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Abstract: In the discipline of software development, effort estimation renders a pivotal role. For the success-
ful development of the project, an unambiguous estimation is necessitated. But there is the inadequacy of
standard methods for estimating an effort which is applicable to all projects. Hence, to procure the best way
of estimating the effort becomes an indispensable need of the projectmanager.Mathematicalmodels are only
mediocre in performing accurate estimation. On that account, we opt for analogy-based effort estimation by
means of some soft computing techniques which rely on historical effort estimation data of the successfully
completed projects to estimate the effort. So in a thorough study to improve the accuracy, models are gener-
ated for the clusters of the datasets with the confidence that data within the cluster have similar properties.
This paper aims mainly on the analysis of some of the techniques to improve the effort prediction accuracy.
Here the research starts with analyzing the correlation coefficient of the selected datasets. Then the process
moves through the analysis of classification accuracy, clustering accuracy, mean magnitude of relative error
and prediction accuracy based on some machine learning methods. Finally, a bio-inspired firefly algorithm
with fuzzy analogy is applied on the datasets to produce good estimation accuracy.

Keywords: Effort estimation; analogy-based estimation; classification; clustering; firefly optimization; fuzzy
analogy; linear regression; multilayer perceptron; k-means algorithm; EM algorithm.

1 Introduction
The need for software project effort prediction has been increasing for the last 20 years. The predicted effort
is used to find the overall cost and duration of the project. This predictionmay lead to either underestimation
or overestimation [5]. If it is over or under, it causes several problems in the business plans of the company.
Especially, it causes several budgeting problems and schedule slippage [24].

The first thought of software effort estimation camewith the presentation of the rule of thumb [13] during
the 1950s. Thereafter in the 1960s, a new approach for software effort estimation was unveiled as the conse-
quence of an expert judgment where domain experts applied their prior experiences to discern the effort of
the new project [22]. The existing representations on linear equations and regression analysis were proposed
[6] in 1965. The first automated tool for effort estimation was Interactive Productivity and Quality [13] estab-
lished by the IBM researchers. Subsequently, Barry Boehm put forward a newmathematical model based on
the regression analysis named COCOMO (COst COnstructive MOdel). This model predicts the software project
effort based on the type of project. Ultimately, he propounded another model named COCOMO II which was
an augmented version of COCOMO [5]. Furthermore, themodels such as Putnam’s Software LifecycleManage-
ment [24], Software Evaluation and Estimation of Resources – Software Estimating Model [6] and Function
Point (FP) by Albrecht were also used for effort prediction [1]. Analogy-based estimation (ABE) was fostered
in the year 1997 [27] as a comparative method.
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Estimation by analogy is one form of expert judgment and it is also known as top-down estimating
which mainly determines the duration to finish the project. Analogous estimating uses similar past projects’
historical data to estimate the duration or cost of a current project, thus the term used analogy.

ABE put the estimated project alongsidewith the already completed projects on the basis of ameasure, as
an uncomplicated process. It distinguished adjacent analogies on account of similarity [3, 16, 20]. It deploys
distance measures. Distance measure bestows how closely one project is tantamount to other projects. Each
of the attributes’ values taken for effort estimation is applied to the distance measure to descry how contigu-
ous one object is to another. Henceforth, similar data objects are aggregated. Under the aegis of similar data
objects, software project effort is estimated [10, 25].

Themachine learningmethodof estimationhas beenpopular for the last twodecades, becausemachine–
learning-based estimation gives more accurate results when compared with the previous two methods [12].
The machine learning method uses artificial intelligence-based techniques to give better results.

The software project effort estimation was really complicated throughout the rudimentary stages of soft-
waredevelopment. Toprovidemore veracious results, the experience of the erstwhile project effort estimation
attributes is taken into consideration. On these attributes,mining techniques are adapted to procure the effort
prediction for the current project.

Predominantly, datamining bestows as amethod to turn rawdata into profitable and intelligent informa-
tion. It has numerate functionalities [10], one among which is clustering. Clustering pertains to the grouping
of data objects. Clustering follows unsupervised learning where class labels are not used. Preferably, it pro-
creates labels for data objects. The objects are grouped or clustered based on the principle of minimizing the
interclass similarity and maximizing the intraclass similarity. Particularly, all objects of that cluster are sim-
ilar once it is formed. But data objects from other clusters are dissimilar. Clustering is otherwise known as
data segmentation because clustering allocates large datasets into groups on the basis of their similarity [25].
Here how clusters of different methods improve the accuracy of the effort estimation is the main core of this
paper.

2 Related Work
Estimation based on analogy compares the estimated project with the already completed projects based on
somemeasures.Here themeasurement ismostly distancemeasures. Thedistancemeasure is used to findhow
closely one project is related to other projects. In the initial stages of software development, software project
effort estimation is very difficult. To get the more accurate results, the experience of the previous projects’
effort estimation attributes is taken into consideration. On these, attributes mining techniques are applied to
get the effort prediction for the current project.

Scarcely there is any model which estimates the software project effort for all domains and all kinds of
applications. It is on the basis of existing models that the new models are proposed. To bring forth the effort
of the new one, analogy-based estimation confronts the completed projects. Eventually, Khatibi et al. [18]
contemplated a novel idea of a framework to combine analogy-based effort estimation and neural networks
to ameliorate the accuracy of effort prediction. Then Humayun and Gang [12] assured that machine learning
methods give us more accurate effort estimation as compared to the traditional methods of effort estimation.

Malathi and Sridhar [21] proposed an approach based on fuzzy logic, linguistic quantifiers and analogy-
based reasoning. Theirmain aimwas to enhance the performance of the effort estimation in software projects
while dealing with numerical and categorical data. Azzeh and Nassif [4] together proposed a new method
to discover the most prudent set of analogies from dataset characteristics to support the different size of
datasets that have a lot of categorical features. Also, Prabhakar and Dutta [23] advocated a comparative study
on artificial neural network (ANN) and support vector machine for predicting the software effort.

Araujo et al. [2] presented a multilayer dilation-erosion-linear perceptron (MDELP) model to solve prob-
lems in effort estimation. They used hybrid morphological operator and a linear operator to solve problems.
Kaushik et al. [15] combined fuzzy inference systemand cuckoo optimization (COA-FIS) for showing improved
accuracy in software cost estimation.
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The performance of the cluster subtrees is better than cluster supertrees as congenial to the studies of
Kocaguneli et al. [19]. The performance of the analogy-based effort estimation can be improved by selecting
project data from regions with small variance.

The hybrid method was planned by Khatibi et al. [17] to reduce the inconsistent project which leads to
attaining higher accuracy for effort estimation. The similar projects were obtained in the different clusters
through the C-means clustering technique. These clusters comprise the reliable and appropriate projects
to estimate the development effort which are suitable to be employed by the ABE and ANN methods. The
Fuzzy-class point (FCP) approachwas intended by Satapathy et al. [26] for evaluating the cost of different soft-
ware projects. In order to attain better accuracy, the FCP approach employs the various adaptive regression
techniques for effort estimation.

Borandag et al. [7] prepared a case study for the software size estimation through MK II FPA (MK II Func-
tion Point Analysis) and FPmethods. They usedMK II FPA and FPmethods to estimate the size of the software
product. They implemented the same software by different developers to study their size estimation process
and the size of the developed software is compared.

Yücalar et al. [30] developed a new multiple linear regression analysis-based effort estimation method.
They used the datasets of the 10 software projects developed by 4 well-established software companies in
Turkey. The results of the proposed method were compared with the standard Use Case Point method and
simple linear regression-based effort estimation method.

3 Proposed Work
Finding the accurate effort for the new software project based on the historical dataset is a burden for project
managers as there is no such model to estimate the effort directly. They have to think in many ways to reach
an appropriate estimation. Our work concentrates on how to improve the accuracy and also on which tech-
niques and datasets, approaches yield good results. Cocomo81, Cocomonasa60, Cocomonasa93, Deshnaris,
ALBRECHT, Kemerer, Miyazaki1 andMAXWELL datasets are selected for our analysis. Among those datasets,
ALBRECHT and Kemerer are based on FPA. We proposed four steps to reach good estimation accuracy:
(a) Select the classifier.
(b) Find the best clusters by applying the selected classifier from the first step.
(c) Perform analogy and optimization together to reach optimal solutions using best clusters.
(d) Find the new effort with the help of optimal solutions.

The diagram in Figure 1 shows the model of our proposed work. It also presents the four steps in arriving
better estimation accuracy.

Figure 1: Proposed Learning Approach Model.
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3.1 Select the Classifier

Here we have applied two classifiers on the selected datasets: multivariate linear regression and deep
structured multilayer perceptron.

3.1.1 Multivariate Linear Regression

Linear regression [10] follows the equation of the line where slope, x-coordinate, y-coordinate and constant
are replaced by weight, one or more independent variables, predictor variable (y) and regression coefficient.
It takes the form of

y = b + wx, (1)

where b andw are regression coefficients. b is the Y-intercept andw is the slope of the line. These coefficients
can be thought of as weights. So the above expression (1) can be rewritten as follows:

y = w0 + w1x. (2)

Let D be the training set of tupels that contains |D| datasets of the form (x1, y1), (x2, y2), . . . , (x|D|, y|D|).
The regression coefficients (15) can be calculated using the following equations:

w1 =
∑︀|D|

i=1(xi − x̄)(yi − ȳ)∑︀|D|
i=1(xi − x̄)

, (3)

w0 = ȳ − w1 x̄, (4)

where x̄ is the mean of x and ȳ is the mean of y.
Simple linear regression is based on only one explanatory variable. The next form of simple linear regres-

sion is multiple linear regression [6] which is based on more than one explanatory variable. Another very
interesting form of linear regression is multivariate linear regression which relies onmore than one predictor
variable. For example, it can give more than one predictor. We have used multivariate linear regression for
our work with the hope that in future there may be more than one predictor variables.

3.1.2 Deep Structured Multilayer Perceptron

Amultilayer perceptron (MLP) is a feed-forward ANNmodel. It shows an association between given data and
appropriate results. This model is represented as a directed graph which shows a set of nodes as each layer,
thereby forming multiple layers. Each layer is fully connected to the next layer. The set of nodes in one layer
where the input data are given is said to be the input layer. One or more nodes can be used to generate or
predict output. Such nodes are in the output layer. The nodes in between the input layer and the output layer
form a hidden layer. Except input nodes, all the other nodes use an activation function to generate the output.
Input nodes accept only input data and just pass data to the next layer. All the other nodes use a nonlinear
activation function [11] to reach the output. It is based on a supervised learning technique called backpropa-
gation for training the networkwhere the errors propagated in the backward direction till appropriate outputs
are produced. In deep learning, each node is analyzed for more different parameters.

There are three layers in thismodel: an input layer, a hidden layer and an output layer. The data are given
in the input layer. For all input attributes, there are nodes in the input layer. The nodes where the output is
produced are in the output layer. The number of output nodes is to represent the number of classes. The nodes
in between the input layer and the output layer are in the hidden layers. The link between nodes has a weight
(a number)w and each node performs a weighted sum of its inputs and thresholds the result with the help of
the activation function.

Figure 2 [9] shows the MLP neural network.
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Figure 2: An Example of the Multilayer Perceptron Neural Network.

Of the two classifiers, deep structured multilayer perceptron yields good results and it is selected for the
next step where this selected classifier is applied to clusters. In our work, we modified each node in a way
that it learns itself more and more properties for estimation.

3.2 Select the Best Clustering Technique

Two types of clustering techniques are analyzed. They are vector quantized k-means clustering and Proba-
bilistic Model-Based Expectation-Maximization (EM) clustering.

3.2.1 Vector Quantized k-Means Clustering

The k-means clustering method is the simplest form of clustering [10, 25]. By exercising a partitioning algo-
rithm, it organizes the data into groups. It also splits dataset D of n objects into k partitions or k-clusters, C1,
C2, C3, . . . , Ck, where Ci ⊂ D and Ci ∩ Cj = ∅ for 1 ≤ i, j ≤ k. Each of the clusters is represented by its cen-
troid. The centroid can be interpreted by themean of the objects. And so forth thismethod is named k-means.
In the initial case, some k objects are haphazardly chosen as the cluster center (centroid). Each object of every
single iteration is compared with each centroid with the help of distance measures. The object which repre-
sents the lowest distance against one particular centroid belongs to the cluster of that centroid. When each
iteration ends, the computed mean value for each cluster and new mean becomes the new cluster center of
each cluster. And the process will reoccur till there is no change in the cluster center or the sum of squared
errors between all objects in Ci and the centroid ci is minimum for all k partitions:

E =
k∑︁

i=1

∑︁
p∈Ci

dist(p, ci)2. (5)

Instead of simple k-means, we opted for vector quantized k-means to reach better results.

3.2.2 Probabilistic Model-Based Expectation-Maximization Algorithm

The EM algorithm is one of the clustering techniques which compare the given data with some mathemati-
cal model. This algorithm is an extended version of k-means clustering. In k-means clustering, each object is
assigned to a particular cluster based on the distance measure, whereas in EM, each object is assigned to a
cluster based on the probability of membership of the object. The EM algorithm [10] is as follows:
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(a) Expectation step: each object oi is to a cluster Ck with the probability

P(oi ∈ Ck) = p(Ck|oi) (6)

=
p(Ck)p(oi|Ck)

p(oi)
(7)

where p(oi | Ck) = N(mk, Ek(oi)) follows the normal distribution around mean, mk, with expectation Ek.
This step calculates the probability of clustermembership of object xi or the expected clustermembership
of object oi.

(b) Maximization step: re-estimate the model parameters:

mk =
1
n

n∑︁
i=1

oi p(oi ∈ Ck)∑︀
j p

(︀
oi ∈ Cj

)︀ (8)

This step is the “maximization” of the likelihood of the distribution of the given data.

Of the two clusters, EM cluster improves the effort estimation accuracy based on the selected classifier
deep structured multilayer perceptron. So EM clusters are used in the next step to perform optimization for
generating optimal solutions.

3.3 Perform Optimization

Now we have good clusters of a dataset which can improve estimation accuracy. These clusters of data are
used for optimization. Here we use fuzzy analogy and firefly optimization.

3.3.1 Original Firefly Algorithm

The firefly algorithm [28, 29] was developed by Yang in the year 2009. It is a nature-inspired algorithm based
on flashing light behavior of real fireflies. Each firefly is attracted to other fireflies based on the light intensity
by the process of bioluminescence. Fireflies with low flashing light are attracted toward fireflies with the high
flashing light. It is based on three main principles:
(1) All fireflies are unisex. Attractions of fireflies are gender independent.
(2) The attractiveness of the firefly is proportional to the brightness of the firefly, i.e. less brighter fireflies are

moved to the brighter one.
(3) The brightness of the firefly is determined by the objective function.

The main feature of the firefly is its attractiveness β, and it varies with respect to distance r between fireflies.
It is defined as follows:

β(r) = β0e−Υrm (9)

where β0 is attractiveness at r = 0, Υ is the light absorption coefficient and r is the distance between two
fireflies xi and xj defined as the Cartesian distance.

r = |xi − xj| =

⎯⎸⎸⎷ d∑︁
k=1

(︀
xi,k − xj,k

)︀2 (10)

where d denotes the number of dimensions.
The movement of the firefly is updated with the help of the following equation:

xi = xi + β0e−Υr2i,j
(︀
xj − xi

)︀
+

(︂
rand − 1

2

)︂
(11)
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where xi is the current position of the firefly i, β0e−Υr2i,j is the firefly’s attractiveness, α is the randomization
parameter and rand is the random number generator between 0 and 1.

Firefly algorithm:

1. Define the objective function f (x). x = (x1, x2, . . . , xd).
2. Generate the initial population of fireflies xi (i=1, 2, 3, . . . , n).
3. Set the light intensity Ii at xi by f (xi).
4. Define the light absorption coeflcient Υ.
5. While (t < MaxGenerations)

For i = 1 to n fireflies
For j = 1 to n fireflies

If (Ij > Ii)
firefly i toward j.
Vary attractiveness with respect to distance r via exp[Υr]
Evaluate new solutions and update light intensity.

End for j.
End for i.
Rank all fireflies and find the current global best set of fireflies.

End while

3.3.2 Fuzzy Analogy and Firefly Optimization

The fuzzy analogy is nothing but an analogy based on fuzzy logic. In analogy-based effort estimation, identi-
cal projects are identified from the historical dataset and these identified projects are used for effort esti-
mation either by collecting opinion from the experts or by applying some mathematical model based on
the similar projects. It consists of the case identification process, case retrieval process and case adaptation
process.

There may be lots of instances in the historical data. So the process of finding matching cases is diffi-
cult. In the fuzzy analogy approach, all data are converted into fuzzy sets by applying fuzzy logic. Here all
the variables are converted to linguistic variables by using membership functions. So categorical variables
can be handled efficiently with the help of fuzzy logic. Once the fuzzy datasets are ready, our proposed work
generates the fuzzy rules for the fuzzy dataset. From those fuzzy rules, optimal rules are generated with the
help of the firefly optimization algorithm. In our work, three initial sets of solutions are formedwith the set of
flies (fuzzy rules), i.e. each solution consists of a set of flies. For each fly, the fitness value is computed. Here
the fitness value is the mean magnitude of relative error (MMRE) value. For each solution, the summation of
fitness values of all flies in that solution is calculated and the solution is ranked based on the minimum of
that value. The solution with the minimumMMRE value is set aside and the remaining solutions are updated
with other sets of rules. And this process is repeated n number of times till we get the best optimal solutions.

Once we reach optimal solutions, the next step in the fuzzy analogy is the identification of similar cases.
This is achieved by finding the distance between projects p and pi2 by comparing each individual attribute of
p1 and p2.

The next step in the fuzzy analogy is case adaptation. In this step estimate of the new project is derived
from the effort values of similar projects.

4 Results and Discussions
For assessing theperformances of the k-means clustering andEMalgorithm, eight datasets havebeen selected
from the PROMISE data repository. They are Cocomo81, Cocomonasa60 and Cocomonasa93, DESHARNAIS,
ALBRECHT, Kemerer, Miyazaki1 and MAXWELL datasets. Cocomo81 has 63 instances and 17 attributes (all
numeric: 15 for the effort multipliers, one for Lines of Code (LOC) and one for actual development effort), and
there is no missing attribute. Cocomonasa60 has 60 instances and 17 attributes (15 discrete in the range very



V. Resmi and S. Vijayalakshmi: Software Project Effort Estimation Accuracy | 1475

low to extra high). Cocomonasa93 has 93 instances and 24 attributes and DESHARNAIS has 81 instances and
12 attributes. ForALBRECHT, there are 24 instances and8attributes. Kemerer has 15 instances and8attributes.
For Miyazaki1, there are 48 instances and 9 attributes. MAXWELL has 62 instances and 27 attributes. Among
those datasets, ALBRECHT and Kemerer are FPA-based datasets and Miyazaki1 is a COBOL dataset.

Parameters for validation:
– Correlation coefficient: Correlation tells how much actual and predicted are related. Its value ranges from

−1 to 1, where 0 is no relation, 1 is the very strong linear relation and −1 is an inverse linear relation.
– Mean magnitude of relative error (MMRE): There are many measures to predict the accuracy of the effort

prediction models. But the commonly used measure is the MMRE.
The MMRE can be measured by the following formula:

MMRE =
1
n

n∑︁
i=1

MREi (12)

where MRE is the magnitude of relative error.

MRE =
|acteffort − esteffort|

|acteffort|
(13)

MMRE ≤ 0.25 is the acceptable range [8].
– Prediction (PRED): This is also another measure to estimate the accuracy [14]:

PRED(0.25) =
k
n (14)

where k is the number of observations whose MRE is less than or equal to 0.25 and n is the number of
observations.

– Classification accuracy: This is the percentage of the ratio of the number of projects classified correctly
to the total number of projects within the dataset. A high value of classification accuracy leads to good
accuracy.

– Clustering accuracy: This is the percentage of the ratio of the number of projects grouped correctly to the
total number of projects within the dataset. A high value of clustering accuracy leads to good accuracy.

Table 1 shows the results of the four validation parameters for multivariate linear regression effort
estimation.

From Table 1, it is noted that with the higher value of correlation coefficient the better prediction yields.
For the better correlation coefficient values, the classification accuracy also increases.

Table 2 shows the results of the four validation parameters for deep structured multilayer perceptron
effort estimation.

FromTable 2, it is also noted that higher the correlation coefficient value better the prediction and classifi-
cation accuracy. But whenwe compare the above-mentioned two techniques based onMMRE and prediction,

Table 1: Validation Parameters’ Values for Multivariate Linear Regression Effort Estimation.

Datasets Multivariate linear regression effort estimation

Correlation
coeflcient

Classification
accuracy

MMRE Prediction

Cocomo81 0.706 70.6 0.265 59.3
Cocomonasa60 0.716 71.6 0.255 60.3
CocomoNasa93 0.72.7 72.7 0.245 61.3
Desharnais 0.737 73.7 0.235 63.3
ALBRECHT FPA 0.91 75.2 0.23 61.5
Kemerer FPA 0.37 40.2 0.55 30.2
Miyazaki1 COBOL 0.05 20 0.85 22.3
MAXWELL 0.81 65.4 0.20 69.3
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Table 2: Validation Parameters’ Values for Deep Structured Multilayer Perceptron Effort Estimation.

Dataset Deep structured multilayer perceptron effort estimation

Correlation
coeflcient

Classification
accuracy

MMRE Prediction

Cocomo81 0.767 70.6 0.205 66.3
Cocomonasa60 0.777 71.6 0.195 68.3
CocomoNasa93 0.787 72.7 0.185 69.3
Desharnais 0.797 73.7 0.175 71.9
ALBRECHT FPA 0.75 70.3 0.232 65.88
Kemerer FPA 0.35 34.4 0.595 30.23
Miyazaki1 COBOL 0.96 92.6 0.15 86.8
MAXWELL 0.76 73.1 0.195 69.4

deep structured multilayer perceptron effort estimation performs better. So in the next step, we use deep
structured multilayer perceptron classifier as the estimation model to estimate the effort on clustered data.

In Table 3, the values of validation parameters for deep structuredmultilayer perceptron effort estimation
using vector quantized k-means clusters are tabulated.

Table 4 shows the values of validation parameters for deep structured multilayer perceptron effort
estimation using probabilistic model-based EM clusters.

When we compare MMRE and prediction values in Tables 3 and 4, it is found that probabilistic model-
based EM clusters give good accuracy in prediction and less MMRE values than vector quantized k-means

Table 3: Deep Structured Multilayer Perceptron Effort Estimation Using Vector Quantized k-Means Clusters.

Dataset Vector quantized k-means clustering and deep
structured multilayer perceptron effort estimation

Clustering
accuracy

Classification
accuracy

MMRE Prediction

Cocomo81 71.3 75.7 0.215 64
Cocomonasa60 72.9 77.2 0.205 66
CocomoNasa93 74.5 79.2 0.195 67.9
Desharnais 76.3 80.7 0.185 69.9
ALBRECHT FPA 80 75.1 0.191 69.21
Kemerer FPA 48 39.91 0.43 43.66
Miyazaki1 COBOL 98 94.72 0.13 90.1
MAXWELL 79 76.01 0.15 74.44

Table 4: Deep Structured Multilayer Perceptron Effort Estimation Using Probabilistic Model-Based Expectation-Maximization
(EM) Clusters.

Dataset Probabilistic model-based EM and deep
structured multilayer perceptron effort estimation

Clustering
accuracy

Classification
accuracy

MMRE Prediction

Cocomo81 82.2 85.3 0.165 72.9
Cocomonasa60 85 87.8 0.155 74.9
CocomoNasa93 87.6 91 0.145 75.8
Desharnais 89.7 94 0.135 77.8
ALBRECHT FPA 83 78.2 0.16 75.12
Kemerer FPA 53 42.12 0.4 48.22
Miyazaki1 COBOL 99 96.48 0.10 94.12
MAXWELL 80 76.77 0.14 78.64
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clusters. So probabilistic model-based EM clusters are used by firefly optimization and fuzzy analogy for
effort estimation. The result of this approach is shown in Table 5.

From Table 5, it is evident that prediction accuracy measures like MMRE and prediction values are much
more improved than other previous methods used in steps 1 and 2 of the proposed method. Table 6 tabu-
lates the performance measures of our proposed method with the other two existing methods (MDELP and
COA-FIS).

Figures 3 and 4 graphically show thatMMRE values of the proposedmethod for the four selected datasets
are less than the MMRE values of the existing methods. Also prediction values increase when compared with
two methods. Hence, the proposed method improves the accuracy of the effort estimation.

From our experiments, it is evident that the MMRE values of Cocomo81, Cocomonasa60, CocomoNasa93
and Desharnais datasets decreased by 62%, 63%, 66% and 68%, respectively, when compared with the exist-
ing MDELP and 49%, 51%, 53% and 56%, respectively, when compared with the existing COA-FIS. Also the
MMRE values of ALBRECHT, Kemerer, Miyazaki1 and MAXWELL datasets decreased by 59%, 21%, 97% and
50%, respectively, when compared with the existing MDELP and 58%, 35%, 663% and 45%, respectively,
when compared with the existing COA-FIS.

Similarly, the prediction values of Cocomo81, Cocomonasa60, CocomoNasa93 and Desharnais datasets
increased by 56%, 52%, 53% and 53%, respectively, when compared with the existing MDELP and 29%,
28%, 27% and 30%, respectively, when compared with the existing COA-FIS. Also, the prediction values of
ALBRECHT, Kemerer, Miyazaki1 and MAXWELL datasets increased by 55%, 24%, 73% and 44%, respectively,
when compared with the existing MDELP and 37%, 18%, 47% and 21%, respectively, when compared with
the existing COA-FIS.

Table 5: Effort Estimation Using Expectation-Maximization (EM) Clusters, Firefly Optimization and Fuzzy Analogy.

Dataset Probabilistic model-based EM, firefly
optimization and fuzzy analogy effort estimation

Clustering
accuracy

Classification
accuracy

MMRE Prediction

Cocomo81 82.2 80.7 0.125 78.8
Cocomonasa60 85 81.7 0.115 79.8
CocomoNasa93 87.6 83.3 0.105 81.8
Desharnais 89.7 84.3 0.095 84.6
ALBRECHT FPA 88 81.12 0.10 85.88
Kemerer FPA 69 59.66 0.23 55.01
Miyazaki1 COBOL 99.9 98.88 0.010 97.76
MAXWELL 83 79.34 0.10 83.44

Table 6: Comparison of Proposed Work with Two Existing Methods.

Dataset Existing MDELP Existing COA-FIS Proposed method

MMRE Prediction MMRE Prediction MMRE Prediction

Cocomo81 0.325 50.5 0.245 61.2 0.125 78.8
Cocomonasa60 0.315 52.4 0.235 62.2 0.115 79.8
CocomoNasa93 0.305 53.4 0.225 64.2 0.105 81.8
Desharnais 0.295 55.4 0.215 65.3 0.095 84.6
ALBRECHT FPA 0.243 55.25 0.241 62.6 0.10 85.88
Kemerer FPA 0.29 44.4 0.331 46.7 0.23 55.01
Miyazaki1 COBOL 0.29 56.6 0.2 66.4 0.010 97.76
MAXWELL 0.20 58.14 0.19 69 0.10 83.44
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Figure 3:MMRE Comparison between the Existing and Proposed Method.
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Figure 4: Prediction Comparison between the Existing and Proposed Method.

5 Conclusion
Congenial to the results of several researchers, it is incontestable that there is no approach which is suitable
for estimating software project effort for all domains and all kinds of applications. Thus, it is indispensable
to use the prior experiences of the projects to estimate the effort of the current project. Analogy-based effort
estimation is one among them. So it can be implemented on machine learning techniques to derive better
analogies. In this paper, we gave emphasis to two learning approaches such as classification and clustering.
Of the two clustering methods, EM clusters are more excelling than vector quantized k-means clusters con-
tingent on MMRE and prediction values. So EM clusters are taken for fuzzy analogy and firefly optimization
to get the optimal solutions. From the optimal solutions, the effort of the new project is derived with good
accuracy. Different optimization techniques have been left for future for analyzing which optimization suits
for which type of domain datasets. Different clustering and classification techniques can be considered for
future work. And also, it could be better if some data pre-processing techniques are applied before the data
applied for clustering and classification.
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