at which the solution
obtained

1 (3, 2) 0 1 1, 1, 3
2 (3, 2) 0 1
3 (3, 2) 0 1
4 (3, 2) 0 1
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Second four variables are considered for this function. The settings of VSSCGA for this example are given
in Table 21. The results of every digit cycle are shown in Table 22.

Table 21: VSSCGA Settings for Himmelblau’s function with 4 variables

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
4 1 1 4 20 50 4 0.9 0.1

Table 22: Digit Cycle Results for Himmelblau’s function with 4 variables

nD Solution xi Function Value fi Fitness Value (Digit Cycle, Round, Iteration) at which the solution
obtained

1 (3, 2, 3, 2) 0 1 1, 1, 17
2 (3, 2, 3, 2) 0 1
3 (3, 2, 3, 2) 0 1
4 (3, 2, 3, 2) 0 1

Finally eight variables are considered for this function. The settings of VSSCGA for this example are given
in Table 23. The results of every digit cycle are shown in Table 24.

Table 23: VSSCGA Settings for Himmelblau’s function with 8 variables

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
8 1 1 4 20 50 4 0.9 0.1

Table 24: Digit Cycle Results for Himmelblau’s function with 8 variables

nD Solution xi Function Value fi Fitness Value (Digit Cycle, Round, Iteration) at which the
solution obtained

1 (3, 2, 3, 2, 3, 2, 3, 2) 0 1 1, 2, 35
2 (3, 2, 3, 2, 3, 2, 3, 2) 0 1
3 (3, 2, 3, 2, 3, 2, 3, 2) 0 1
4 (3, 2, 3, 2, 3, 2, 3, 2) 0 1

4.2.4 Powel’s function

The function de�nition of Powel’s function (K. Rajan) is

min f (xi , xi+1, xi+2, xi+3) =
∑[

(xi + 10xi+1)2 + 5(xi+2 − xi+3)2
]
+
[
(xi+1 − 2xi+2)4 + 10(xi − xi+3)4

]
where i = 1, 3, 5, ..., n−3 Theminimumof f (x) is 0 at x = (0, 0, 0, 0) for n = 4. First 4 variables are considered
for this function. The settings of VSSCGA for this example are given in Table 25. The results of every digit cycle
are shown in Table 26.
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Table 25: VSSCGA Settings for Powel’s function with 4 variables

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
4 1 1 4 50 100 4 0.9 0.1

Table 26: Digit Cycle Results for Powel’s function with 4 variables

nD Solution xi Function Value fi Fitness Value (Digit Cycle, Round, Iteration) at which the solution
obtained

1 (0, 0, 0, 0) 0 1 1, 1, 24
2 (0, 0, 0, 0) 0 1
3 (0, 0, 0, 0) 0 1
4 (0, 0, 0, 0) 0 1

Finally 8 variables are considered for this function. The settings of VSSCGA for this example are given in
Table 27. The results of every digit cycle are shown in Table 28.

Table 27: VSSCGA Settings for Powel’s function with 8 variables

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
8 1 1 4 50 100 4 0.9 0.1

Table 28: Digit Cycle Results for Powel’s function with 8 variables

nD Solution xi Function Value fi Fitness Value (Digit Cycle, Round, Iteration) at which the
solution obtained

1 (0, 0, 0, 0, 0, 0, 0, 0) 0 1 1, 2, 74
2 (0, 0, 0, 0, 0, 0, 0, 0) 0 1
3 (0, 0, 0, 0, 0, 0, 0, 0) 0 1
4 (0, 0, 0, 0, 0, 0, 0, 0) 0 1

4.2.5 Scha�er 4 function

The Scha�er 4 function (wikipedia.org) [12] is also a good example to test VSSCGA for its ability to get the
solution very precisely i.e. it’s converging feature to very accurate solution. The function de�nition is

min f (x1, x2) = 0.5 + cos2(sin(x21 − x22) − 0.5
(1 + 0.001(x21 + x22))2

These are two variable single objective functions. As per the literature (wikipedia.org) the variable’s range
is −100 ≤ xi ≤ 100, the function value f (x) = 0.292579 at x = (0, 1.25313).

First VSSCGA is tested with range given in the literature i.e. −100 ≤ xi ≤ 100, and see that whether
it is able to get the values of x and f as given. Then to �nd the values of x and f more precisely, the range
0 ≤ x1, x2 ≤ 10 is used. The settings of VSSCGA for the �rst case are given in Table 29. The results of every
digit cycle are shown in Table 30.
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Table 29: VSSCGA Settings for Scha�er 4 function’s with 2 variables

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
2 1 1 8 20 50 4 0.9 0.1

Table 30: Digit Cycle Results for Scha�er 4 function’s with 2 variables

nD Solution xi Function Value fi Fitness Value (Digit Cycle, Round, It-
eration) at which the
solution obtained

1 (20, 0) 0.466666411053995 0.681818300646408 1, 1, 2
2 (6, 0) 0.313126889410540 0.761541027043394 2, 2, 16
3 (1.2, −5) 0.302509651423065 0.767748629660781 3, 1, 43
4 (−0.48, 1.34) 0.292781321527602 0.773526027447829 4, 3, 78
5 (−0.022, 1.254) 0.292580331426205 0.773646307070619 5, 4, 94
6 (−0.0356, 1.254) 0.292580056589184 0.773646471568474 6, 2, 67
7 (−2.0e−005, 1.25312) 0.292578632434833 0.773647323966897 7, 4, 100
8 (−1.99e−006, 1.2531319) 0.292578632036065 0.773647324205572 8, 2, 94

The result shows that the VSSCGA provides promising results. Then it is decided to estimate the value of
the functionmore precisely than the value given in literature (wikipedia.org) (in�nity77.net) [13]. The settings
of VSSCGA for this case are given in Table 31. The results of every digit cycle are shown in Table 32.

Table 31: VSSCGA Settings for Scha�er 4 function (for precise value �nding)

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
2 1 1 10 50 100 4 0.9 0.1

Table 32: Digit Cycle Results for Scha�er 4 function (for precise value �nding)

nD Solution xi Function Value fi Fitness Value (Digit Cycle, Round, Iteration) at
which the solution obtained

1 (1, 3) 0.305557784250938 0.765956139255643 1, 1, 1
2 (0.3, 1.3) 0.293051770390249 0.773364240240896 2, 1, 9
3 (0.13, 1.26) 0.292592689956555 0.773638910207368 3, 1, 74
4 (0, 1.253) 0.292578681508000 0.773647294595127 4, 2, 90
5 (0, 1.2531) 0.292578634920471 0.773647322479168 5, 1, 70
6 (0, 1.25313) 0.292578632045530 0.773647324199907 6, 1, 79
7 (0, 1.253132) 0.292578632036061 0.773647324205574 7, 1, 87
8 (0, 1.2531318) 0.292578632035983 0.773647324205621 8, 2, 84
9 (0, 1.25313183) 0.292578632035981 0.773647324205622 9, 1, 75
10 (0, 1.253131834) 0.292578632035980 0.773647324205622 10, 1, 76

Here it is found that theminimumvalueof Scha�er 4 function is 0.292578632035980at (0, 1.253131834).
The digit cycle setting Spdgt is set to 10, because the �tness value and function values have saturated at Mat-
lab’s capacity.
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4.3 Benchmark Problems

Now it is time to verify the capability of VSSCGA with benchmark problems with more dimensions and more
number of objectives.

4.3.1 Interval arithmetic benchmark

First the interval arithmetic benchmark problem (Abraham) has been taken to test VSSCGA. The system of
equations of interval arithmetic benchmark is,

f1(x) = x1 − 0.18324757x3x4x9 − 0.25428722 = 0
f2(x) = x2 − 0.16275449x1x10x6 − 0.37842197 = 0
f3(x) = x3 − 0.16955071x1x10x2 − 0.27162577 = 0
f4(x) = x4 − 0.15585316x6x7x1 − 0.19807914 = 0
f5(x) = x5 − 0.19950920x6x7x3 − 0.44166728 = 0
f6(x) = x6 − 0.18922793x5x8x1 − 0.14654113 = 0
f7(x) = x7 − 0.21180486x5x8x2 − 0.42937161 = 0
f8(x) = x8 − 0.17081208x6x7x1 − 0.07056438 = 0
f9(x) = x9 − 0.19612740x6x8x10 − 0.34504906 = 0
f10(x) = x10 − 0.21466544x4x8x1 − 0.42651102 = 0

This system has 10 variables and 10 objective functions. Crina Grosan and Ajith Abraham [3] have re-
ported 8 solutions for this problem.Among those the second solution shows least (minimum) function values.
Hence this second solution is compared with the �nal (i.e. last digit cycles) results of VSSCGA. The variable
range considered for this case is −2 ≤ x ≤ 2, i = 1, 2, ..., 10.

Table 33: VSSCGA Settings for Interval arithmetic benchmark problem

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
10 10 6 10 100 100 4 0.9 0.1

The settings of VSSCGA for this case are given in Table 33. The comparison of results of VSSCGA with
Crina Grosan and Ajith Abraham’s second solution [3] (Abraham) is shown in Table 34.

4.3.2 Neurophysiology Application

The next benchmark problem considered is the Neurophysiology Application (Abraham). This system has 6
variables and 6 objective functions. The system of equations of Neurophysiology Application benchmark is,

f1(x) = x21 + x23 − 1 = 0
f2(x) = x22 + x24 − 1 = 0
f3(x) = x5x33 + x6x34 = 0
f4(x) = x5x31 + x6x32 = 0
f5(x) = x5x1x23 + x6x2x24 = 0
f6(x) = x5x3x21 + x6x4x22 = 0
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Table 34: Comparison of VSSCGA’s results with Crina Grosan and Ajith Abraham’s results for Interval arithmetic benchmark
problem

Crina Grosan and Ajith Abraham’s Results of VSSCGA
second solution (Abraham)[3]

i Solution xi Function Value fi Solution xi Function Value fi
1 0.1224819761 0.1318552790 0.25783196 −0.000001093119041
2 0.1826200685 0.1964428361 0.379999992 −0.001096214219632
3 0.2356779803 0.0364987069 0.278724 0.000001618504025
4 −40.0371150470 0.2354890155 0.2006688 0.000000078655073
5 0.3748181856 0.0675753064 0.44399996 −0.001250878418472
6 0.2213311341 0.0739986588 0.149176 0.000000387694704
7 0.0697813035 0.3607038292 0.43199452 −0.000000091118403
8 0.0768058043 0.0059182979 0.073399996 −0.000002515583961
9 −0.0312153867 0.3767487763 0.345959968 −0.000006503849487
10 0.1452667120 0.2811693568 0.4271998388 −0.000126401096904

Fitness Value 0.997520381531896

Crina Grosan andAjith Abrahamhave reported 12 solutions for this problem. Among those the twelfth so-
lution shows least (minimum) function values. Hence this twelfth solution is compared with the �nal results
of VSSCGA. On reviewing the results of Crina Grosan and Ajith Abraham, the variable range kept for this case
is −1 ≤ xi ≤ 1, i = 1, 2, ..., 10 and the settings of VSSCGA for this case are given in Table 35. The comparison
of results of VSSCGAwith Crina Grosan andAjith Abraham’s twelfth solution (Abraham) is shown in Table 36.

Table 35: VSSCGA Settings for Neurophysiology Application (case 2)

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
6 6 5 10 200 100 5 0.9 0.1

Table 36: Comparison of VSSCGA’s results with Crina Grosan and Ajith Abraham’s results for Neurophysiology Application
problem (case 1)

Crina Grosan and Ajith Abraham’s Results of VSSCGA
second solution (Abraham) [3]

i Solution xi Function Value fi Solution xi Function Value fi
1 −0.807866890 0.0050092197 0.556000066 0.000029529993604
2 −0.9560562726 0.0366973076 −0.647718 −0.000000258076000
3 0.5850998782 0.0124852708 −0.831200014 −0.000004409545462
4 −0.2219439027 0.0276342907 −0.76188 0.000007785476757
5 0.06620152964 0.0168784849 0.0000199 0.000013698338141
6 −0.0057942792 0.0248569233 −0.000016 −0.000000024868871

Fitness Value 0.999944296804184

Here one more set of results of VSSCGA are given, which shows that as like GA, the VSSCGA also gives
better results over time. The settings of VSSCGA for this case are given in Table 3.41 37. The comparison of
results of VSSCGA with Crina Grosan and Ajith Abraham’s twelfth solution is shown Table 38. All the above
test cases show that the VSSCGA is giving very precise and promising results. The choice of the various pa-
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Table 37: VSSCGA Settings for Neurophysiology Application (case 2)

nV nO Stdgt Spdgt nP MaxItr MaxRnd Pc Pm
6 6 5 10 100 200 5 0.9 0.1

Table 38: Comparison of VSSCGA’s results with Crina Grosan and Ajith Abraham’s results for Neurophysiology Application
problem (case 1)

Crina Grosan and Ajith Abraham’s Results of VSSCGA
second solution (Abraham)[3]

i Solution xi Function Value fi Solution xi Function Value fi
1 −0.8078668904 0.0050092197 −0.73834 0.000000000006542
2 −0.9560562726 0.0366973076 −0.271426396 0.000000000110189
3 0.5850998782 0.0124852708 0.67442868 −0.000000000423724
4 −0.2219439027 0.0276342907 −0.9624592 0.000000000318003
5 0.06620152964 0.0 0.000000000218384 0.000013698338141
6 −0.0057942792 0.0248569233 0.0 −0.000000000308311

Fitness Value 0.999999998614848

rameters in VSSCGA varies with the problem at hand. However, from our experiments we infer that like all
other GA algorithms it is very easy to �nd the appropriate settings for VSSCGA too. The advantage we get here
is that now we have a variable search space and that intuitively will converge faster than that of traditional
GAs.

5 Conclusion
A new Genetic Algorithm that can vary its search space size and �nd the solution of non- linear equations
systemvery precisely is introduced.Anew InverseRankedRouletteWheel selection is introduced to overcome
thepremature convergence. Thebinary imitative integer codeduniformcross over andmutations are adopted.
The adoptedmutation decreases the execution time. Elitism andMigration are adopted after some prede�ned
iterations, and thus improves the randomness and carry the best solution throughout the run.

Even though it can solve many problems, some benchmark problems are tried to test the performance of
the VSSCGA and very good and more precise results are obtained. VSSCGA con�rms that it can handle multi
variable, multi objective and high search space problems very e�ciently.

In future variable rate mutation may be integrated with this GA to analyze its performance. The VSSCGA
may be used for other applications where other optimization techniques do not give good results.
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Appendix A: The proposed algorithm of the VSSCGA
The algorithm of the VSSCGA is.

1. Initialize GA parameters,

(a) Number of Population (nP),
(b) Number of Variables (nV),
(c) Number of Objectives (nO),
(d) Start Digit (StDgt),
(e) Stop Digit (SpDgt),
(f) Maximum Iterations (MaxItr),

http://www.genetic-programming.com/coursemainpage.html
http://en.wikipedia.org/wiki/Test_functions_for_optimization
 http://infinity77.net/global_optimization/test_functions_nd_S.html
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(g) Maximum Rounds (MaxRnd),
(h) Cross Over Probability (Pc),
(i) Mutation Probability (Pm),
(j) Variables range minimum (Vmin) and maximum (Vmax), Number of Population Individuals

(candidates) to be preserved for Elitism (nElit),
(k) Number of candidates to be carried forward for Migration (nMigr),
(l) Elitism starting Iteration (ElitItr),

(m) Migration injection Iteration (MigrItr) and
(n) Minimum Fitness (minFit) value to be reached before the stopping criterions e�ective, except the

MaxItr.
(o) Number of Iterations (nConsItr) to be veri�ed for the Best Fit consistency among Iterations, as

stopping criterion of Iterations.
(p) Number of Population Individuals (nSatuPop) to be veri�ed for the Fitness Saturation among

Populations, as stopping criterion of Iterations.
(q) Number of Rounds (nConsRnd) to be veri�ed for the Best Fit consistency among Rounds, as stop-

ping criterion of Rounds.

2. Assign ‘Number of Digit (nD) = StDgt’.
3. While ‘nD ≤ SpDgt’, carry out the following steps 4 to 25, else produce the �nal Results. [Outer Loop].
4. Assign ‘Round(Rnd) = 1’.
5. While ‘Rnd ≤ MaxRnd’, carry out the following steps 6 to 23, else produce the current Digit Cycle’s

Results. [Middle Loop].
6. Randomly initialize new Population (Pop) matrix with dimension nV × nD × nP, with numbers ranging

from 0 to 9.
7. Assign ‘Itr = 1’.
8. While stopping criterionsnotmet carry out the following steps9 to20, else produce the currentRound’s

Results. [Inner Loop].
9. If ‘[(nD = StDgt&&Rnd > 1)||(nD ≠ StDgt)] & & (Itr = MigrItr)’, do Migration.

10. Compute ‘Decimal Value (Dv)’ and ‘Value in Range (Rv)’ for each Variable of the Individual of the total
Population.

11. Compute ‘Objective Values (Obj)’ and ‘Fitness Value (Fit)’ for each Population Individual (PopIdvl).
12. If ‘Itr > ElitItr’, do Elitism.
13. Find Maximum of the Fitness Value (maxFit) and it’s corresponding Population Individual (maxPop).
14. If ‘Itr = 1’, assign ‘BestFit = maxFit and BestPop = maxPop’. Else, if ‘BestFit < maxFit’, assign

‘BestFit = maxFit and BestPop = maxPop’.
15. If ‘Itr ≥ MaxItr’, Stop the Inner Loop. Go to Step 21.
16. If ‘BestF it > minF it’, and Itr > ElitItr & Itr > MigrItr
17. And if BestFit is consistent over nConsItr, Stop the Inner Loop.

Go to Step 21.
And if Fitness value of each PopIdvl is saturated over nSatuPop, Stop the Inner Loop. Go to Step 21.

18. Select PopIdvl from the total Population by Inverse Ranked Roulette Wheel (IRRW).
19. Generate Mating pool and do Binary Imitative Single Point Uniform Cross Over with probability Pc.
20. Do Binary Imitative Single Point Uniform Mutation with probability Pm.
21. Assign ‘Itr = Itr + 1’, go to step 8.
22. If ‘Run = 1’, assign ‘DBestFit = BestFit and DBestPop = BestPop’. Else, if ‘DBestFit < BestFit’, assign

‘DBestFit = BestFit and DBestPop = BestPop’.
23. If DBestFit is consistent over nConsRnd, Stop the Middle Loop. Go to Step 24.
24. Assign ‘Rnd = Rnd + 1’, go to step 5.
25. If ‘nD = StDgt’, assign ‘FBestFit = DBestFit and FBestPop = DBestPop’. Else, if ‘FBestFit < DBestFit’,

assign ‘FBestFit = DBestFit and FBestPop = DBestPop’.
26. Assign ‘nD = nD + 1’, go to step 3.
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