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Abstract: Harmony Search Algorithm (HSA) is an evolutionary algorithm which mimics the process of music
improvisation to obtain a nice harmony. The algorithm has been successfully applied to solve optimization
problems in different domains. A significant shortcoming of the algorithm is inadequate exploitation when
trying to solve complexproblems. The algorithm relies on three operators for performing improvisation:mem-
ory consideration, pitch adjustment, and random consideration. In order to improve algorithm efficiency, we
use roulette wheel and tournament selection in memory consideration, replace the pitch adjustment and
random consideration with a modified polynomial mutation, and enhance the obtained new harmony with
a modified β-hill climbing algorithm. Such modification can help to maintain the diversity and enhance the
convergence speed of the modified HS algorithm. β-hill climbing is a recently introduced local search algo-
rithm that is able to effectively solve different optimizationproblems. β-hill climbing is utilized in themodified
HS algorithm as a local search technique to improve the generated solution by HS. Two algorithms are pro-
posed: the first one is called PHSβ–HC and the second one is called Imp. PHSβ–HC. The two algorithms are
evaluated using 13 global optimization classical benchmark function with various ranges and complexities.
The proposed algorithms are compared against five other HSA using the same test functions. Using Friedman
test, the two proposed algorithms ranked 2nd (Imp. PHSβ–HC) and 3rd (PHSβ–HC). Furthermore, the two
proposed algorithms are compared against four versions of particle swarm optimization (PSO). The results
show that the proposed PHSβ–HC algorithm generates the best results for three test functions. In addition,
the proposed Imp. PHSβ–HCalgorithm is able to overcome the other algorithms for two test functions. Finally,
the two proposed algorithms are compared with four variations of differential evolution (DE). The proposed
PHSβ–HC algorithm produces the best results for three test functions, and the proposed Imp. PHSβ–HC al-
gorithm outperforms the other algorithms for two test functions. In a nutshell, the two modified HSA are
considered as an efficient extension to HSA which can be used to solve several optimization applications in
the future.

Keywords:Harmony Search Algorithm; Evolutionary Algorithms; Hill Climbing; Polynomial Mutation; β-Hill
Climbing
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1 Introduction
As our society continues to advance, we face more complex problems in areas of science, engineering, eco-
nomic and business. Proposing efficient techniques for resolving optimization problems is important for the
aforementioned fields [57]. Metaheuristic algorithms are a class of approximation methods which cannot
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pledge to produce the global optima, but they can still help solve complex problems in a moderate amount
of time. A metaheuristic-based algorithm tries to iteratively enhance the solution by exploring the problem
search space. Such navigation is guided by an awareness about the problemwith the anticipation of reaching
a global optimum [20, 64].

Mainly, a metaheuristic is divided into local search-based algorithms and population-based algorithms.
Population-based techniques firstly produce a group of randomly generated solutions. After that, themethod
combines the features from different solutions with the hope of generating better solutions [6, 11]. The
population-based algorithms can concurrently look over large segments of the search space. Nevertheless,
such algorithms may be unable to discover the local optima in each segment. As a result, the algorithm may
not attain the optimal solution. Several population-based algorithms have been proposed and used to solve
real-world problems such as genetic algorithm, bee colony optimization, and particle swarm optimization
[45, 52, 62, 69, 70, 82].

Local search-based techniques initially begin with an individual solution which is repetitively modified
using a neighborhood method. The algorithm stops when it reaches a local optimal solution. The search
space can be decomposed into a group of smaller areas. Local search-based techniques work differently than
population-based techniques, as they examine the search area intensely to obtain the local optima. Never-
theless, these techniques do not broadly investigate the search space.

Hill Climbing (HC) is considered the simplest local-search based technique. It is commonly used to boost
the ability of population-based techniques in discovering the local optima in the currently searched segment
[12]. Several techniques are introduced as an improvement of theHC to diminish the problemof being trapped
in a local optima [20]. These techniques include Simulated Annealing (SA) [48], Tabu Search (TS) [37], Greedy
RandomizedAdaptive Search Procedure (GRASP) [29], Variable Neighborhood Search (VNS) [42], and Iterated
Local Search (ILS) [50].

β-hill climbing is a recently introduced local search algorithm [7]. The algorithm has been used success-
fully to solve different optimization problems such as economic dispatch [8], text clustering [4], signal de-
noising [17, 18], multiple-reservoir scheduling [16], and feature selection [3]. Two operators are used in β-hill
climbing to iteratively improve the solutionwhich are neighborhood navigation (N-operator) and β-operator.
TheN-operator is used to reach randomly into a neighboring value. Then, some of the present solution values
are selected or we choose a random value within the range using the β-operator. The β parameter is used to
indicate the chances of using this operator.

Harmony Search Algorithm (HSA) [33] is a population-based algorithm which imitates the improvisation
process of musicians. HSA has been applied to solving different optimization problems such as patient ad-
mission scheduling [24], face recognition [61], and many others [1, 5, 27, 31, 47, 67, 68, 76]. HSA begins by
assigning values to harmonies stored in Harmony Memory (HM) within the range of the decision variables.
After that, three operators are used to update the HM with a newly generated harmony. These operators are
memory consideration, pitch adjustment, and random consideration. The memory consideration picks the
value for the decision variable from the current values in HM. The pitch adjustment changes a current value
in HM hoping to locally improve the solution. The random consideration selects a value randomly within the
range of the decision variables to expand the solutions. Once the new harmony is created, it is compared to
the worst harmony in the HM and replaces it if it is better. These steps are re-iterated until a stop criterion is
met.

The structure and how the operators work in the HSA is altered over time to improve the algorithm per-
formance when solving different problems [15, 26, 32, 71]. This is done in different ways such as tuning HSA
selection in memory consideration [2, 10, 25, 54], improving the neighborhood in pitch adjustment [22, 43],
self adaptive choosing of the algorithm parameters [13, 36, 56], using a different harmony memory structure
[9, 55], and hybridizing the algorithm with other optimization methods [60, 74, 77].

Recently, several researchers propose variations of HSA to improve its performance. Multi-population-
based harmony search algorithm that saves the best solutions in an external archive was developed [72]. In
order to improve the diversity of the population, it is divided into sub-populations. Each sub-population is
used to introduce a new harmony which replaces the worst solution. A modified harmony search with inter-
sect mutation operator was introduced by Yi et al. [79]. The harmony memory is divided into best and worst
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portions which are then used to develop the new harmony. Adaptive harmony search with best-based search
strategy is proposed by [40] to improve algorithm search efficiency. The algorithm uses the best solutions
in the pitch adjustment stage to generate the new solutions. In addition, the HMCR and PAR are tuned au-
tomatically during the search process based on the newly generated solutions. Another enhancement was
introduced by Wang et al. [75] with an improved differential harmony search algorithm. The algorithm uses
two differential evolutionmutation operators to improve the algorithm exploitation. In addition, the pitch ad-
justment step uses the best solution to generate the new solution. Lastly, selective refining harmony search
is introduced by Shabani et al. [63]. This algorithm takes the decision variable into consideration when de-
veloping the new harmony by changing only the variables with unwanted values from harmonies.

A significant shortcoming of the HSA is the inadequate exploitation when trying to solve complex prob-
lems [51]. Additionally, the algorithm needs setting the algorithm operators experimentally to find the suit-
able values that can improve the algorithm exploration and exploitation [34]. In order to improve the search
ability of HSA this paper introduces a new HSA called best polynomial harmony search algorithm with best
β–hill climbingwith two variations. The first one is called PHSβ–HC and the second one is called Imp. PHSβ–
HC. The proposed algorithm relies on replacing the random selection in memory consideration with roulette
wheel and tournament selection as they provided better performance [10]. In addition, the original pitch ad-
justment and random consideration are replaced with a modified version of highly disruptive polynomial
mutation presented in Hasan et al. [43]. The obtained new solution is then iteratively improved using a mod-
ified version of β-hill climbing as a local search. Such modification can help to maintain the diversity and
enhance the convergence speed of the modified HS algorithm. The algorithm is evaluated using standard
benchmark functions. The results demonstrate that the proposed algorithm outperforms other versions of
HSA. In addition, the new algorithm exceeds the performance of other evolutionary algorithms for some of
the benchmark functions.

The remainder of this paper is organized as follows: Section 2 gives an introduction onHSA. A description
of the proposed method is presented in Section 3. Analysis and discussion of the algorithm evaluation are
found in Section 4. Lastly, the paper concludes with possible future directions in Section 5.

2 The harmony search algorithm
Harmony Search algorithm (HSA) imitates how musicians improve their music iteratively [35]. During this
process, each musician plays on an instrument to achieve the best harmony. In HSA, each decision variable
represents a musician and the algorithm generates a value in order to find a global optimal solution.

The HSA consists of the following main steps [35]:

Step 1. Initialization of the problem and algorithm parameters:
The optimization problem can be modeled as a function f to be minimized or maximized as follows:

f (x⃗), xi ∈ Xi , i = 1, . . . , N .
Xi ∈ [Lxi , Uxi ] where Lxi and Uxi are the lower and upper bounds for the decision variable xi.
Note that N is the decision variables count; x⃗ represents the solution vector which consists of decision

variables xi; and, Xi symbolizes each decision variable xi possible values. Furthermore, during this step the
following HSA parameters are specified: Harmony Memory Size (HMS) (or the population size); Harmony
Memory Considering Rate (HMCR) which indicates if the decision variable value will be picked from the Har-
mony Memory (HM); Pitch Adjusting Rate (PAR) which determines if decision variable will be modified to a
neighboring value; distance bandwidth (BW) specifies how far is the change in the pitch adjustment operator;
and, the stop condition (i.e., Number of Improvisations (NI)).
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Step 2. Initialization of the harmony memory:
In step 2, the solution variables (xi) are initialized randomly with feasible values picked from the interval
between the upper and lower bounds [Lxi , Uxi ]. The HM is filled as follows:

xji = LBi + (UBi − LBi) × U(0, 1),
∀i = 1, 2, . . . , N and ∀j = 1, 2, . . . , HMS, and U(0, 1) generate a uniform random number between 0 and

1.

Step 3. Improvisation of a new harmony :
A new harmony vector x⃗′ = (x′1, x′2, x′3, . . . , x′N) is improvised using three rules: (1) memory consideration,
(2) random selection, and (3) pitch adjustment.

1. Memory consideration. The memory consideration considers the value of the decision variable x′i by
picking randomly the relevant value from the HM {x1i , x2i , . . . , xHMSi }. The selection of the values from
HM will be on a frequent rate of HMCR.

2. Pitch adjustment. In thememory consideration, a neighboring rule is applied based on the probability
of PAR where PAR ∈ (0, 1). The picked value in memory consideration for the decision variable x′i is
adjusted to its neighboring value as follows: x′i = x′i ± U(0, 1) × BW.

3. Randomconsideration. The decision variables that do not take values from thememory consideration
will pick a feasible value randomly with a probability of (1-HMCR).

Step 4. Harmony memory update:
In this step, the newly generated harmony vector in step 3 is evaluated to decide if it will be included in HM.
The objective function value for the vector x⃗′ = (x′1, x′2, x′3, . . . , x′N) is compared against the worst harmony
in the HM,. Then, it will replace the existing worst harmony in HM if it is better.

Step 5. Repeat until the stopping condition is met:
The algorithm is terminated if it reaches the maximum number of improvisation (NI). Otherwise, steps 3 and
4 are repeated.

3 Proposed Method: best polynomial harmony search algorithm
with best β-hill climbing

3.1 Best β-hill climbing

In this section, the β-hill climbing optimizer [7] and its modified version are explained. β-hill climbing starts
with a set of solutions randomly produced X = (X1, . . . , Xn). Note that n is the number of decision variables
where its selected value is feasible (i.e., within the variable range). The generated initial solution will be
iteratively modified in the hope of obtaining the optimal solution. The β-hill climbing optimizer relies on
using two operators to undergo updating the solution which are:N-operator and β-operator.

The N-operator is used for exploitation in the algorithm by applying a small change in the current solu-
tion. The operator is used to update the variable Xi, i ∈ [1, 2, . . . , n] for a randomly picked value from the
solution as follows:

X′
i = Xi ∓ U(0, 1) ×N ∃i ∈ [1, n].
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On the other hand, the β-operator is responsible for exploration by applying a uniform mutation to the
current solution. The decision variable is selected to be changed using the β parameter as follows:

X′′
i ←

{︃
Xk r ≤ β
X′
i otherwise.

Note that β is how often the uniform mutation is applied. The r operator is a random number between 0
and 1. The pseudo code of the β-hill climbing is presented in algorithm 1.

Algorithm 1 Original β–hill climbing pseudo-code
1: xi = LBi + (UBi − LBi) × U(0, 1), ∀i = 1, 2, 3, and 4 {The initial solution x}
2: Calculate f (x)
3: itr = 0
4: while (itr ≤ Max_Itr) do
5: x′ = improve(N (x))
6: for i = 1, · · · , N do
7: if (r ≤ β) then
8: x′i = LBi + (UBi − LBi) × U(0, 1)
9: end if { r ∈ [0, 1]}
10: end for
11: if f (x′) ≤ f (x) then
12: x = x′

13: end if
14: itr = itr + 1
15: end while

The proposed best β-hill climbing algorithm is shown in algorithm 2. We add the tournament selection
[11, 38] in addition to the random selection in the β-operator to improve the algorithm exploration. Further-
more, the N-operator is replaced with information from the global best to improvise the exploitation using
the following modified equation adapted from [23, 41]:

x′i = xBest,j + U(0, 1) × (xr2 ,j/v − xr3 ,j/v)

where r1 and r2 are two distinct integers from the range of available solutions, and v is the picked value in
the β-operator.

3.2 Selection in memory consideration of harmony search

The selection method used in HSA has an effect on improving the diversity of the generated new harmonies
[10] and as a result, affects the ability of the algorithm to escape from premature convergence. The selection
schemes canbe categorized into static anddynamic [19]. Thedynamic selection changes the chanceof picking
a solution at each iteration [10] such as roulettewheel selection.On the other hand, the static selection chance
of picking a solution stays fixed during searching such as tournament selection.

The proportionate (or Roulette wheel) selection scheme has been used in genetic algorithms [46]. This
selectionmethod relies onusing thefitness value of any solution and compared against other solutions fitness
values. The steps of this selection scheme are presented in algorithm 3.

As proposed in Albetar et al. [10], the tournament selection method picks randomly k solutions from the
HMand after that chooses the best fitness solution. Algorithm4 shows the procedure of tournament selection.

A comparison of six different selection methods for HSA in Albetar et al. [10] recommends the use of
roulette wheel and tournament selection as they outperform other methods in most of the evaluated func-
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Algorithm 2 The proposed best β–hill climbing pseudo-code
1: itr = 0
2: while (itr ≤ Max_Itr) do
3: i=random number from the range of available solutions
4: if (r ≤ SelectionRate) then
5: x′i = Tournament Selection
6: else
7: x′i = LBi + (UBi − LBi) × U(0, 1)
8: end if
9: v = x′i
10: for j = 1, · · · , N do
11: if (r ≤ β) then
12: x′j = LBj + (UBj − LBj) × U(0, 1)
13: Pick two distinct integers from the range of available solutions r1 and r2
14: x′i = xBest,j + U(0, 1) × (xr2 ,j/v − xr3 ,j/v)
15: end if { r ∈ [0, 1]}
16: end for
17: if f (x′) ≤ f (x) then
18: x = x′

19: end if
20: itr = itr + 1
21: end while

Algorithm 3 Pseudocode for the roulette wheel selection method
1: Set r ∼ U(0, 1).
2: Set found = False
3: Set sum_prob = 0.
4: Set k = 0.
5: while (i ≤ HMS) AND NOT(found) do
6: sum_prob = sum_prob + pi
7: if ( sum_prob ≥ r ) then
8: k = i
9: found = True
10: end if
11: i = i + 1
12: end while
13: Return(k)

Algorithm 4 Pseudo code for the tournament selection method
1: Set t=tournament size
2: Set T= randomly picked t solutions from the HM
3: Return index of the best solution from T

tions. The proposed HSA replaces the randommemory consideration in the original HSA with roulette wheel
or tournament selection based on a specific probability.
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3.3 Polynomial mutation

One of the Genetic Algorithms (GAs) operators ismutationwhich is used tomodify some features of the newly
generated chromosome [65]. The aim of applying such operation is to diversify the newly created solution to
escape from being stuck in local optima. Several mutation schemes are presented in Hasan et al. [43] to alter
the original HSA. The evaluation results when comparing six different mutation schemes prove that highly
disruptive polynomialmutation (shown in algorithm 5) gives better results in most of the cases. Our proposed
HSA applies amodified version of polynomialmutation (shown in algorithm 6) in both random consideration
and pitch adjustment operators. We call this version best polynomial mutation.

Algorithm 5 Highly disruptive polynomial mutation
i ←from the range of available solutions
r ← U[0, 1]
if (r ≤ Pm) then
δ1 ← xi−LBi

UBi−LBi
δ2 ← UBi−xi

UBi−LBi
r ← U[0, 1]

δq ←
{︃

[(2r) + (1 − 2r) * (1 − δ1)ηm+1]
1

ηm+1−1 if r ≤ 0.5
1 − [2(1 − r) + 2(r − 0.5) * (1 − δ2)ηm+1]

1
ηm+1 otherwise

xi ← xi + δq .(UBi − LBi)
end if

Note that n is the number of decision variables, Pm is the mutation probability and ηm is the distribution
index presented as a non-negative value. Each decision variables xi has an upper bound UBi and a lower
bound LBi.

Algorithm 6 The proposed best polynomial mutation
i ← taken from the range of available solutions
r ← U[0, 1]
if (r ≤ Pm) then
δ1 ← xi−LBi

UBi−LBi
δ2 ← UBi−xi

UBi−LBi
r ← U[0, 1]

δq ←
{︃

[(2r) + (1 − 2r) * (1 − δ1)ηm+1]
1

ηm+1−1 if r ≤ 0.5
1 − [2(1 − r) + 2(r − 0.5) * (1 − δ2)ηm+1]

1
ηm+1 otherwise

y = (LBi + (UBi − LBi) × U(0, 1))/xi
x′i ← xi + δq .y

end if

3.4 Best polynomial harmony search algorithm with best β-hill climbing

In order to improve the exploitation process of HSA, we embed the proposed best β-hill climbing as a local
search method to dig deeper into the search space. The best β-hill climbing will be used after we generate
the new harmony and it will iteratively work to improve it. In addition, we replace the techniques used in
the three operators of the original HSA with efficient techniques that will help in a better exploration of the
search space. The random selection in the memory consideration operator is replaced with roulette wheel
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Algorithm 7 The proposed PHSβ–HC algorithm
Set HMCR, PAR, NI, HMS, SelectionRate, β–SelectionRate, β–Rate, β, β–NI.
xji = LBi + (UBi − LBi) × U(0, 1), ∀i = 1, 2, . . . , N and ∀j = 1, 2, . . . , HMS {generate HM solutions}
Calculate(f (xj)), ∀j = (1, 2, . . . , HMS)
itr = 0
while (itr ≤ NI) do
for i = 1, · · · , N do
if (U(0, 1) ≤ HMCR) then
if (U(0, 1) ≤ SelectionRate) then
x′i = roulette wheel selection

else
x′i = tournament selection

end if
if (U(0, 1) ≤ PAR) then
x′i = best polynomial mutation { pitch adjustment }

end if
else
x′i=best polynomial mutation { random consideration }

end if
end for
The proposed best β–hill climbing shown in algorithm 2 improvise the generated new harmony x′

if (f (x′) < f (xworst)) then
Include x′ to the HM.
Exclude xworst from HM.

end if
itr = itr + 1

end while

or tournament selection schemes shown previously in algorithm 3 and 4. The random consideration and the
pitch adjustment use the proposed best polynomial mutation presented in algorithm 6. The proposed best
polynomial harmony search algorithm with best β–hill climbing (PHSβ–HC) steps are shown in algorithm 7.
The steps of the algorithm are presented in Figure 1.

After that, two new concepts are introduced to enhance the algorithm:

– Pick HMCR and PAR randomly from the range of values suggested in the literature [10, 54].
– In the β–HC algorithm, we improvise the best solution found so far, not the newly generated harmony

vector.

The updated algorithm is called improved PHSβ–HC algorithm (Imp. PHSβ–HC) and is shown in algo-
rithm 8. The steps of the algorithm are presented in Figure 2.

4 Experimental Results
In this section, the proposed PHSβ–HC algorithm is experimentally evaluated on 13 classic benchmark func-
tions shown in Table 1 [14, 39, 41, 78]. These functions cover a wide range of characteristics (i.e., unimodal,
multimodal, separable, and non-Separable) as shown in Table 1. The experiments were executed on an Intel
CORE i7 vPro 7th Genwith 16 GB of RAMwhere the proposed algorithm is coded usingMATLAB R2016a under
Windows 10.
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Figure 1: The flowchart of the proposed PHSβ–HC.

Figure 2: The flowchart of the proposed Imp. PHSβ–HC.

The dimensionality of all the test functions are set to D=30 which is similar to what has been done by
the comparative methods. An extensive testing of different parameter settings is performed to study their
effect on the convergence behaviour of the proposed methods. These parameters are set according to inten-
sive investigation with guidance from literature [6, 44, 54]. The parameter settings for the proposed PHSβ–
HC algorithm are as follows: HMS=100, HMCR=0.9, PAR=0.3, NI=50,000, SelectionRate=0.7, β–Rate=0.8, β–
SelectionRate=0.8, β=0.3, β–NI=200, and ηm = 10. On the other hand, The parameter settings for the proposed
improved PHSβ–HC algorithm are the same except HMCR=(U(0.9, 1), PAR=(U(0.1, 0.3).

The two proposed algorithms (PHSβ– HC and Imp. PHSβ–HC) are compared against the algorithms pre-
sented in Table 2 in terms ofmean and standard deviation. Themean and the standard deviation for the tested
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Algorithm 8 The proposed Imp. PHSβ–HC algorithm
Set HMCR, PAR, NI, HMS, SelectionRate, β–SelectionRate, β–Rate, β, β–NI.
xji = LBi + (UBi − LBi) × U(0, 1), ∀i = 1, 2, . . . , N and ∀j = 1, 2, . . . , HMS {generate HM solutions}
Calculate(f (xj)), ∀j = (1, 2, . . . , HMS)
itr = 0
while (itr ≤ NI) do
HMCR = U(0.9, 1)
PAR = U(0.1, 0.3)
for i = 1, · · · , N do
if (U(0, 1) ≤ HMCR) then
if (U(0, 1) ≤ SelectionRate) then
x′i = roulette wheel selection

else
x′i = tournament selection

end if
if (U(0, 1) ≤ PAR) then
x′i = best polynomial mutation { pitch adjustment }

end if
else
x′i=best polynomial mutation { random consideration }

end if
end for
if (f (x′) < f (xworst)) then
Include x′ to the HM.
Exclude xworst from HM.

end if
The proposed best β–hill climbing shown in algorithm 2 improvise the best solution found so far
itr = itr + 1

end while

benchmark functions using is shown in Table 5. The best algorithm with the best result for each function is
shown in bold text font. IGHS produces the best results for the five functions f1, f3, f4, f6, and f10. The

Table 1: The 13 classical test functions, Characteristics, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable

Function Name Characteristics Range fmin
f1 Sphere problem US [ − 100, 100]D 0
f2 Schwefel’s problem 2.22 UN [ − 10, 10]D 0
f3 Schwefel’s problem 1.2 UN [ − 100, 100]D 0
f4 Schwefel’s problem 2.21 US [ − 100, 100]D 0
f5 Rosenbrock’s function UN [ − 30, 30]D 0
f6 Step function US [ − 100, 100]D 0
f7 Quatric function with noise US [ − 1.28, 1.28]D 0
f8 Rastrigin’s function MS [ − 5.12, 5.12]D 0
f9 Ackley’s function MN [−32, 32]D 0
f10 Griewank function MN [ − 600, 600]D 0
f11 Penalized function 1 MN [ − 50, 50]D 0
f12 Penalized function 2 MN [ − 50, 50]D 0
f13 Alpine function MS [ − 10, 10]D 0
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IGHS algorithm uses improved global best technique which picks the best individuals of the members in the
generated solutions, which makes a balance between exploration and exploitation when solving (unimodal,
separable) and (unimodal, non-separable) functions.

On the other hand, the proposed Imp. PHSβ–HC generates the best solution for the four functions
f2, f5, f6, and f7. The algorithm escapes the problem of the local optimum. It is remarkable that the perfor-
mance of Imp. PHSβ–HC obtains the best results on four functions which are (unimodal , non-separable) and
(unimodal, separable). This is because the proposed algorithm is a hybrid technique that uses a population-
based technique empowered by a local search method.

In addition, the proposed algorithmPHSβ–HC generates the best results for the three functions f11, f12,
and f13. This algorithm explores the search space deeply and diversifies the selected individuals in each
iteration. As a result the algorithmobtains the best results for (multi-modal , non-separable) and (multi-modal,
separable) functions. From the results, we can conclude that the two proposed algorithms are competitive
when compared against the original HS and the other versions of HS in terms of obtaining the best solution
for the different function.

The proposed algorithms provide a tradeoff between exploration and exploitation. The algorithms are
capable of finding better solutions by adding diversity to the population which allows more exploration of
the search space. Furthermore, the local search used allows more focused exploitation to find better solu-
tions. The proposed Imp. PHSβ–HC algorithm has the ability to get out of a local minimum and can be effi-
ciently used for unimodal, non-separable and unimodal, separable functions. On the other hand, the pro-
posed PHSβ– HC algorithm is quite successful in optimizing multimodal, non-separable and multimodal,
separable functions.

In order to compare the performance of the proposed algorithms (i.e., PHSβ–HC and Imp. PHSβ–HC)
with multiple HS algorithms on all the benchmark function, the Friedman test is applied. Table 3 presents
the average rankings of the two proposed algorithms against five other HS algorithms. The results show that
the two proposed algorithms ranked 2nd and 3rd. On the other hand, IGHS obtains the best ranking.

Two-tailed t-test at a 0.05 significance level is applied to see if there is significant evidence that the mean
of the proposed method is different than other methods means. The obtained results show that the proposed
method PHSβ–HCmean is different than themethodsHS, NGHS, andOHS. In addition, the proposedmethod
Imp. PHSβ–HC mean is different than the methods HS, ACHS, GHS, NGHS, OHS, and IGHS.

4.1 Comparisons with other evolutionary algorithms (EAs)

The twoproposed algorithms are comparedwith similar EAs includingparticle swarmoptimization (PSO) and
differential evolution (DE) algorithms presented in Table 4. Table 6 compares between the two proposed al-
gorithms (PHSβ–HC and Imp. PHSβ–HC) and four versions of PSO. The four versions of PSO are HPSO-TVAC,
CLPSO, FPSO, and OLPSO-G. The results are shown in Table 6 show that the proposed PHSβ–HC algorithm
generates the best result for the functions f6, f11, and f12. In addition, the proposed Imp. PHSβ–HC algo-
rithm is able to overcome the other algorithms for functions f6 and f8. The CLPSO algorithm obtains the best
result for four functions f5, f6, f7, and f10.

Table 2: Key to comparative methods for the first group experiment with multiple HS algorithms.

No. Abbr Name Citation
1 HS Harmony Search algorithm [35]
2 ACHS HS with the adaptive control parameters strategy [73]
3 GHS Global best HS [54]
4 OHS HS with opposition-based learning [30]
5 IGHS Improved global-best HS [28]
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Table 3: Average rankings of HS, ACHS, GHS, OHS, IGHS, PHSβ–HC, Imp. PHSβ–HC on the 13 test functions gained by the Fried-
man test

Algorithm Mean Rank
HS 5.81
ACHS 5.42
GHS 4.58
OHS 5.73
IGHS 3.27
PHSβ–HC 4.73
Imp. PHSβ–HC 3.81

Table 4: Key to comparative particle swarm optimization (PSO) and differential evolution (DE) algorithms.

No. Abbr Name Citation
1 HPSO-TVAC Self-organizing hierarchical particle swarm optimizer [59]
2 CLPSO Comprehensive learning particle swarm optimizer [49]
3 FPSO Fully informed particle swarm [53]
4 OLPSO-G Orthogonal learning particle swarm optimization [80]
5 jDE Self adaptive differential evolution [21]
6 JADE Adaptive differential evolution with optional external archive [81]
7 SaDE Differential evolution algorithm with strategy adaptation [58]

In addition, the two proposed algorithms are comparedwith four variations of DEwhich are DE [66], jDE,
JADE, and SaDE. It is clear from Table 7 that the proposed PHSβ–HC algorithm produces the best results for
the functions f6, f11, and f12. Furthermore, the proposed Imp. PHSβ–HC algorithm outperforms the other
algorithms for functions f6 and f8. The JADE algorithm outperform other algorithms in the five functions
f1, f2, f3, f7, and f9.

Two-tailed t-test at a 0.05 significance level is applied to see if there is significant evidence that the mean
of the proposed method is different than other methods means. The results show that the proposed method
PHSβ– HC mean is different than the methods HPSOTVAC, CLPSO, FPSO, and OLPSOG. Furthermore, the
proposed method Imp. PHSβ–HC mean is different than the methods HPSOTVAC, CLPSO, and OLPSOG. On
the other hand, the proposedmethods PHSβ–HC and Imp. PHSβ–HCmean isnot different than themethods
DE, jDE, JADE, and SaDE.

Table 8 present a summarization of the best obtained results between the comparative methods. The
proposed methods are shown in bold font.

5 Conclusion and Future Work
This paper presented twonewvariations of harmony searchwith local search andupdated harmony selection
consideration, pitch adjustment and random consideration. The harmony selection utilized roulette wheel
and tournament selection. The pitch adjustment and random consideration used a modified version of poly-
nomialmutation called best polynomialmutation. These changeswere introduced to improve the exploration
of the algorithm. A recently proposed local search method called β–HC is used to improve the exploitation of
the algorithm. The first proposed algorithm is called PHSβ–HC. In this algorithm, theHMCR andPAR are fixed
and the local search is applied to the generated new harmony to improve it. The second proposed algorithm
is called Imp. PHSβ–HC. This algorithm uses a randomly picked HMCR and PAR from an identified range
based on the literature suggestion. The local search is applied to the best solution currently in the harmony
memory.
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Table 8: Best obtained results between comparative methods

function Best result HS Best result PSO Best result DE
f1 IGHS HPSO-TVAC JADE
f2 Imp. PHSβ–HC OLPSO-G JADE
f3 IGHS - -
f4 IGHS - -
f5 Imp. PHSβ–HC CLPSO JADE
f6 All functions All functions Imp. PHSβ–HC; PHS-β–HC
f7 GHS; Imp. PHSβ–HC CLPSO JADE
f8 Imp. PHSβ–HC Imp. PHSβ–HC Imp. PHSβ–HC
f9 HS OLPSO-G JADE
f10 IGHS CLPSO SaDE
f11 PHS-β–HC PHS-β–HC PHS-β–HC
f12 PHS-β–HC textbfPHS-β–HC PHS-β–HC
f13 PHS-β–HC - PHS-β–HC

The experimental results demonstrated the competitiveness of the two new proposed algorithms when
compared against variations of HS, PSO, and DE. In the future, we will use the two proposed algorithms
to solve economic dispatch and job scheduling problems. Another future direction can be evaluating the
algorithm performance on the functions with other smaller or larger dimensions.
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