DE GRUYTER J. Intell. Syst. 2021; 30:115-129 8

Research Article

A. P. Ajees*, K. J. Abrar, Mary Idicula Sumam, and M. Sreenathan
A Deep Level Tagger for Malayalam, a
Morphologically Rich Language

https://doi.org/10.1515/jisys-2019-0070
Received Mar 14, 2019; accepted Aug 15, 2019

Abstract: In recent years, there has been tremendous growth in the amount of natural language text through
various sources. Computational analysis of this text has got considerable attention among the NLP re-
searchers. Automatic analysis and representation of natural language text is a step by step procedure. Deep
level tagging is one of such steps applied over the text. In this paper, we demonstrate a methodology for deep
level tagging of Malayalam text. Deep level tagging is the process of assigning deeper level information to
every noun and verb in the text along with normal POS tags. In this study, we move towards a direction that is
not much explored in the case of Malayalam language. Malayalam is a morphologically rich and agglutinative
language. The morphological features of the language are effectively utilized for the computational analysis
of Malayalam text. The language level details required for the study are provided by Thunjath Ezhuthachan
Malayalam University, Tirur.

Keywords: Malayalam, Natural Language Processing, Word embedding, Support Vector Machine, Multi-Layer
Perceptron, Deep level tagger
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1 Introduction

Internet is the fastest growing resource in this world. A lot of texts and images are added to the web day
by day. Whenever a person wants to get some information from this data, he must go through all the docu-
ments and search for the required content. This is a laborious task which requires an enormous amount of
time. Expanding availability of data has demanded extensive analysis of it through automated mechanisms.
Automatic text summarization, semantic graph construction, anaphora resolution, etc. are some such mech-
anisms that bring this notion to reality. Deep level tagger is a middle way technology towards the automatic
analysis of natural language text. It is the process of assigning deeper level information to each and every
noun and verb in a text document.

Malayalam is a resource-constrained morphologically rich language. It is the native language of Kerala
and is also spoken in different parts of India such as Lakshadweep, Pondicherry, Mahi, etc. It is one of the
scheduled languages in India with a speaking population count of 38 million [22]. Malayalam belongs to the
family of Dravidian languages with the inherited characteristics of Sanskrit, the language of Vedas. The highly
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productive morphology of Malayalam results in the generation of highly ambiguous and compound words. It
is also a free word order language with a common format of SOV (subject, object, verb) [11].

Automatic analysis of verbs and nouns in sentences is an essential task for the computational under-
standing of the natural language text. Different studies are conducted to analyze the morphology of Malay-
alam words [4, 10, 15, 18, 20, 21]. Morphological analyzers take one word at a time and analyze its structure,
syntax, and morphological properties [5]. Identifying the morphological properties of agglutinative words is
a challenging task. However, it does not contribute much to the semantic understanding of the document.
Here comes the advantage of deep level taggers. Deep level taggers are tools that help to process the text in
a semantically meaningful manner. It considers all the nouns and verbs in a document and generates an
in-depth analysis, which can be effectively utilized for higher end tasks such as anaphora resolution, text
summarization, sentiment analysis, etc. The in-depth analysis of nouns includes capturing the number, gen-
der and case information associated with them. Whereas, the in-depth analysis of verbs includes capturing
the tense, aspect and modality information associated with them.

The number and gender information associated with nouns is essential for building applications like
anaphora resolutions systems. Since anaphors used in a particular discourse refers to an antecedent which
in turn agree with the number and gender of the anaphor, finding the gender and number information asso-
ciated with the nouns in a document is of utmost importance in anaphora resolution. Similarly, identifying
the subject and object in a sentence is very important when we are dealing with a machine translation sys-
tem. Case information associated with the nouns can provide linguistic cues about the subject and object in
a sentence [6]. A proper understanding of the natural language text is possible only after the identification of
tense, aspect, and modality features associated with the verbs in a document. Tense indicates the location of
the verb with respect to time and aspect indicate how the verb extends over time. Aspect applies equally to
the present and future tense. Whereas, the mood of a verb indicates the degree of necessity or obligation.

Proper analysis and classification of verbs are of prime importance in applications like sentiment anal-
ysis, abstractive text summarization, machine translation, etc. Many grammarians and poets have classi-
fied verbs in Malayalam to a number of different classes. Prof. A R Rajarajavarma, who also known as "Ker-
ala panini’ for his contributions to Malayalam grammar, classified Malayalam verbs to 38 different classes
[2]. Later his classification has been analyzed in detail and found not suitable for computational purposes.
Suranad kunjanpillai, a historian and scholar of Malayalam language, also classified verbs into different cat-
egories [14]. He considered tense suffixes for the classification of verbs into 16 categories. The morphemic
changes occurring in the root verbs during the addition of tense suffixes to root verbs are taken care for the
classification. Similarly, Wickremasinghe and Menon classified verbs into eight classes and Sekhar classified
them to 12 classes [7]. However, none of these classifications considered *'TAM’ information for their analysis.
Hence, we decided to go for a verb classifier based on the ’'TAM’ information associated with it. Table 1 shows
the different classes of verbs in Malayalam according to the 'TAM’ information associated with it. Each class
indicate the *'TAM’ details associated with a particular verb.

There are numerous challenges associated with the deep level tagging of Malayalam words. The primary
issue is the lack of a proper morphological analyzer for Malayalam. Even though different works are reported
in the morphological analysis of Malayalam text, lack of a full-fledged system for morphological analysis is
still a dilemma. The highly productive morphology of Malayalam results in the generation of words which
are often ambiguous. Thus, many word forms can be generated from a single root word with the addition of
suffixes. Moreover, the suffixes, in turn, carry a lot of information regarding the meaning of the text. Hence
effective utilization of morphological features is necessary to handle all these problems from the perspective
of an NLP researcher.

In this paper, we propose a machine learning based deep level tagger for Malayalam. Tagging is performed
using the power of word embeddings and suffix stripping based classification methodologies. In comparison
with the reported works in the field, the main contributions of this work are

— A machine learning based methodology for the in-depth analysis of nouns and verbs
— The power of word embedding is effectively utilized for the analysis of nouns
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— Morphological features of the language are exploited in such a way that it could be utilized for machine
learning algorithms

— Linguistic knowledge is incorporated in the study with the help of language researchers from Malay-
alam university

— Provides better results and can be incorporated into futuristic systems.

The structure of this article is as follows. Section 2 briefly reviews the related works. Section 3 describes
the proposed method. Section 4 discusses the experiments and results. And section 5 concludes the article
along with some directions for future works.

Table 1: Different classes of verbs according to 'TAM’ analysis

Verb Label Class name
Verb PAST Past Tense
Verb_PRES Present Tense
Verb_FUT Future Tense

Verb_mood_IMPR
Verb_mood_CMPL
Verb_mood_CMPL_NEG
Verb_mood_PROS
Verb_mood_PRMS
Verb_mood_0OPT
Verb_mood_PRCT
Verb_mood_PRCT_NEG
Verb_mood_DSRV
Verb_mood_ABLT
Verb_mood_IRLS
Verb_mood_PURP
Verb_mood_COND
Verb_mood_STSF
Verb_mood_MONI
Verb_aspect_PROG_SAT
Verb_aspect_PROG_INS
Verb_aspect_PROG_ITR
Verb_aspect_PRF_SMPL
Verb_aspect_PRF_CTP
Verb_aspect_PRF_RMT
Verb_aspect_HBTL

Imperative Mood
Compulsive Mood
Negative Compulsive Mood
Promissive Mood
Permissive Mood
Optative Mood
Precative Mood
Negative Precative Mood
Desiderative Mood
Abilitative Mood
Irrealis Mood
Purposive Mood
Conditional Mood
Satisfactive Mood
Monitory Mood
Progressive Stative Aspect

Progressive Instantaneous Aspect

Progressive Iterative Aspect
Simple Perfect Aspect

Contemporaneous Perfect Aspect

Remote Perfect Aspect
Habitual Aspect

2 Related work

Numerous works are reported for the morphological analysis of Malayalam language [4, 10, 15, 18, 20, 21].
However, none of them deals with deep level tagging. Most of the reported works in morphological analysis
use rule-based or stochastic methods for morphological analysis. Based on our knowledge, only very few
works are reported in machine learning based morphological analysis [6, 19]. Rajeev et al. [16] reported a
suffix stripping based morph-analyzer for Malayalam. Sandhi rules are used to identify the root forms of
words through suffix stripping methodologies. According to them, suffix stripping is the simplest method that
achieves morphological analysis rather than brute force and other approaches. A morphological analyzer, as
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well as a morphological generator for Malayalam-Tamil machine translation, is reported by Jisha et al. in 2011
[4]. They made use of a lexicon and a bilingual dictionary to perform both the operations. Through their work,
they have proved suffix separation as an efficient method for morphological analysis.

Latha et al. reported a system for splitting compound words in Malayalam language [10]. They used a
rule-based system for compound word splitting with an accuracy of 90%. Lexicon tries are utilized in their
study, which is not reported by any other similar systems. A hybrid approach for the morphological analysis of
Malayalam is reported in 2012 [21]. A combination of paradigm and suffix stripping approaches experimented
in that study. ’Lttoolbox’, an essential module in the appertium package is the backbone of the proposed hy-
brid system. It reported an average accuracy of 83.67% on test data. According to the authors, the performance
of the system can be improved by refining the morphological dictionary and suffix list employed in the study.
Recently, a machine learning based approach to suffix separation in Malayalam was reported by Marypriya et
al. [19]. They discussed a method to generate a sandhi rule annotated dataset for Malayalam words. The pre-
pared dataset was used to develop a machine learning model which could automatically predict the sandhi
rules associated with Malayalam words. The issues encountered in developing a compound word splitting
tool for the Malayalam language is also incorporated in their study.

One work that considered the morphological analysis of verbs in Malayalam was reported by Sunil et
al. in 2012 [20]. They proposed a methodology for the morphological analysis and synthesis of verbs using
a paradigm approach. A paradigm defines all the word forms of a given stem and also provides a feature
structure with every word form. Another work in verb analysis was reported by R Ravindrakumar et al. in 2011
[7]. They classified verbs based on the past tense forms and the morphogenic changes in the verb roots. This
classification is applicable to rule-based machine translation systems and other similar NLP applications.
Based on our knowledge, no work is reported in the deep level tagging of Malayalam words.

3 Proposed Method

The proposed methodology is illustrated in figure 1. It shows the general block diagram of deep level tagger
for verbs and nouns in Malayalam. The general architecture contains three modules. The first module is the

Malayalam Text

1

Preprocessing

POS Tagging

A\ 4

Animate Noun Identification

Animate Nouns Verbs

Non-animate Nouns
A 4 A 4

Number, Gender and Number and Case
Case Identification Identification

TAM Identification |

A 4 A 4 A\ 4

Nouns with Number, Gender Nouns with Number and Verbs with TAM
and Case Information Case Information Information

Figure 1: Architecture of the proposed system



DE GRUYTER A Deep Level Tagger for Malayalam = 119

POS tagging module, where the words from the preprocessed input text are tagged with POS information. The
tags used for this study belong to the BIS (Bureau of Indian Standards) tag set. BIS tagset is a hierarchical tag
set that exploits the linguistic hierarchy among different categories. The second module is the animate noun
identification module, which identifies the animate nouns (nouns that refer to humans and animals) from
the set of noun words. And the final module is the deep level tagging module which unveils the in-depth
information associated with nouns and verbs.

3.1 POS Tagging

In the first phase, the preprocessed Malayalam text is provided to the POS tagging module. POS tagging is the
preliminary step in most of the NLP applications. It identifies the grammatical category of words in a natural
language text. In our study, we have used a CRF based POS tagger developed in our department [1]. CRFs are
exceptionally powerful tools for sequence labelling tasks. A piece of text tagged with the above-mentioned
tagger is shown in figure 2. These tags are from a limited set of tags (36) developed by BIS (Bureau of Indian
Standards). Different tags and their descriptions are given in table 2.

Table 2: BIS Tagset and its Description

Tag Description Tag Description
N_NN Common noun RB Adverb
N_NNP Proper noun PSP Postposition
N_NST Locative noun cc_ccb Co-ordinator
V_VM Main verb QT_QTC Cardinals
V_VM_VF Finite verb QT_QTO Ordinals
V_VM_VNF Non-finite verb RD_RDF Foreign words
V_VM_VINF Infinite verb RD_SYM Symbol
V_VN Verbal noun RD_PUNC Punctuation
V_VAUX Auxiliary verb RD_UNK Unknown
J) Adjective RD_ECH Echo words
DM_DMD Deictic demonstrative RP_INTF Intensifier particle
DM_DMR Relative demonstrative RP_NEG Negation particle
DM_DMQ  Wh-word(Demonstrative) QT_QTF General quantifier
PR_PRP Personal pronoun CC_Ccs Subordinator
PR_PRF Reflexive pronoun CC_CCS_UT Quotative
PR_PRL Relative pronoun RP_RPD Default particle
PR_PRC Reciprocal pronoun RP_CL Classifier particle
PR_PRQ Wh-word(Pronoun) RP_IN]J Interjection particle

oy @led seem. mowoneamoe alagmeman @nm'km’lqgmuﬂ snimiimileaguoes gsamoel epemauakokea’ god
@MIBYe U @heag @remuamilmiaund @mfkwc%amm noewelges o, slnimniesgoes odpea oo
emsaridlomaion “d §' geomooeon] suMLESYS POIAIN EYEROET. BE:&ID) OGOl pulaes omokn
alleyanid yerdlamoghwoay, momyd @hkeeg movemmikeoenos dlsagmmaomom woepelges gmdialal

|

mmyaB\N_NNP iglaac\N_NN =eemo\N_NN moveamileasosni\V_VAUX oiegmemaon\V_VM_VNF @crno’lmfk}dmamﬂ\RB
enfimdimfleagouas\N_NN gss20ai41] eesmauaiailas\N_NN gad\N_NN @omce\N_NN aniswoud\N_NNP @laag\N_NN
@pemuomileaauod\N_NN @rm‘lnbnémm}\]] ndawelkyeas\N_NNP @omi\N_NN .\RDPUNC smimimisagoyes\N_NN almoea\N_NN
@2p0@\N_NNP emonddlesaailoe\N_NNP “\RD_SYM 2l\N_NNP g\N_NNP “\RD_SYM geomgn@owi\RB sumueqs\V_VM_VNF
oA\ V_VM_UNF @mesdasms\N_NN eexdbdsons\N_NN mmt\%nancm"ml\N_NN sudaes\N_NN cmemia\1] aleosuB\N_NN
serElamagkoosii V_VAUX , \RD_SYM| goomynd\N_NNP @hamd\N_NN mowemmileaiemosmi\V_VAUX dlagmeamm\V_VM_VNF
uepoligyes\N_NNP qcrno”mi'kg\NfNN . \RDPUNC

Figure 2: Sample text showing the input and output of the POS Tagging module
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3.2 Animate Noun Identification

The second module of the architecture is the animate noun identification module which identifies the animate
information associated with nouns. The case information associated with the nouns is also identified in this
module. A rule-based module is employed for this purpose (case identification). A set of suffixes correspond-
ing to each case are stored in a look-up table which returns the case information associated with the nouns.
The case identified nouns from the tagged text is provided to an animate noun classifier. The animate noun
classifier is developed with the help of a set of nouns belonging to both animate and non-animate category.
Table 3 shows the class-wise statistics of the training data for this classifier.

Table 3: Class-wise statistics of the training data (animate noun identifier)

Noun type Count
Animate nouns 43016
Non-animate nouns 66414

In our study, we have used five families of classification algorithms, including Naive Bayes, KNN, SVM,
Random Forest and MLP, as a basis for finding the best classifier on our data. Among the different classifica-
tion techniques, the SVM algorithm- a popular technique for pattern recognition and classification, gave the
best performance in comparison with the other classification algorithms. Given a set of instance-label pairs,
the SVM algorithm maps the training instances into a higher dimensional space by applying a kernel function
and then discovers a linear separable hyperplane with maximal margin. Provided a set of training samples
(xi, ¥i), i=1,2,....n, the SVM algorithm tries to optimize the following equation:

min 1/2WTW + C &;
w,b,e / Z 1 (1)
n=1

subject to y;(WT®d(x;) + b) > 1 - ¢;

where x; € R are training instances belonging to different classes, y € R" is a vector such that y; € {1, -1}",
i are slack variables and C is the penalty parameter of the error term.

Figure 3 shows the detailed architecture of module 2. Since words are symbolic constituents, it can’t be di-
rectly fed into neural networks. Hence words are converted into numeric values using Word2vec [9]. Word2vec
is one of the easiest ways to produce the vector representation of words in any language. The dimension of
the word embeddings also has a considerable impact on the performance of the classifier. Figure 4 shows the
output of the second module on the sample text.

Preprocessed Training Data Preprocessed Testing Data
A 4
Converting Words to Vectors Converting Words to Vectors
using Wordembedding using Wordembedding
\ 4 \ 4
SVM Training > Trained model
\ 4
Nouns with Animate
Information

Figure 3: Architecture of the animate noun identification module
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[[' mesgeacd\N_NNP', 'cudesodlem\N_NN', ' nﬂSLﬁ&NBr‘m\V_UH_VNF' , ' aftuosesuocsruoemi\V_VAUX ', 'aflee\N_NNP',
"@oi\N_NNP', "@mmeaf\N_NN', 'ocsmeaimd\N_NNP', '&coglace\V_VM_VNF', '.\RDPUNC'], ['eomaiad\N_NNP',

' orosoruaeile:\ 31", '@gﬁn,da;uﬂ\N_NN' , " msomlooudas\N_NN', ' anllemalgmonge\N_NN", 'eam\1]', oudaodlae
\N_NN', 'emmmeswge\N_NN', '@rsom\N_NST', 'sumwgeszom\V_VM_VUNF', 'c@meedaem:\N_NN', " wdikuss\N_NN',

' amaalla@\N_NN', 'mleome\RB', 'pwd@mmon\V_VM_UNF', 'coigomleoari\V_VAUX', 'aecdss\PR_PRP', ' smrs’lcmo@d
\N_NN', " alsm@om\V_VM_VNF', 'eeyges\N_NNP', 'eageqsomed-\N_NN', '.\RDPUNC'], ['momy\N_NNP', 'alse
A\N_NN', "godal\N_NN', 'wmaggliN_NN', 'aemend\N_NNP', '=scidalem\N_NNP', '@endamme\V_VM_VF', ".\RDPUNC'],
[ ada\V_VM_VNF", 'msomikoimre\V_VM_VF', '.\RDPUNC']

l

[[ " meamezod\N_NNP\Nom\Ani', 'cudssodlem\N_NN\Acc\Nani', ‘njé];ﬂmcg«n\v_\m_\.fNF' . alounsestun.stuneri
\W_VAUX', 'cllec\N_NNP\Nom\Ani', '"@cy\N_NNP\Nom\Ani', 'gmmece/\N_NN'\Acc\Nani, 'esrecilmd\N_NN\Loc\Nani',
' @atogly@\V_VM_VNF', '.\RDPUNC'], ['somymiled\N_NNP\Loc\Nani', 'cuocumwile\]]", '@gl«ad&cﬁ\rl_NN\Nom\Nani' .
' msomkwodas\N_NN\Dat\Nanil', 'enflomalogeogs\N_NN\Nom\Nanil', 'esim\J]1', 'cudesodlee’\N_NN\Acc\Nani',

' prnavaeoagys\N_NN\Nom\Nani', '@egomm\N_NST', 'sumwgeszrm\V_VM_VNF', '®me@ocemns\N_NN\Nom\Nani',

' umileusad\N_NN\Nom\Nani', '&salsud\N_NN\Nom\Nani', 'oflecm@-\RB', 'swdmmrn\V_VM_VNF', 'ccisooianen
\W_VAUX', '@ecudss\PR_PRP', ‘emélemar;d\N_NN\Nom\Nani' » @ \V_VM_VNF', 'oepmes\N_NN\Ins\Ani',

' euglengomod-\N_NN\Nom\Nani', '.\RD_PUNC'], ['gomy\N_NNP\Nom\Nani', 'allgs\N_NN\Nom\Nani', 'god~f\PSP',
' wmagm\N_NN\Nom\Nani', '@emsmd\N_NNP\Nom\Ani', 'mlnj’g'm’l@m:\N_NNP\Nom\Ani’ , e\ V_VM_VF', '.
\RDPUNC'], ['axda\V_VN', 'msoofloimae\V_VM_VF', '.\RDPUNC']]

Figure 4: Sample text showing the input and output of the Animate Noun Identification module

3.3 Deep Level Tagging

The final module of the architecture is the deep level tagging module, which performs the in-depth analysis of
nouns and verbs in the text document. The verbs and animate nouns from the previous modules are fed to the
deep level tagging module. The deep level information includes the number and gender details associated
with the animate nouns. Whereas the deep level information associated with verbs include tense, aspect
and modality details. Since Malayalam is a morphologically rich language, the morphological richness of the
language is utilized to capture the in-depth information associated with nouns and verbs. The morphological
features are captured with the help of a suffix stripper which can strip the suffixes of different length. Figure 6

Preprocessed Training Data Preprocessed Testing Data

A 4
Extracting Suffixes of Extracting Suffixes of
Different Length Different Length
A 4 A 4
Converting Suffixes to Numeric Converting Suffixes to Numeric

Values using Dictvectorizer Values using Dictvectorizer

\ 4 A 4

MLP Training —.l Trained model |

Nouns and Verbs with
Deep Level Information

Figure 5: General architecture of the Deep level tagging module

Table 4: Class-wise statistics of the training data (number-gender classifier)

Class Label Count
Singular male M/S 5000
Singular female F/S 5000
Plural male M/P 1400
Plural female F/P 1200
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[[ ' meemensd\N_NNP\Nom\ARL\M/S", 'mudssmodlam\N_NN\Acc\Nani", ' njl's'lgaaltg«n\v_VM_UNF\Uerb_FUT' )
' allapnacenncenoem\V_VAUX' , 'almol\N_NNP\Nom\ARi\M/S", '@ey\N_NNP\Nom\Ani\M/S', '@mmeel\N_NN'\Acc\Nani,

' ogrealmd \N_NN\Loc\Nani', '@aoglymi\V_VM_VNF\Verb_PAST', '.\RDPUNC'], ['scmoiad\N_NNP\Loc\Nani',
" oruomummke:\ 33", 'ms’ln,dcazuﬁ\N_NN\Nom\Nani ', 'msowlwoadasi\N_NN\Dat\Nanil', 'snfemalomoc\N_NN\Nom\Nani',
"eaim\ 11", rudsodlee\N_NN\Acc\Nani', 'smmoaezoge\N_NN\NomiNani', 'aegom\N_NST', 'sumogesrzon

\V_VM_VNF\Verb_FUT', '@me@dalma\N_NN\Nom\Nanil', 'w@ileea’\N_NN\Nom\Nani’, 'ssallac@\N_NN\Nom\Nani',

' mlerm@-\RB"', 'podEmon\V_VM_VNF\Verb_FUT', '~oigomlenem\V_VAUX', 'e@ecds\PR_PRP', 'mméumand\N_NN\Nom
\Nani', 'alsmeom\V_VM_VNF\Verb_FUT', 'sojges\N_NN\Ins\Ani\M/5', 'egeqgomoi-\N_NN\Nom\Nani', *
\RD_PUNC'], ['gocmy\N_NNP\Nom\Nani', 'allg\N_NN\Nom\Nani', 'gmdN\PSP', 'wmagm\N_NN\Nom\Nani', 'awmsnd
\N_NNP\Nom\Ani\M/S', 'saijalea\N_NNP\Nom\Ani\M/S', 'sendlmoe\V_VM_VF\Verb_aspect_PRF_SMPL', '
\RDPUNC'1, ['ada\V_VN', 'msooiwlmmre\V_VM_VF\Verb_aspect_PRF_SMPL', '.\RDPUNC']]

Figure 6: Sample text showing the output of the deep level tagging module

shows the output of the deep level tagger on sample text. Table 4 shows the class-wise statistics of the training
data for the number and gender identification classifier.

Similar to the second module, a bunch of classifiers were attempted to build an in-depth analyzer for
verbs and nouns. MLP-a feed-forward artificial neural network classifier showed the best performance in
this context and chosen as the in-depth analyzer for verbs and nouns. MLP employs a supervised learning
approach called backpropagation for training. Multiple layers and non-linear activation function differentiate
MLP from a linear perceptron. Relu-the most frequently used activation in neural networks is utilized in our
network. It is analogous to a half-wave rectifier in electrical circuits and is described by the equation:

F(x) = max(0, x) )

From the animate/non-animate tagged text, words with the animate tag are provided to the number and
gender identification module. A suffix stripper is used to extract suffixes of different lengths, which in turn
acts as the feature set for the number and gender identification module. Similarly, words with verb tag are
provided to the "TAM’ information identification module. Here also, the suffixes of different length are ex-
tracted by a suffix stripper, which provides the feature set for "TAM’ identification module. MLP classifier
with 25 labelled classes is prepared for this purpose. Each class indicates the 'TAM’ information associated
with that particular verb. Figure 5 shows the general architecture of module 3. In our experiments, we have
used different number of hidden layers with various sizes for MLP. The number of hidden layers and their size
determines the accuracy and speed of the classifier.

4 Experiments and Results

In this section, the experiments performed on each phase of the architecture are discussed in detail. The
first step is the preprocessing of raw Malayalam text, where sentence segmentation and word tokenization
operations are carried out. We have used NLTK implementation of sentence tokenizer and word tokenizer
for this purpose [8]. The preprocessed raw text is supplied to POS tagging module, where the tagged text is
generated. The reported accuracy of the POS tagger employed for this purpose is 91.2%, which appears to be a
comparable performance in low resource language such as Malayalam. The second module of the architecture
deals with case labelling and animate noun identification. Suffixes corresponding to different cases are stored
in the look-up table. For each noun word, suffixes of length 2,3,4 and 5 are extracted and sent to the look-up
table. If any match is found, the corresponding case is triggered. Otherwise, the nominative case is returned
by the rule-based module. Different cases and their corresponding suffix list is shown in table 5.

Animate noun identification is performed using a machine learning approach. The dataset used for this
purpose contains a set of nouns belonging to both the animate and non-animate category. Each noun word
from the dataset is labelled with the corresponding class information (animate or non-animate). A set of
109430 nouns are prepared in this way and used for building the machine learning model. Word2vec is utilized
to convert nouns into vectors of numeric values. Word2vec [17] model is created using a corpus of 27 lakhs
words from different domains. Skip-gram configuration is employed to build the Word2vec model.
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Table 5: Case markers and corresponding suffixes

CASE SUFFIXES
Accusative e
Sociative odu
Dative kku , nu
Genitive aal
Instrumental ude, nte
Locative il

Nominative  All remaining suffixes

Different classification algorithms are used to build the classifier model [13]. The performance of different
classification algorithms on our dataset is shown in figure 7. It is clear from the figure that SVM outperforms
all the remaining algorithms on discriminating the animate nouns from non-animate nouns. The accuracy
achieved by the SVM classifier is 95.1%, beating the second best model by a margin of 1.01%. Parameter tun-
ing of SVM classifier is carried out using GridsearchCV from Scikit learn. The best performance is obtained
for a gamma value of ’0.01’ and C value of ’10’. Size of the word vectors also has a considerable impact on
the performance of the classifier. In our experiments, we have considered different word vector sizes on dif-
ferent classifier configurations. The performance of the best-functioned model on different word vector sizes
is shown in figure 8. As shown in the figure, the best performance is given by a vector size of 200 and above.
Hence, we have finalized our word vector size to be 200.

Animate noun identification task

MLP

Naive Bayes KNN Random Forest SVM
Different Classifiers

95 100
|

Accuracy

85
I

80

Figure 7: Performance of different classifiers on animate identification task

Effect of word embedding size on accuracy
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I
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I
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Figure 8: Performance of the animate noun identification network for different word vector sizes
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The third module of the architecture deals with the in-depth analysis of verbs and animate nouns. Here
too, different classifiers are attempted to distinguish the best performing classifier on our dataset. Unlike
in the earlier scenario, MLP outperformed the remaining classifiers on both the tasks CTAM’ analysis and
number-gender analysis). Figures 9 and 10 illustrate this point. First, we consider the case of number and
gender identification classifier. Training data required to build the first classifier is a list of names belonging
to different classes. A list of 12600 names belonging to the different categories is prepared for this purpose.
Suffixes of length 1 to 8 are used as features for each name. Since machine learning algorithms require fea-
tures as numeric values, we have converted our feature set (suffixes) to numeric values using Dictvectorizer,
a python functionality [3]. We have chosen Dictvectorizer over Word2vec in this phase, since they are well
suited in encoding categorical features with multiple possible values. Moreover, Word2vec is appropriate in
situations where the syntactic and semantic roles of words are necessary. Dictvectorizer is employed in sit-
uations where the feature set is a list of dictionaries rather than a list of categorical items. In our case, the
feature set is a list of dictionaries where each dictionary refers to a set of suffixes corresponding to a single
word. Thus, the total feature size is 7468.

Number and Gender identification task

Naive Bayes Random Forest

95

Accuracy
a0
1

80

Different Classifiers

Figure 9: Performance of different classifiers on number and gender identification task

TAM identification task

Naive Bayes Random Forest
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|
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1

85
1

80

Different Classifiers

Figure 10: Performance of different classifiers on "TAM’ analysis task

Different configurations of the MLP classifier were attempted in our study. A smaller network was not
able to represent the data efficiently and increasing the number of layers did not improve the accuracy sig-
nificantly. Hence, we have experimentally finalized our hidden layer configuration as (2,100), where 2 is the
number of hidden layers, and 100 is the size of each hidden layer. 'Relu’ is used as the activation function
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and ’Adam’ as the optimizer. The performance of the number and gender classifier with the different number
of features is shown in figure 11. From the figure, it is clear that the accuracy of the system increases with
the increase in suffix length and the maximum accuracy is achieved when the number of features is 10. The
maximum accuracy obtained by the classifier is 96.21%.

100

Accuracy m—S 1 ffive s 1-4

25 S uffixes -6

—S e s 1-8

a0 ‘__f/,( uffixes1-2
/

e S {2 5 1-110
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75 T T T T T 1
2000 4000 6000 2000 L0000 12000

Number of words in the training data

Figure 11: Effect of different features on the performance of the number and gender identification classifier

The configuration of the ’'TAM’ analysis neural network is not completely different from the number and
gender neural network. The only difference is in the number of classes and training data. The training data
contains 1205 verbs belonging to 25 classes. Similar to the number and gender network, suffixes of differ-
ent length are used as features. Here also, the feature vector is converted to a numeric representation using
Dictvectorizer, a python functionality. A neural network with two hidden layers constitutes the developed
model. The parameters of the network are exactly the same as the number and gender identification neural
network. The maximum performance obtained by the classifier is 99.17%. Performance of the 'TAM’ analysis
model on different sets of features is shown in figure 12. From the figure, it can be inferred that the accuracy
of the model increases with the increase in suffix features.
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Figure 12: Effect of different features on the performance of the "TAM’ identification classifier
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The training data required for all our experiments are prepared with the help of the students from Malay-
alam University, Tirur. All the datasets used in this study are made publicly available through our department
website 'www.cs.cusat.ac.in’. The final accuracy of the complete system is 90.2%. The detailed information
regarding the overall performance of the proposed system is shown in table 6.

Table 6: Overall performance of the proposed system

Module-1 Training Testing
Number of words 230371 57517
Accuracy 91.2%
Module-2 Training Testing
Number of words 87544 21886
Accuracy 95.1%

Module-3-A (number and gender)

Training Testing

Number of words

10080 2520

Accuracy

96.21%

Module-3-B (TAM)

Training Testing

Number of words 964 241
Accuracy 99.17%
Overall accuracy 90.2%

4.1 Analysis

To better understand the performance of our models on the constructed datasets, a detailed analysis is also
performed. ROC curve-the best metric for evaluating the performance of any classifier is employed to evaluate
the performance of each model. The area under the ROC curve represents the degree or measure of separa-
bility between different classes predicted by the classifier. Figure 13 tells us, how much the animate noun
identification model is capable of distinguishing between the two classes-animate noun and non-animate
noun. Similarly, figures 14 and 15 show the ROC curves for the number-gender identification model and *'TAM’
identification model respectively. All the models are relatively good in demonstrating the tradeoff between
different classes across various settings of the classifiers. Nevertheless, we still can observe that the area un-

Receiverrating characteristic example
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True Positive Rate

02

— ROC curve (area = 0.95)
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Figure 13: ROC curve of the animate noun classifier
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ROC curve for Number and Gender classifier
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Figure 14: ROC curve of the number and gender classifier
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Figure 15: ROC curve of the 'TAM’ analysis classifier

der "TAM’ curve is mostly higher than the area under the curves of the other two models. This is contributed
by the expressive nature of suffix endings in Malayalam verbs.

We have observed several instances where the Word2vec based word embedding vectors helped in iden-
tifying the animate information of nouns. We have also observed some instances where the animate nouns
were tagged as non-animate nouns. The major reason for this misclassification is the lack of word embedding
vectors (Out of Vocabulary problem) for such nouns. Hence, an effective word representation method (free
from OOV problem) capturing the syntactic and semantic properties of words should be formulated to avoid
such errors. To determine the contribution of suffixes of different length (as compared to simply using a fixed
length suffix) towards classification accuracy, we ran our model with suffixes of different length (ranging from
1to 12). The performance of the models (in-depth analysis) without using the suffixes of different lengths were
even lower than the proposed combined feature systems. This shows us the impact of suffix level features on
computational processing of Malayalam text.

Further, the effect of different classifiers on the training data is also verified. It is found that SVM-one of
the state-of-the-art tools for binary classification outperformed the other classifiers on animate noun identi-
fication task. This is due to the explicit determination of decision boundaries (by the SVM algorithm) from
the training data for binary classification problems. However, this is not true in the case of other classifica-
tion tasks (TAM and number-gender classification), since they are multiclass classification problems. MLP is
found to be the best choice for such tasks. Theoretically, MLP can estimate any function or equivalently able
to find any mappings [12].
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5 Conclusion

In this paper, we have discussed a deep level tagger for Malayalam, a morphologically rich and resource-poor
language. The exclusive feature of the proposed system is its in-depth analysis of verbs and nouns. The deeper
level analysis of nouns and verbs helps in the semantic understanding of the natural language text and can be
used for various language processing applications. The main reason we preferred a machine learning based
approach rather than traditional rule-based approaches is its convenience, scalability and low operational
cost. We have used word embeddings to recognize the animate nouns from non-animate nouns, which is
a fresh thought that is not proposed by any other researchers in this domain. A study on *'TAM’ analysis of
Malayalam verbs is also presented in this paper. The morphological richness of Malayalam language is uti-
lized in this study with the help of suffix stripping algorithms. In our experiments, we have observed that the
increase in morphological features increases the accuracy of the system. Hence incorporating morphological
features in the analysis of natural language text appears to be promising for languages such as Malayalam.
In future, we would like to study the effect of deep level tagged text on different semantic processing appli-
cations of the natural language text such as anaphora resolution, sentiment analysis, text summarization,
machine translation, etc.

Acknowledgement: We want to thank the students of Malayalam University, Tirur for their seamless cooper-
ation to this project.
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