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Abstract: To solve the problem that traditional trajectory prediction methods cannot meet the requirements
of high-precision, multi-dimensional and real-time prediction, a 4D trajectory prediction model based on
the backpropagation (BP) neural network was studied. First, the hierarchical clustering algorithm and the
k-means clustering algorithm were adopted to analyze the total flight time. Then, cubic spline interpolation
was used to interpolate the flight position to extract the main trajectory feature. The 4D trajectory prediction
model was based on the BP neural network. It was trained by Automatic Dependent Surveillance — Broadcast
trajectory from Qingdao to Beijing and used to predict the flight trajectory at future moments. In this paper,
the model is evaluated by the common measurement index such as maximum absolute error, mean absolute
error and root mean square error. It also gives an analysis and comparison of the predicted over-point time,
the predicted over-point altitude, the actual over-point time and the actual over-point altitude. The results
indicate that the predicted 4D trajectory is close to the real flight data, and the time error at the crossing point
is no more than 1 min and the altitude error at the crossing point is no more than 50 m, which is of high
accuracy.
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1 Introduction

4D trajectory prediction is one of the key technologies of air traffic management (ATM) [4]. It is of great
significance for enhancing air traffic safety, accelerating air traffic flow and improving ATM efficiency. At
present, Single Europe Sky Air Traffic Management Research and New Generation Air Transportation Sys-
tems (NextGen) have proposed the concept of trajectory-based operation (TBO) and elevated TBO to a new
level: Management by Trajectory [3, 15]. At the same time, China’s New Generation of Air Traffic Management
System also proposed that “TBO is used to manage airspace and trajectory, and decision making in each time
period is related to 4D trajectory.” Thus, it can be seen that accurate prediction and deduction analysis of the
trajectory is an essential component of the safe operation of air traffic in the future.

Traditional trajectory prediction methods are mostly based on aerodynamic models and hybrid estima-
tion theory [12, 17, 20, 22]. Based on the kinematics model, Kaneshige et al. [10] proposed a trajectory predic-
tion algorithm that can improve the reliability and robustness of trajectory operation. The authors simulated
the flight prediction process through simulation experiments and found that trajectory-based prediction can
reduce energy consumption and improve the efficiency of flight operations [10]. Li et al. proposed a prediction
method of the general aviation aircraft trajectory basic model based on data fusion, which combined the basic
aircraft flight model with data fusion to predict and form a complete 4D trajectory [11]. The above research
work is based on the aircraft dynamics model, which has the disadvantages of too many parameters and low
prediction accuracy. In addition, there is a method of mixed estimation theory. Liu and Hwang predicted the
transition between flight states through the random linear mixed system and studied the key technology of
NextGen-4D trajectory prediction and conflict detection [13]. Since flight modal changes are closely related to
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Figure 1: The Proposed BP-Based 4D Trajectory Prediction Framework.

real-time status, Hwang and Seah proposed a state-dependent modal switching update algorithm [7]. Maeder
et al. introduced wind speed and wind direction information, proposed a state-dependent hybrid estimation
algorithm and realized trajectory prediction [14]. In recent years, with the rise of air traffic “big data” research,
the use of data mining for 4D trajectory prediction has become an emerging trajectory prediction technology.
Wu and Pan proposed a linear regression statistical prediction model to solve the problem of large error in
4D flight trajectory prediction of the traditional aircraft dynamics model [19]. Although this model is more
accurate than the traditional aircraft dynamics model, it is still a linear model, and each flight must be mod-
eled, so the data volume and required storage space are large. Through the analysis of the historical radar
trajectory, Chen et al. constructed the mapping relationship between the altitude, speed, approach flight dis-
tance and approach flight time of the aircraft when entering the port by using the radial basis function neural
network, which provided a reference for the prediction of approach flight time, but did not predict the flight
position [2]. On the target trajectory prediction in a hot spot area, Qian et al. proposed an air target trajectory
prediction model based on the backpropagation (BP) neural network, through which the target trajectory was
predicted in advance [16]. However, the model only considered the longitude and latitude of the trajectory,
and did not take into account the over-point time and altitude of the trajectory.

In view of the fact that most of the existing methods predict the trajectory in two-dimensional space (hor-
izontal plane), this paper proposes a method for accurately predicting the trajectory in 4D space. As shown in
Figure 1, our method mainly includes three parts: trajectory feature extraction, BP neural network building
and 4D trajectory real-time prediction.

2 Trajectory Feature Extraction Based on ADS-B Data Analysis

ADS-B (Automatic Dependent Surveillance — Broadcast) is a kind of aircraft operation monitoring technology
based on satellite positioning and ground/air data link communication, which can automatically transmit the
4D position data (time, longitude, latitude and altitude) and aircraft identification information from airborne
equipment to the ground through the ground-air data link [8]. By mining historical ADS-B data, valuable
feature information can be extracted for trajectory prediction.

2.1 Analysis of ADS-B Trajectory Data

The data returned by ADS-B is the trajectory point information of each aircraft at a certain time during the
whole flight [18]. The data sampling period of ADS-Bis about 1 s. Therefore, the trajectory data of each aircraft
is not continuous, but consists of a series of discrete trajectory points.

Suppose there is a historical trajectory set L, and the number of historical trajectories is N; then,

L=FLy,Ly,...,Lg,...,LyQ,

where L; represents the kth trajectory in the set L.
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Suppose each trajectory is composed of n trajectory points; then,
Lk=fm1,m2,...,m,-,...,mng,

where m; represents the ith trajectory point on the trajectory L.
Each trajectory point consists of s attribute variables; then,

m; = fmy, mi, ..., myj, ..., misQ,

where m;; represents the jth attribute of the trajectory point m;.
Each ADS-B trajectory data collected in this paper contains the following attributes: m; = {time, ICAO
address code, flight number, longitude, latitude, altitude, velocity, heading, vertical speed}.

2.2 Trajectory Feature Extraction

Trajectory feature of the aircraft at time t is expressed as follows: X(t) = ft, lon, lat, alt, velg, where t, lon,
lat, alt, vel represent time, longitude, latitude, altitude and velocity, respectively. The trajectory feature of the
sequence points reflects the trajectory of the aircraft. The time information is extracted by clustering meth-
ods. The position and velocity information of the aircraft is mined by cubic spline interpolation. The trajectory
feature of aircraft is constructed and used as the input data of the trajectory prediction model.

2.2.1 Cluster Analysis of Total Flight Time

When the aircraft is flying on a particular route, the total flight time is generally fixed. However, due to
weather, regulation and ADS-B receiving flight trajectory incompleteness, the total flight time will fluctu-
ate within a certain range. Therefore, by analyzing multiple flight time data, the central value of the aircraft’s
flight time fluctuation on the air route from Qingdao to Beijing is obtained.

In this paper, agglomeration hierarchical clustering and k-means clustering are adopted. The traditional
Euclidean distance is used to measure the similarity of flight time [1]. Suppose the flight times of the two
trajectories are t; and ¢;; then the Euclidean distance of flight times of the two trajectories is

a—
d(l,]) = (t fj) . @)

The single-linkage method was used to cluster the aggregation hierarchy and draw a tree graph to ana-
lyze the distribution of flight time, so as to facilitate the subsequent k-means clustering division. The k-means
algorithm process is as follows:

a) the number of clusters k is determined by the hierarchical clustering, and k flight times are selected as the
cluster centroid;

b) calculate the distance between each flight time and the cluster centroid, and classify it into the cluster
closest to the centroid;

¢) the time average of each cluster is taken as the centroid of the cluster;

d) repeat steps (b) and (c) until the cluster’s centroid is no longer changing.

Thus, the unified running time T, is obtained by the hierarchical clustering algorithm and the k-means
clustering algorithm.

2.2.2 Time Normalization and Position Interpolation

In Section 2.2.1, we have drawn the unified running time T} of flights from Qingdao to Beijing. Next, we
need to normalize the flight’s historical flight data to the time interval [0 Tp]. The normalization method [19]
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is as follows. Let T; denote the flying time of the ith trajectory and M;; denote the position at time t.
After normalizing to the time interval [0 Tp], the time when the aircraft is at position M, is changed to ¢
Then
t t
T, ©
Since the trajectory has missing points in the receiving process, it is impossible to ensure that the trajec-
tory point is available at each moment, so the normalized flight data needs to be interpolated. We use cubic
spline interpolation [5, 6] to divide the trajectory into longitude, latitude, altitude and velocity dimensions
and interpolate on each dimension, and obtain the interpolation results. In this way, the historical flight
position at the same time interval T is obtained.
Through the above methods, the aircraft trajectory features are extracted, and these features are input
into the neural network. The neural network is used to learn the running rules of the trajectory on the current
route, so as to realize the accurate prediction of the trajectory.

3 4D Trajectory Prediction Model Based on the BP Network

The aircraft trajectory data is a sequence arranged according to the time sequence of its occurrence. Therefore,
we can regard the trajectory as a multivariate time series. The BP neural network is one of the most widely
used and matured artificial neural networks [9, 21]. It is a multi-layer feedforward network trained by the
error BP algorithm. Therefore, the BP neural network is used as the learning model of trajectory prediction.

3.1 Analysis of Model Parameters

The parameters of the neural network model affect the learning rate and prediction accuracy of the model,
which is a crucial factor for the establishment of the model. Through the analysis of neural network
parameters, the neural network structure is optimized to improve the accuracy of model prediction.

3.1.1 Selection of the Time Window

The selection of the time window determines the number of nodes in the input layer and the number of nodes
in the output layer, and has a certain influence on the prediction accuracy of the model. That is to say, the
number of training time points of the target trajectory is different, and the model scale is different. If the input
dimension is small, the cumulative influence of the historical trajectory information cannot be fully consid-
ered, and the prediction accuracy is reduced; if the input dimension is large, the model is more complicated
and the degree of fitting is too high. Therefore, in this paper, we set the time window as 3, that is, the trajectory
data of the first three moments predicts the trajectory at the next moment.

After the window is selected, starting from the first data of the time, longitude, latitude altitude and veloc-
ity sequences, the trajectory point data at time t 2, timet 1and time ¢ is taken as the training samples,
and the trajectory point at time ¢ + 1 is used as labels. Then the time window is moved one bit backward,
starting with the second data of the sequence, and the training samples and targets are selected in the same
way until the last trajectory point is selected.

3.1.2 Selection of the Number of Hidden Layer Nodes

The number of input and output layer nodes of the model is determined by the length of the time window
and the feature of the training samples. In the training process, the number of hidden layer nodes has a great
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influence on the prediction accuracy of the model. If the number of nodes is set too small, the neural network
will be under-fitting. If the number of nodes is set too high, the training time of the model will increase and
even cause the over-fitting phenomenon. For the selection of the number of hidden layer nodes, there is an
empirical formula as follows:

N=p(n+m)+a, 3)

where m and n are the number of nodes of the input layer and the output layer, respectively, and a denotes a
constant in [0 10].

3.2 Structure of the 4D Trajectory Prediction Model

According to the above analysis of the model parameters and the splitting of training samples and labels, a
BP neural network 4D trajectory prediction model is established. The model structure is shown in Figure 2.
The model has three layers: x is the input layer; the number of nodes is 15; the input data is the time, lon-
gitude, latitude, altitude and velocity information at time ¢ 2, ¢ 1 and t; h is the hidden layer with
14 nodes; y is the output layer with four nodes, which correspond to the time, longitude, latitude and alti-
tude information of the predicted time ¢ + 1. w;; is the connection weight of the input layer node and the
hidden layer node, g; is the offset from the input layer to the hidden layer, vj is the connection weight of
the hidden layer node and the output layer node, and b; is the offset from the hidden layer to the output
layer.

The training process of the model is realized by the forward propagation of the trajectory data and the
BP of the error. The specific training process is as follows:
a) Initialize the connection weights.

Input Hidden Output
layer layer layer

Figure 2: BP Neural Network 4D Trajectory Prediction Model.
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b) Enter a training sample to find the output of each node in the hidden layer:
1

8 > L
%hj =f WijXi + a;
i=1 . %)

= 1

_f(x):1+e x

c) Calculate the output of each node of the output layer:

X
Y= hjvj+ by (5)
j=1
d) Revise the value of vj:
Vik = Vi + At i), (6)

where t is the true data of the trajectory sample, and A is the learning rate.
e) Revise the value of wy:

XK
wii = wii AR hxi vt yi)- @
k=1

f) The offset g; is updated as follows:

X
aj=a;+Ahj(1  hy) vl yi)- ®)
k=1

g) The offset by is updated as follows:
by = b+ Altx  yi). )

h) If the conditions for the end of training are met, the end of training process; otherwise, repeat steps (b) to

(g).

4 Experiments and Results Analysis

In this paper, the aircraft ADS-B trajectory from Qingdao International Airport (ZSQD) to Beijing Capital Inter-
national Airport (ZBAA) is used for simulation experiments. Flight numbers involved are CCA1526, CCA1580,
CBJ5568, CCA1576, CCA1570, CDG4651, CDG4653, CES5227, CES5195 and CES5193. The flight path is shown in
Figure 3. Figure 4 shows the three-dimensional display of these trajectory data in the coordinates of longitude,
latitude and altitude.

4.1 Cluster Simulation Results of Flying Time

First, the flying time of the trajectory is clustered by agglomeration hierarchy, and a clustering tree is drawn
to analyze the time distribution, as shown in Figure 5. It can be seen from Figure 5 that it is better to classify
the trajectory flying time into three categories. Next, k-means clustering is performed on the trajectory flying
time, and the number of class clusters is k = 3. The clustering results are shown in Figure 6. As can be seen
from Figure 6, there are some points belonging to a class with a large flying time and some points belonging
to a class with a small flying time. Since these points have a great influence on the running time T), of the tra-
jectory, the mean value of the remaining sample points is taken as the unified running time of the trajectory
after these points are eliminated, and the obtained T} is 2620 s.
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Figure 3: Flight Path from Qingdao to Beijing.
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Figure 4: Three-Dimensional Display of Trajectory Data.
4.2 Interpolation Results of Flight Position

Figure 7 is an example of interpolation results for trajectory positions. The dotted lines in (A), (B) and (C) rep-
resent cubic spline curves, and the points on the curves represent interpolation data points. Figure 7A is the
interpolation of longitude. Figure 7B is the interpolation of latitude. Figure 7C is the interpolation of altitude.
As can be seen from Figure 7, after cubic spline interpolations, the position points (longitude, latitude and
altitude) of the flight trajectory become uniform, the flight trajectory data with the same time interval are
obtained, and the multi-dimensional flight trajectory features are extracted.

4.3 Results of 4D Trajectory Prediction

We set the target error of the network as 1 10 °, thelearning rate as A = 0.01 and the maximum number
of iterations as 1000. We select 140 sets of trajectory as training data (91,420 trajectory points), and select
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Figure 5: Flight Time Hierarchical Clustering Tree.
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Figure 6: Time k-Means Clustering Results.

5% of the training data as validation; the remaining 20 sets are used as test data (13,060 trajectory points).
The test set is predicted based on the determined optimal BP neural network structure and the trained model
parameters. The prediction results are shown in Figures 8 and 9.

It can be seen from Figures 8 and 9 that the predicted trajectory is consistent with the actual trajectory,
and the predicted trajectory is very close to the real trajectory. The 3D prediction of the trajectory is shown
in Figures 8A and 9A. The 3D prediction trajectory better represents the running curve of the real trajectory.
In Figures 8A and 9A, although the model encounters slightly large errors when considering the altitude
dimension, it can still reflect the actual altitude of the trajectory. Figures 8B and 9B show latitude and lon-
gitude prediction of the trajectory. The predicted value of latitude and longitude is almost overlapping with
the expected value.

The predicted error results of specific trajectory points are discussed below. Five trajectory points are
selected from the predicted trajectory for CDG4651 flight, and the comparison results of the predicted over-
point time, the predicted over-point altitude, the actual over-point time and the actual over-point altitude
are presented, as shown in Table 1 (converted the altitude unit feet to meters, and 1 foot was equal to 0.3048
meters).
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Figure 7: Example of Flight Trajectory Interpolation Results.
(A) Longitude interpolation, (B) latitude interpolation and (C) altitude interpolation.

As can be seen from Table 1, during the prediction process, the prediction time error of the model is con-
trolled within 1 min, and the prediction altitude can also reflect the trend of the actual trajectory, with the
maximum error not exceeding 50 m, so the prediction accuracy is relatively high.
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Figure 8: Trajectory Prediction of CES5193 Flight.
(A) 3D prediction of the trajectory and (B) latitude and longitude prediction of the trajectory.
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Figure 9: Trajectory Prediction of CDG4651 Flight.
(A) 3D prediction of the trajectory and (B) latitude and longitude prediction of the trajectory.

Table 1: Comparison of Trajectory Point Predicted Results.

Trajectory Predicted over-point time/ Error (s) Predicted over-point altitude/ Error (min)
point actual over-point time actual over-point altitude

1 07:39:06/07:38:44 22 7813/7803 10
2 07:41:13/07:41:04 9 7760/7795 35
3 07:45:30/07:45:20 10 7148/7186 38
4 07:52:18/07:51:48 30 5436/5441 5
5 08:00:26/08:01:12 46 4538/4491 47

In this paper, the common measurement indicators such as maximum absolute error (MAX), mean abso-
lute error (MAE) and root mean square error (RMSE) are used to evaluate the trajectory prediction model. The
smaller the value of the three indicators, the higher the accuracy of the trajectory prediction model describing
the experimental data. The three error indicators are defined by the following formulas:

MAX = max f; ]/‘\,- I/fi (10)
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1 X o~
MAE=—ifi fil (11)
i=1
" #1
1 X~ 20
RMSE = - ifi fii , (12)

where f; is the actual trajectory, and f; is the predicted trajectory.

We used the same data set. The statistical results of the BP and support vector machine (SVM) models’
prediction errors for a single trajectory feature, which include time, longitude, latitude and altitude, are given
in Table 2. As can be seen from Table 2, the prediction errors of the two models for a single trajectory feature
are all within the acceptable range, but the prediction error of the BP model is smaller than that of the SVM,
and the prediction accuracy is higher. This indicates that the 4D trajectory prediction model based on the BP
neural network in this paper can meet the requirements of aircraft trajectory monitoring.

Finally, a quantitative comparison of the 4D trajectory prediction model in this paper, the statistical
regression model in [19] and the BP neural network model in [16] is made. The results are compared from
the aspects of prediction dimension, prediction timeliness, method linearity and prediction error index, as
shown in Table 3.

As can be seen from Table 3, the 4D trajectory prediction model based on the BP neural network in this
paper has realized the prediction of the trajectory in 4D space, while the BP neural network model in [16]
has only predicted the longitude and latitude of the trajectory, without considering the over-point time and
over-point altitude of the trajectory, so the prediction dimension is insufficient. This paper implements the
real-time prediction of the 4D trajectory. Reference [19] mentions the fitting of the trajectory by the statistical
regression method, which cannot meet the requirements of real-time prediction. The model output of the lit-
erature [16] is the target regular trajectory, which also fails to reflect the real-time performance of trajectory
predictions. Moreover, statistical regression is a linear method, and the trajectory has nonlinear characteris-
tics. The nonlinear model of this paper can approximate the nonlinear mapping relationship of the trajectory,
which can better predict the flight trend of the aircraft. In addition, our method gives the prediction accuracy
evaluation index of the model — MAX, MAE and RMSE, which are not included in [16, 19]. Therefore, under
the premise of ensuring real-time performance, the model in this paper can well predict multi-dimensional
and high-precision trajectory.

Table 2: Comparison of Model Prediction Accuracy.

Model Single feature MAX MAE RMSE
SVM Time 0.0579 0.0253 0.0437
Longitude 0.0011 0.0571 0.0660
Latitude 0.0036 0.0229 0.0453
Altitude 0.1761 67.3046 94.4650
BP Time 0.0156 0.0041 0.0044
Longitude 0.0012 0.0216 0.0322
Latitude 0.0014 0.0219 0.0342
Altitude 0.1303 34.1205 48.2853

Table 3: Comparison of Different Models.

Model 4D Real-time Nonlinear High accuracy MAX MAE RMSE
Our model Yes Yes Yes Yes Yes Yes Yes
Reference [19] Yes No No No No No No

Reference [16] No No Yes Yes No No No
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5 Conclusions

In this paper, the 4D trajectory prediction model based on the BP neural network is studied, which overcomes
the limitations and drawbacks of the existing trajectory prediction method, and can accurately predict the air-
craft trajectory in 4D space. Our trajectory prediction method can effectively learn and identify the trajectory
features such as time, longitude, latitude and altitude of the aircraft, so that the 4D trajectory of the aircraft
can be predicted timelessly and accurately. It provides a basis for grasping air traffic flow and ATM decision
making, and has certain theoretical and practical significance. Since the predicted results are also affected
by other external factors such as weather, regulatory factors and so on, for future work, it will improve the
model by considering the addition of weather information data such as wind speed and regulatory factors.

Funding: Key Program of Natural Science Foundation of Tianjin, Grant Number: 17JCZDJC30900, National
Science Foundation for Young Scientists of China, Grant Number: 61601467.
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