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Abstract: The pigeon-inspired optimization algorithm is a category of a newly proposed swarm intelligence-
based algorithm that belongs to the population-based solution technique. The MKP is a class of complex opti-
mization problems that have many practical applications in the fields of engineering and sciences. Due to the
practical applications of MKP, numerous algorithmic-based methods like local search and population-based
search algorithms have been proposed to solve the MKP in the past few decades. This paper proposes a mod-
ified binary pigeon-inspired optimization algorithm named (Modified-BPIO) for the O - 1 multidimensional
knapsack problem (MKP). The utilization of the binary pigeon-inspired optimization (BPIO) for solving the
multidimensional knapsack problem came with huge success. However, it can be observed that the BPIO con-
verges prematurely due to lost diversity during the search activities. Given the above, the crossover operator is
integrated with the landmark component of the BPIO to improve the diversity of the solution space. The MKP
benchmarks from the Operations Research (OR) library are utilized to test the performance of the proposed
binary method. Experimentally, it is concluded that the proposed Modified-BPIO has a better performance
when compared with the BPIO and existing state-of-the-arts that worked on the same MKP benchmarks.

Keywords: Pigeon-inspired optimization, Multidimensional Knapsack problem, Crossover mechanism, Nature-
inspired algorithm, Population-based metaheuristic

1 Introduction

Complex optimization is a class of problems that cut across different disciplines such as engineering design,
production and manufacturing systems, economics and so on. Due to their practical applicability, numer-
ous efficient and robust computational and soft computing techniques have been proposed to solve different
classes of these problems. One of the classical examples of complex optimization problems that has numer-
ous applications in different areas is the multidimensional knapsack problem (MKP). Basically, the practi-
cal applications of MKP can be found in cryptography [10, 21, 24], warehouse location problem, production
scheduling problem, assignment problem, and reliability problem [23]. In the optimization context, the MKP
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as a resource allocation model focused on selecting a subset of objects that generate the maximum profit,
whilst satisfying the set of constraints on capacities of the knapsack. Generating efficient techniques for the
MKP as one of the categories of the NP-hard problem has been subject of investigation over the past few
decades by researchers in the fields of artificial intelligence and operational research. The complexity of the
MKP motivated the workers in the domain to proposed several techniques that are classified into traditional-
based and metaheuristic-based techniques. The traditional-based technique could be utilized to generates
the exact solution for the MKP, however, its time complexity increases exponentially with the size of the prob-
lem and thus could exhibit some weaknesses when utilized for large-scale problems of high dimensionality.
The common examples of the traditional-based techniques employed to tackle the MKP are branch and bound
[30], dynamic programming [33] and so on. Whereas the metaheuristic-based method could be employed to
produce a near-optimal solution within reasonable computational times when compared to the traditional-
based method and thus makes the metaheuristic-based method to be more suitable when utilized to handle
large-scale problems. Typically, this method could be classified into two: local search-based methods that
are designed to handle a single solution at a time and some examples of local search-based methods utilized
for the MKP are simulated annealing [11], tabu search [17]; [39]. Similarly, the population-based methods,
developed to tackle many solutions at a time are categorized into Evolutionary-based Algorithms (EAs) and
Swarm Intelligence-based (SI) algorithms. Few of examples of the population-based algorithms that have
been successfully utilized, modified and hybridized to solve different combinatorial optimization and engi-
neering applications like MKP are ant algorithms [18], artificial bee colony algorithm [31], bat algorithm [45],
cuckoo search algorithm [13], flower pollination algorithm [1], fruit fly optimization algorithm [26], monkey
algorithm [44], differential evolution algorithm [32], genetic algorithm [28], harmony search algorithm [20].
particle swarm optimization [4, 8, 9, 15], symbiotic organisms search algorithm [38], wind-driven optimiza-
tion [43]. It is worthy of mentioning that from the literature, numerous swarm-intelligence algorithmic tech-
niques have successfully been proposed, modified and hybridized to tackled the different formulations of O -
1 multidimensional knapsack problem. Summarily, the SI - based algorithms have the following advantages
which include: simplicity, highly adaptable, highly scalable, self-organized, flexible and collective robust-
ness. Due to these advantages, many studies have proposed their usage in solving complex problems in the
field of artificial intelligence and operational research [5, 6, 29, 34-36]. However, few limitations trace to SI -
Based algorithms are time-critical applications, parameter tuning, premature convergence and stagnation in
local optimum [2].

The pigeon-inspired optimization (PIO) algorithm is a category of swarm intelligence algorithm that is
newly introduced to tackle the air robot path planning proposed in 2014 by Duan and Qiao [12]. It is a stochas-
tic nature-inspired technique that has proven to be an easy but powerful population-based search technique
inspired by the behavior of a swarm of pigeons. Homing pigeons can easily locate their homes in accordance
with three homing operators: magnetic field, sun, and landmarks. In the context of this algorithm, a map and
compass model is formulated according to the magnetic field and sun, while the presentation .of the landmark
operator model is done based on landmarks [40]. Note that pigeons perceived the magnetic field through the
nose from the magnetic particles taken to the brain by trigeminal nerve [25]. It is observed that the pigeons
probably employ the usage of different navigational tools during diverse parts of their journey. At the initial
stage of the journey, each pigeon could possibly depend more on compass-like tools, while in the middle and
sometimes switch to landmarks in order to reexamine their routes and thus makes amendments [14]. Note that
the PIO algorithm has been successfully utilized to tackle many complex optimization problems like orbital
space-craft formation reconfiguration [41], unmanned aerial vehicles [16, 42]. Studies have proven that the
PIO algorithm had a better or comparable performance with some of the existing nature-inspired algorithms
like the artificial bee colony, genetic algorithm, particle swarm optimization [27]. In recent time, the binary
version of the classical PIO is proposed to tackle the MKP in [7] where its performance is better than some
of the existing methods. However, from the experimental results, it can be observed that the BPIO converges
prematurely due to lost diversity during the search activities.

The main motivation of this paper is to modify the BPIO algorithm with integration of simple crossover
element of evolutionary algorithm to improve the performance. It is worthy to mention that the contribution
of this research is in two folds which include:
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— Modification of Landmark operator of the BPIO to improve the diversity of the search space and ex-
ploring the interaction between pigeons to navigate the most promising regions of the search space
effectively.

— " The performance of the proposed modified is evaluated on the standard MKP benchmark datasets
published by Operations Research Library (OR-Library).

Therefore, this paper presents a modified version binary pigeon-inspired optimization (Modified-BPIO)
algorithm in which its landmark operator is modifies by the incorporation of crossover concept from the evo-
lutionary algorithm when utilized to solve the 0-1 multidimensional knapsack problem. The performance of
the modified-BPIO is evaluated on the standard MKP benchmark datasets published by Operations Research
Library (OR-Library). Experimentally, the computational results show that the performance of the modified-
BPIO is better when compared with some of the existing nature-inspired algorithms that worked on the same
dataset.

The rest of the paper is organized as follows: Section 2 presents the description of the MKP, while the
description of the basic PIO is given in Section 3, this is followed by the proposed binary approach as discusses
with detailed information in Section 4. Next, the experimental results and discussions are given in Section 5.
Finally, conclusions are considered in Section 6.

2 Multidimensional Knapsack problem (MKP) formulation

The MKP consists of a set of m knapsacks with a set of m capacities ¢ = {c;|i = 0,...,m - 1}, and a set of
n entities ¢ = {e;|i = 0, ..., n - 1}. The binary variables X;(i = 0, ..., n — 1) correspond to the chosen items
to be carried in m knapsacks. The X; assumes value of 1 if entity i is in the knapsack and O otherwise. Each
item e; has an associated profit P; > 0 and weight W;j = O for each knapsack j. The goal is to find the best
combination of n entities by maximizing the sum of profits P; multiplied by the binary variable X;, which is
mathematically represented as shown in Eq. (1).

n-1
max (Z(Pi x X,-)) o))

i=0

Their constraints are the capacity C; = 0 of each knapsack. Therefore, the sum of the values of X; multi-
plied by W;; must be less than or equal to C; as given in Eq. (2). Note that this formulation is adopted from [3].

3
-

(Wij XXi) < C] (2)
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3 Pigeon-Inspired Optimization Algorithm

PIO is a novel nature-inspired, metaheuristic algorithm that has been utilized for solving global optimization
problems. It is based on imitating the natural homing pigeon behavior. Studies on the behavior of pigeon in
the recent time, have shown that the pigeon can follow their path using some landmark features such as like
main terrains, railways, and rivers rather than move directly for their destination. In the optimization context,
the migration of pigeons can be formulated using the two mathematical models: map and compass operator,
and landmark operator.
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3.1 Map and Compass Operator

Basically, the concept of map and compass operator is to assist pigeons to find their position as well as de-
termine their direction. Analogously, in the map and compass operator, rules are formulated to determine
which position X; and the velocity V; of pigeon i, and the positions and velocities in a D-dimension search
space are updated in each iteration. The formulations of the new position X; and velocity V; of pigeon i at the

t'" iteration are given in Eqgs. 3 and 4 as follows:
Vi(t) = Vi(t-1)-e " +rand - (Xg - Xi(t- 1)) 3
Xi(t) = X;(t - 1) + Vi(0) (4)

where r represent the map and compass factor, rand is a random number, and Xg represent the current global
best position that is obtained by comparing all the positions among all the pigeons.

3.2 Landmark Operator

In the landmark operator, the total number of pigeons is reduced to half N, in every generation, where pigeons
in the lower half of the line sorted by fitness values are abandoned. This is due to the fact that they are believed
to be far from the destination and unfamiliar with the landmarks. Let X.(t) represent the center of some
pigeons’ position at the ¢ iteration, and that every pigeon can fly straight to the destination. The position
updating rule for pigeon i at ¢ iteration can be formulated as shown in Eq. 5:

Np() = Mol D (5)
>0 Xi(0) - fitness(X;(1))
Xe() = Np 3" fitness(X;(t)) ©)
X;(t) = X;(t - 1) + rand - (X:(t) - X;(t - 1)) 7

where fitness is the object value (i.e. quality) of the pigeon individual. Note that for the minimization problems,
then the fitness cost is given as shown in Eq 8:

1
X)) = 8
OO = rr v e (®)
Whereas the fitness cost for the maximization problem is given in Eq. 9
f&Xi(®) = f(X:(2) ©)

The key phases of the PIO algorithm as proposed in 2014 by Duan and Qiao [12] is given in Algorithm 1:

4 Modified-BPIO Optimization for the MKP

In this section, the proposed Modified-BPIO version that is based on the integration of a crossover strategy
within the landmark operation of the BPIO for solving the MKP is presented. The solution approach utilized
in order to achieve the aim of this paper is presented in the next subsections:
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Algorithm 1 PIO algorithm
1: Initialization of PIO parameters: Py, D, t1max, t2max-
2: Initialize the path and the velocity of each pigeon. {Initialized the population of pigeons}
3: Calculate the fitness cost of each pigeon and compare the individual best fitness costs
of all the pigeons to obtain the global best path {Evaluate each pigeon}
4: while t < tlmax do
Operate the map and compass operator. Update the velocities and paths of each
pigeon, and update the globally best path.
6: end while
7: while ¢t < t2max do
8:  Operate the landmark operator. Sort all pigeons according to their fitness costs. Those pigeons with
low fitness costs will follow those with high fitness cost using Eq. (5). Then determine the center of all
pigeons based on Eq. (6), and this center is the desired destination. Adjust all pigeons fly directions in
accordance with the Eq. (7).
9:  Memorize the best pigeon parameters and the best fitness cost.
10: end while

4.1 Initialization of the PIO and MKP parameters

In this step, the control parameters of Modified-BPIO which are necessary to tackle the MKP are initialized.
These parameters include the population size, map and compass factor the maximum number of iteration
etc.

- Population size: the number of pigeons (or solutions) in the population.
— Map and compass factor
— Maximum number of iteration which it refers to as the total number of generations

The MKP parameters such as the number of knapsacks, the capacities, the set of items and the constraints
are extracted from the problem instances. The fitness functions stated in Eqs. 1 and 2 are utilized to evaluate
each pigeon during the search process of the Modified-BPIO.

4.2 Initialization of the Pigeons Memory (PM)

The Pigeon Memory (PM) is referred to as the allocation of memory space of size where each row consists of
a solution vector representing an MKP solution as in (10).

x1(1) x1(2) - x1(N) flx1)
x(1)  x22) - x(N) f(x2)

= . . . . . (10)
xpn(1)  xpn(2) -+ xpy(N)| |f(Xpn)

Note that for the problem under consideration, the pigeons in PM are generated using a 0-1 binary repre-
sentation which is an obvious choice since it represents the underlying 0-1 integer variables. Therefore, this
study utilizes a n-bit binary string representation, where n is the number of variables in the MKP, a value of O
or 1at the it" path means that or 1in the MKP solution, respectively. Figure 1 shows the binary representation
of each pigeon (i.e. solution) in the search space for the MKP.

Figure 1: MKP solution representation
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It is worthy of mentioning that in some case the solution (i.e. pigeon) generated based on the above
procedure may not be feasible. Thus in order to avoid the utilization of such solutions in the population,
a penalty function method is employed. Therefore, the fitness cost function is given in Eq. (11)

n
fitness(S) = Zpis[i] x Penli] (11)
i=1
Where Pen is a penalty cost for an infeasible pigeon.
Accordingly, a population of pigeon (i.e. the population of solution) is initialized randomly with their
paths and velocities. Then, fitness cost of each pigeon are evaluated and sorted in ascending order in PM
based to their fitness costs (i.e. f(x1) 2 f(x2) > ... > f(xpy)) to obtain the global best path.

4.3 Activate the Map and Compass Component

In this step, each pigeon searches through the solution space by altering its flight based on its own personal
best position or by moving towards the direction of the global best path as determined by the evaluation of
the paths of all pigeons based on this component. The process of exploring the solution space is repeated
until the maximum iterations of the map and compass component is achieved.

4.4 Activate the Landmark Component

The center of the pigeon is determined in this step which is achieved by raking the pigeons based on their
fitness costs and those pigeons with the lowest fitness costs will move towards those highest fitness costs.
However, the concept of moving low-quality pigeons towards those of high quality is modified in this paper
where the crossover concept from the Evolutionary Algorithm is employed to diversify the solution space and
thus prevent the premature convergence. The procedure of integrating the crossover concept is provided as
follows:

4.4.1 Integration of Crossover Component

Crossover operator is one of the typical component of the Evolutionary Algorithm (EA) which solely aimed
at introducing some element of diversity through the generation of new members (i.e. individuals) into the
population. Basically, the main operation of crossover involves the combination of the traits of two entities
(i.e. parents) in order to produce one or two new entities (offspring). In the Modified-BPIO, the crossover
operator is embedded into the landmark component immediately after the centre of the pigeons have been
determined. In this step, two pigeons are randomly selected from those with good qualities and those pigeons
of lowest fitness costs. Then, the elements from the good pigeon are randomly chosen and interchanged with
the corresponding elements from those with the lowest fitness cost and placed in the same order in the second
pigeon. Then, the capacities of the knapsacks are evaluated and if it is available for both pigeons, otherwise,
if any capacity of knapsack exceeds by adding a new element from the other parent pigeon, the value of this
element is changed zero. The capacity of the new pigeon is completed from the remaining elements that are
not included by any knapsack based on their profit which is provided by including in the new pigeon. The
new pigeons are accepted into the swarm if their fitness cost is better or equal to the pigeon with lowest fitness
cost and thus the search is diversified. The best path and the fitness costs are stored. The search process in
this phase is repeated until the maximum iterations of the landmark component is reached.

4.5 Memorize the best pigeon in the population

In this step, the position of the best pigeon, the velocity and the best fitness cost are memorized
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4.6 Stopping Condition

Steps 4.2 to 4.4 are repeated until a stop criterion is met. This is originally determined by the maximum itera-
tions value.

5 Time complexity of the proposed Modified BPIO algorithm

The time complexity of the proposed BPIO algorithm is calculated based on section 4 as itemized in Table 1.
Note that the computational time required to calculate the objective function is neglected because it is differ-
ent from one problem to another. As shown in Table 1, the time complexity of the proposed Modified BPIO
algorithm is O(MIN x Cgr x MCg x d). TThe step that requires a large time complexity in the algorithm is Step
4.3 that takes more computational time

Table 1: Time complexity of each step in the proposed Modified BPIO

No Step Number Time Complexity

1  Step 4,2: Initialize the BPIO population 0(d x Py)

2 Step 4.3: Activate the Map and Compass Component O(Py x MCg x tymax)
3 Step 4.4: Activate the Landmark Component with crossover integration  O(Cg x Py x tmax)

4  Step 4.5 Memorize the position of the best pigeon O(Py)

5  Step 4.5: Stopping Condition O(MIN x Cg x MCg x d)

6 Computational Experiments, Results, and Discussions

In this section, the performance of the proposed Modified-BPIO for solving multidimensional knapsack prob-
lem is presented and it is coded using Visual Basic.net and run on a Personal Computer with Intel Core i3
1.9 GHz, 4 GB memory running on Windows 10. The MKP benchmarks obtained from the OR library that is
utilized to evaluate the proposed Modified-BPIO are one small and two big data sets namely: MKNAP 1, MK-
NAPCB 1 and MKNAPCB 4. Note that seven instances from a small dataset and ten problem instances from
both big datasets are utilized in the evaluation. The characteristics of these datasets are provided in Tables 3
and 2. As shown in Table 1, the first row shows the problem index, while the second row indicates the size of
the problem i.e. number of objects and lastly, the third row represents the number of knapsack dimensions.

Table 2: Characteristics of MKNAP 1 problem instances

Instance S, 1 2 3 4 5 6 7
n 6 10 15 20 28 39 50
M 10 10 10 10 10 5 5

Similarly, the characteristic of the problem instances MKNNAPCB 1 and MKNNAPCB 4 are provided in
Table 3, where column 1 and 2 represents the instance name and the problem size for the MKNNAPCB 1 respec-
tively while column 3 and 4 shows the instance name and the problem size for the MKNNAPCB 4 respectively
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Table 3: Characteristics of MKNAPCB 1 and MKNAPCB 4 instances

PROBLEM INSTANCE PROBLEM SIZE PROBLEM INSTANCE PROBLEM SIZE

MKNAPCB 1 5.100.01 MKNNAPCB 4 10.100.01
5.100.02 10.100.02
5.100.03 10.100.03
5.100.04 10.100.04
5.100.05 10.100.05
5.100.06 10.100.06
5.100.07 10.100.07
5.100.08 10.100.08
5.100.09 10.100.09
5.100.10 10.100.10

6.1 Experimental Design

The computational experiments are designed to study the influence of integrating the crossover component
to the landmark operator in the Modified-BPIO, it is worthy of mentioning that three varying values crossover
parameter are employed in the experiments. The parameter settings were chosen carefully based on our pre-
liminary experiments over multidimensional knapsack problems. The settings of these parameters should
not be considered as the optimal set of values but a generalised set of values since the performance of the
proposed algorithm is fairly well over the test problems. The detailed parameter settings for the Modified-BPIO
such as using three convergence scenario is provided in Table 4. Similarly, other values of the remaining pa-
rameters are adopted from [7]. For instance, the population size (Py), map and compass operator rate (MCg)
and the maximum iterations number (MIN) are fixed at 250, 0.5 and 1500 respectively.

Table 4: Modified BPIO Parameter Settings

Case Population Size (Py) Map and Compass Rate (MCgr) Crossover rate (Cg)

Casel 250 0.5 0.1
Case 2 250 0.5 0.2
Case 3 250 0.5 0.3

6.2 Experimental results

In this section, experimental results of the Modified-BPIO using the three experimental scenarios are pro-
vided in Table 5, 6 and 7, where the values in the fourth to sixth columns of these tables represent the fitness
values of 10 runs (highest is best). For each experimental scenario, the best results and mean of each prob-
lem instance over 10 runs are provided. The best results obtained by the proposed methods for each instance
of the three datasets are highlighted in bold. As shown in Table 4, the three experimental scenarios of the
Modified-BPIO achieved equal results in virtually all the instances of the smallest dataset except in instance
7, where Case 3 obtained the best results.

Similarly, as presented in Table 6 and 7, the performance of the proposed method for each experimental
scenarios for the two hard datasets show that Case 2 with a crossover rate of 0.2 achieved best results in six
instances of the MKNAPCB 1 dataset while Case 3 with crossover rate 0.3 came 2 by obtained best results in
the remaining 4 instance. Finally, on MKNAPCB 4 dataset, Case 2 of the Modified-BPIO achieved best results
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in 5 instances of the dataset, while Case 3 and 1 obtained best results in 4 and 2 instances of the dataset
respectively.

Table 5: Experimental results on effect of Crossover Rate on MKNAP 1 instances

Instance Instance Case 1 Case 2 Case 3
1 Best 3,800 3,800 3,800
Mean 3,800 3,800 3,800
2 Best  8,706.1 8,706.1 8,706.1
Mean 8,706.1 8,706.1 8,706.1
3 Best 4,015 4,015 4,015
MKNAP 1 Mean 4,015 4,015 4,015
4 Best 6,120 6,120 6,120
Mean 6,120 6,120 6,120
5 Best 12,400 12,400 12,400
Mean 12,388 12,398 12,390
6 Best 10,604 10,604 10,604
Mean 10,580.4 10,594.4 10,559.2
7 Best 16,508 16,508 16,518

Mean 16,462.4 16,429 16,432.4

Table 6: Experimental results on effect of Crossover Rate on MKNAPCP 4 instances

Dataset Instance Case 1 Case 2 Case 3
MKNAPCB1 5.100.01 Best 23,530 23,624 23,551
Mean 23,198 23,441.2 23,391.2
5.100.02 Best 23,322 23,642 23,317
Mean 23,112  23,431.4 23,046.8
5.100.03 Best 22,603 23,128 22,987
Mean 22,388.4 22,690.2 22,627.4
5.100.04 Best 22,718 22,951 23,312
Mean 22,491.8 22,698.2 22,701.2
MKNAPCB1 5.100.05 Best 23,332 23,512 23,207
Mean 23,050.4 23,135.8 22,873.2
5.100.06 Best 23,570 24,026 23,797
Mean 23,367.4 23,630.6 23,544.8
5.100.07 Best 24,804 24,796 25,016
Mean 24,470.2 24,628.8 24,551.4
5.100.08 Best 22,703 22,552 22,915
Mean 22,448.2 22,307 22,485.2
5.100.09 Best 23,614 23,648 23,590
Mean 23,209.8 23,279.4 23,412.8
5.100.10 Best 23,887 23,806 24,031
Mean 23,631 23,524.4 23,594.2
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Table 7: Experimental results on effect of Crossover Rate on MKNAPCP 4 instances

Dataset Instance Case 1 Case 2 Case 3
10.100.01 Best 22,611 22,728 22,430
Mean 22,105.8 22,301.8 22,157
10.100.02 Best 21,593 22,040 21,754
Mean 21,346.8 21,644.8 21,620.8
10.100.03 Best 21,436 21,436 21,339
Mean 21,035.6 21,309 21,041.8
10.100.04 Best 22,226 22,313 22,325
Mean 21,886.6 22,133.6 21,741.2
MKNAPCP 4 10.100.05 Best 22,113 21,840 21,973
Mean 21,757.8 21,513.4 21,811.4
10.100.06  Best 21,733 22,046 21,734
Mean 21,608.8 21,877 21,432.6
10.100.07 Best 21,353 21,465 20,918
Mean 20,887.2 20,823.6 20,589.4
10.100.08 Best 21,666 21,734 21,915
Mean 21,496.8 21,450.6 21,582.8
10.100.09 Best 22,239 21,737 21,897
Mean 21,625.6 21,288.6 21,235.6
10.100.10 Best 21,672 21,775 21,806
Mean 21,382.2 21,647.4 21,567.4

7 Comparative Analysis with Existing Techniques

The results produced by the proposed Modified-BPIO is compared with other existing techniques that worked
on the same MKP benchmark, which are Binary cuckoo search algorithm BCS [13], Standard binary particle
swarm optimization with penalty function PSO-P [19], quantum inspired cuckoo search QICSA [22] and a bi-
nary pigeon-inspired optimization algorithm Binary-PIO [7]. The performance of the Modified-BPIO is compa-
rable to the other existing techniques in the small instance of the MKP benchmark. Virtually, all the methods
obtained optimal or near-optimal values for all the instances of the MKNAP 1 as provided in Table 8.

Table 8: The best results achieved by the Modified-BPIO and other comparative methods

Dataset Instance Best Known BCS PSO-P QICSA BPIO Modified- BPIO

1 3,800 3,800 3,800 3,800 3,800 3,800
2 8,706.1 8,706.1 8,706.1 8,706.1 8,706.1 8,706.1
3 4,015 4,015 4,015 4,015 4,015 4,015
MKNAP 1 4 6,120 6,120 6,120 6,120 6,120 6,120
5 12,400 12,400 12,400 12,400 12,400 12,400
6 10,618 10,618 10,618 10,618 10,604 10,604
7 16,537 16,537 16,537 16,537 16,508 16,518

Furthermore, Tables 9 shows the results of the proposed Modified-BPIO in comparison with these tech-
niques from the literature. As shown in Table 9, the best results are highlighted in bold. Apparently, the
Modified-PIO is able to obtain feasible solutions for all problem instances of both datasets. Furthermore,
the proposed technique obtained best results in nine out of ten instances of the MKNPACB 1 dataset when
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compared with previous methods, however, the BPIO achieved the best result in the remaining one instance
(i.e. in MKNAPCB 15.100.10). Similarly, the proposed Modified-BPIO achieved the first rank in seven out of 10
instances of the MKNAPCB 4 dataset while the BPIO came second in the remaining problem instances. This
shows that modification of the landmark component of the BPIO aided the algorithm to navigate the solution
space rigorously to obtain a good solution.

Table 9: The best results achieved by the Modified-BPIO and other comparative methods

Dataset Instance  Best Known BCS PSO-P  QICSA BPIO Modified BPIO
5.100.01 24,381 23,510 22,525 23,416 23,494 23,624
5.100.02 24,274 22,938 22,244 22,880 23,227 23,642
5.100.03 23,551 22,518 21,822 22,525 22,942 23,128
5.100.04 23,534 22,677 22,057 22,727 22,895 23,312

MKNAPCP1  5.100.05 23,991 23,232 22,167 22,854 23,502 23,512
5.100.06 24,613 23,725 24,026
5.100.07 25,591 24,746 25,016
5.100.08 23,410 22,717 22,915
5.100.09 24,216 23,566 23,648
5.100.10 24,411 24,082 24,031
10.100.01 23,064 21,841 20,895 21,796 22,237 22,728
10.100.02 22,801 21,708 20,663 21,348 22,203 22,040
10.100.03 22,131 20,945 20,058 20,961 21,614 21,436
10.100.04 22,772 21,395 20,908 21,377 22,236 22,325

MKNAPCP 4 10.100.05 22,751 21,453 20,488 21,251 22,157 21,973
10.100.06 22,777 21,304 22,046
10.100.07 21,875 21,813 21,465
10.100.08 22,635 21,644 21,915
10.100.09 22,511 22,061 22,239
10.100.10 22,702 21,806 22,125

To show the performance of the proposed Modified-BPIO against the BPIO, a Wilcoxon Signed Rank is
presented in Table 10 where the R+, R-, and p-value are computed for all the pairwise comparisons concerning
Modified-BPIO. As shown in Table 10, the Modified-BPIO shows a significant improvement over BPIO, with
a level of significance less than a = 0.01 on MKNAPCP 1 instance while their performance is relatively the
same on MKNAPCP 4. Note that the two algorithms (i.e. Modified-BPIO and BPIO) used the same number of
instances thus makes the Wilcoxon Signed Rank easier to test.

Table 10: Wilcoxon Signed Ranks Test Results.

Dataset Algorithm R+ R- p-value
MKNAPCP 1 Modified-BPIOvs BPIO 53 2 0.009
MKNAPCP 4 Modified-BPIOvs BPIO 37 18 0.359
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8 Conclusion

This paper presents a new modified swarm-intelligence method based on pigeon-inspired optimization algo-
rithm for solving the multidimensional knapsack problem (MKP). The PIO is a class of swarm intelligence
population-based algorithm that is proposed for continuous optimization problem and recently adopted to
cope with the nature of O - 1 multidimensional knapsack problem. Experimentally, the BPIO lost the di-
versity of the solution space quickly during the search operations. In a bid to alleviate this problem, the
crossover operator is integrated after the landmark operator of the BPIO. The performance of the Modified-
BPIO is evaluated on some MKP benchmarks taken from OR-Library. The results of the experiments proved
that the Modified-BPIO is better than existing algorithms that worked on the problem. Note that the proposed
Modified-BPIO is tailored for solving the MKP only, in order to justify its performance, further investigation on
its performance to other discrete optimization problems like traveling thief problem, timetabling and schedul-
ing problem is very necessary as one of the future research. More so, the performance of the Modified-BPIO
algorithm could be investigated for the ambient assisted living application and finally, the algorithm could be
hybridized with expectation-maximization and k-means algorithm for clustering problems. Finally, the usage
of late acceptance strategy in the map and compass operator of the Modified-BPIO can be investigated for its
advantages in escaping local optima.

Acknowledgement: The authors will like to appreciate the anonymous reviewers and editor for their insight-
ful comments in enhancing the readability of the paper.
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