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Abstract: Histopathological lung cancer segmentation using region of interest is one of the emerging research
area in the field of health monitoring system. In this paper, the histopathological images were collected
from the database Stanford Tissue Microarray Database (TMAD). After image collection, pre-processing was
performed using a normalization technique, which enhances the quality of the histopathological image by
eliminating unwanted noise. After pre-processing, segmentation was carried out using the modified kernel-
based fuzzy c-means clustering (KFCM) approach along with the edge bridge and fill technique (EBFT). It was
a flexible high-level machine learning technique to localize the object in a complex template. The experimen-
tal result shows that the proposed approach segments the normal and abnormal cancer regions by means
of precision, recall, specificity, accuracy, and Jaccard coefficient. The proposed methodology improved the
classification accuracy in lung cancer segmentation up to 2.5-5% compared to the existing methods deep
convolutional neural network (DCNN) and diffusion-weighted approach.

Keywords: Deep convolutional neural network; kernel-based fuzzy c-means; lung cancer segmentation;
normalization.

Mathematics Subject Classification: 68U10; 92C50.

1 Introduction

Lung cancer is one of the predominant cancer types, which causes more than 1.4 million deaths annually
[19]. Generally, there are two types of lung cancers: the non-small cell lung cancer (NSCLC) with 80%—85% of
lung cancer patients and small cell lung cancer (SCLC) with 10%-15% of lung cancer patients [17]. The evalu-
ation of microscopic histopathology slides by experienced pathologists is indispensable for establishing the
diagnosis and to define the subtypes and types of lung cancers, which includes two major types of NSCLC:
adenocarcinoma and squamous cell carcinoma [5, 10, 23, 26]. The distinction of squamous cell carcinoma
from adenocarcinoma is essential for chemotherapeutic selection because certain antineoplastic agents are
contraindicated for squamous cell carcinoma patients, due to decreased efficacy or increased toxicity [11, 12].
However, the qualitative evaluation of well-known histopathology pattern (cancer grade classification) is
insufficient to predict the survival rate of patients with lung adenocarcinoma, and only the best-characterized
histopathology features achieve the modest agreements among experienced pathologists [20, 24]. Poor can-
cer differentiation and slide quality are related with diagnostic agreement [6]. Recently, several researches
were carried out to describe the additional visual features for prognostic detection of patients with lung ade-
nocarcinoma [3, 15]. Still, there is considerable improvement needed for the inter-rater agreements of these
features [8]. Erroneous or subjective evaluation of the histopathology image leads to poor therapeutic choice
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that results in decreased survival and loss of life quality in several patients [16]. Unsupervised image pro-
cessing technology shows high accuracy, consistency, and efficiency in histopathology evaluations and also
provides decision support for ensuring the diagnostic consistency. Automated histopathological analysis is
valuable in prognostic determinations of various malignancies [9, 22].

In this research, histopathology lung images were collected from the dataset TMAD. After the collection
of histopathology images, a new segmentation methodology was implemented along with the edge bridge
and fill technique (EBFT) for histopathological lung cancer segmentation. Currently, most of the segmenta-
tion algorithms are working based on Euclidean distance, which helps to identify the similarity between the
data objects. Euclidean distance is computationally inexpensive and simple, but it is sensitive to outliers and
perturbations. Currently, with the popular usage of support vector machine, a new direction appears to use
kernel functions. The kernel function projects the data into high-dimensional space, where data can be easily
separated. To perform this operation, kernel trick is adopted for transforming the linear algorithm into non-
linear algorithm using a dot operator. The kernel-based FCM works well only if the clusters are round shaped,
and it works badly with non-convex shapes, due to the hard assignments of points to the clusters. To address
this concern, a new clustering methodology was proposed (modified kernel-based fuzzy c-means clustering
(KFCM)) for histopathological lung cancer segmentation. In this experimental research, the Euclidean dis-
tance measure was replaced with correlation distance measure because it includes numerous advantages.
The distribution of correlation between the random vectors becomes narrowly focused around zero as the
dimensionality increases, so the significance of small correlation grows with increasing dimensionality. Also,
it is very effective in capturing the similarity between the patterns of feature vectors. Finally, the segmented
output was compared with the existing methodologies by means of precision, recall, specificity, accuracy,
and Jaccard coefficient.

This research paper is organized as follows. Section 2 surveys several recent papers on histopathological
lung cancer detection. In Section 3, an effective approach (modified KFCM with EBFT) for histopathologi-
cal lung cancer segmentation is presented. Section 4 shows the quantitative and comparative analysis of
proposed and existing segmentation approaches. The conclusion is made in Section 5.

2 Literature Review

Researchers suggested several techniques for the detection of histopathological lung cancer. A brief evalua-
tion of some important contributions to the existing literatures is presented in this section.

Xing and Yang [21] presented a new segmentation methodology, which combines an effective local repul-
sive balloon snake deformable approach (bottom-up) and a robust selection-based sparse shape approach
(top—down) to tackle the segmentation concerns. The developed approach extensively tested on 62 cases with
6000 tumor cells. The experimental outcome confirms that the developed methodology delivers better seg-
mentation performance compared to the existing methods. While performing with semi-supervised method-
ologies, the semantic gap was maximized between the feature values, which leads to poor segmentation
rate.

Coudray et al. [4] developed an effective classification methodology: deep learning convolutional neural
network for classifying the whole-slide histopathology images into squamous cell carcinoma and adenocar-
cinoma. The advantage of developed methodology was it was fully automated; there was no user intervention
for segmenting the normal and cancer tissues, so the time consumption of detecting the cancer cell was very
less. Extensive experiments were carried out on real-time histopathological images for demonstrating the
robustness of the proposed scheme. The developed technique was less suitable for recognizing the inclined
histopathology images because it took a high response time and identification rate.

Zhang et al. [25] developed an effective segmentation methodology: Gaussian-based hierarchical voting
and repulsive balloon approach for classifying the lung cancers as adenocarcinoma and squamous car-
cinoma. The developed methodology delivers an effective histopathological lung cancer segmentation in
the spatial localization and structural composition. The experiment was carried out on publicly available
database, Cancer Genome Atlas (TCGA), in order to validate the developed method accuracy, robustness, and
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segmentation speed. In some cases, the training data were supervised evaluation or manual adjustment,
which is needed to be automated.

Khosravi, et al. [13] presented an effective computational approach based on the convolution neural net-
work for classifying dissimilar histopathology images across dissimilar types of cancer. In this literature, the
developed machine learning approach splits the cancer cells from normal tissues and also handles the cell
appearance variations. The developed algorithm was tested on different histopathology images with different
variations in appearance and shapes. The experimental outcome shows that the developed histopathology
cancer cell detection methodology was very effective compared to the existing methodologies. The developed
methodology would fail, when the growth of the cancer cell boundaries was constrained.

Vu et al. [18] developed a new feature discovery methodology: discriminative feature-oriented dictio-
nary learning (DFDL) approach for disease grading and classification in histopathology. In this literature, the
developed dictionary learning approach was tested on three challenging image datasets: animal diagnostics
lab dataset, cancer genome atlas dataset, and intraductal breast lesions histopathological images. The exper-
imental performance suggested that the developed approach was robust and effective in comparison with
existing approaches. In a large dataset, DFDL failed to achieve better segmentation by means of accuracy.

An unsupervised algorithm (modified KFCM with EBFT) is implemented for enhancing the performance
of histopathological lung cancer segmentation and to overcome the above-mentioned drawbacks.

3 Proposed Methodology

The proposed methodology for segmenting the normal and abnormal regions from lung histopathological
image is divided into three major steps: image collection, image pre-processing, and feature extraction. The
workflow of the proposed histopathological lung cancer detection system is represented in Figure 1. The brief
description about the proposed technique is described below.

3.1 Image Collection

In the initial stage of histopathological lung cancer segmentation, histopathological images are taken from
the standard benchmark dataset: TMAD. This dataset contains 205,161 images, which archives 349 dis-
tinct probes on 1488 tissue micro-array slides. In that, 31,306 histopathological images for 68 probes on
125 slides are released to the public. The TMAD combines the NCI thesaurus ontology for probing tissues
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Figure 1: Workflow of the proposed system.
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A

Figure 2: Sample images collected from the TMAD database.
(A) Normal image, (B) adenocarcinoma image, (C) squamous image.

Figure 3: ROl applied images.
(A) ROI-applied normal image, (B) ROl-applied adenocarcinoma image, (C) ROl-applied squamous image.

in the cancer domain. For lung cancer, the TMAD database contains one normal image, 220 adenocarci-
noma images, and 68 squamous histopathological images. The sample collected histopathological images
of normal, adenocarcinoma, and squamous are represented in Figure 2A—C.

After obtaining the histopathological images, an important step: region of interest (ROI) is carried out
on the collected images. The ROI is defined as a subset of histopathological image or a database identified
for a specific purpose. Therefore, the size of the selected ROl is 256 ~ 256, which is one-fourth of the origi-
nal image 1024  1024. The sample ROI applied histopathological images of normal, adenocarcinoma, and
squamous are denoted in the Figure 3A-C.

3.2 Pre-processing of Histopathological Image

The ROI-applied histopathological images are used for pre-processing. In this research, normalization is
performed on the histopathological image for enhancing or de-noising the images. Most of the histopatholog-
ical images are collected or captured from the equipment’s, whereas the collected histopathological images
majorly consist of two noises: impulse noise and machinery noise (electrical and mechanical noises) [1].
The normalization methodology is very effective to remove impulse and machinery noise and also helps to
enhance the image quality significantly.

Normalization modifies the pixel intensity range values to improve the quality of images by reducing the
noise from histopathology images. Then, the deformation and alternations that occurred in the histopatholog-
ical image by inaccurate image capture were evaluated. Usually, image normalization contains pixel intensity
variations. The entire histopathological images are converted into pre-defined values because it is a pixel-wise
procedure. The general formula of image normalization approach is denoted in equation (1).

newMax newMin

= in) + + i
In=(I Min) Uax Min newMin @)
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Figure 4: Preprocessed image.
(A) Normalized normal image, (B) normalized adenocarcinoma image, (C) normalized squamous image.

where I is represented as the original histopathology image, I is stated as the new image, (Min = 0, Max =
255) is specified as the intensity range of the original image, and (newMin, newMax) is stated as the inten-
sity range of the new histopathology image. The sample normalized histopathology images of normal,
adenocarcinoma, and squamous are represented in Figure 4A-C.

3.3 Histopathological Image Segmentation

The normalized histopathological images are used for segmentation; an effective methodology modified
KFCM is undertaken for segmenting the normal and abnormal regions of histopathological images. Generally,
image segmentation is the procedure of sub-dividing an image into different regions that are homogeneous
with respect to some image features. The aim of image segmentation is to extract and detect the particu-
lar region from an image [14]. In this scenario, consider I as an input histopathological image that consists
of a set of p; color images at pixel i(i = 1,2, ..., N)and P = fp1, p2,p3...pg R, respectively, in the k-
dimensional area. The cluster centers in the histopathological images are denoted as Q = g1, 42, g3 . . . 40,
where c is said to be a positive integer (2 < ¢  N), and uj; is the membership value for each pixel i in the
j-th cluster (j = 1, 2, ... c). The clusters formed in the image space are combined by assigning a separate
membership value to all pixels in the KFCM algorithm. The objective function or general equation of KFCM is
written in equation (2).

XK m 5

Jxkrem = Wi pi g, 16m<oo @)
i=1j=1

where m is an exponent of regularization to the degree of fuzziness, m > 1,and p; g; % is the grayscale
Euclidean distance between i and gj, which is stated in equation (3).

X X
u; =1, wu;2[0,1], 06 uj 6 N (3)

j=1 i=1

Utilizing the membership function from the alternate optimization, the cluster centers are updated
iteratively using equations (4) and (5).

1
Ujj = Pc ) N 1/(m 1) (4)
=1 Dbi a “[kpi qik
PN:l ull'p;
9 = Py (5)

m
i=1 Ujj
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The presence of noise is decreased by adding the spatial information of neighboring pixels that is denoted

in equation (6).
(0] 1
XX , a XXX ,
Jxkrem s = wj pi 4t ujf @ proq A (6)
i=1 j=1 R =1 j=1 r2N;

where a denotes a spatial information, N; and N; are defined as the set of Bxel and cardinality of the pixels
employed in the system. To avoid the neighborhood function, the term Nik ron, Pi 4 %is replaced with
bi qj 2, where, p is a color scale-filtered image, and the Euclidean distance is replaced by the correlation
distance measure.
The updated equation is represented in equation (7):

XX ) XX ) )
Jkrem s@a,2) = wji pi g +a wj Bi g @
i=1j=1 i=1 j=1
In this research, a modified KFCM is proposed, which calculates the parameter 7; at every step of the
iterations to replace a for every cluster [7]. The correlation function is used to calculate the parameter value,
which is represented in equation (8).

minjej 1 C q'j, qj
maxi(1  C(qx, P))

nj = @)

Here, C is a correlation distance measure or correlation function. The general identification of C requires
a large number of patterns, and also, many cluster centers are required to find the optimal value for z;.
To overcome this problem, the combination of spatial context and scale information are made using a
fuzzy factor. The fuzzy factor Fj; is included in the objective function of the KFCM, which is stated in
equation (9).

Xh - edM s 2 !
Jc kFem = ujiij"j pi  qj ~ + Fj )
i=1 j=1

Then, the altered fuzzy factor F’;; is derived using equation (10).
X< m
Fryj = wie 1 uy (10)
C2N; i&k

This altered fuzzy controls the local neighbor relationship and replaces the distance with a correla-
tion function, where wy denotes the fuzzy factor i, and 1 C p;, q; denotes correlation metric func-
tion. The segmented histopathological images of normal, adenocarcinoma, and squamous are given in
Figure 5A-C.

A

Figure 5: Segmented image.
(A) Segmented normal image, (B) segmented adenocarcinoma image, (C) segmented squamous image.
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3.3.1 Pseudo Code of Modified KFCM

In this section, the pseudo code for the modified KFCM is presented. In the modified KFCM, a few changes
are carried out in step 5, compared to the conventional KFCM. Finally, the iteration stops and returns after
calculating the missing value using equation (10).

— Fix the number of clusters ¢, and m > 1 for some positive constant.

— Set p; = 0, if p; is a missing feature.

- Update all membership function u;; using equation (4).

- Update all prototypes g; using equation (5).

— Replace the Euclidean distance with the correlation function C.

— Calculate the missing value using equation (10).

- End

3.4 Edge Bridge and Fill Technique

After histopathology cell segmentation, the EBFT is utilized to bridge the gaps in the edges of the histopathol-
ogy lung image for separating the overlapped nuclei and non-nuclei cells. The step-by-step procedure of the
EBFT is described below.

— Initially, the extreme boundary line of the overlapped cell is kept, and all the inner portions were removed.
The overlapped cell region is connected to the background black region because it is necessary to distin-
guish the overlapped cell region from the background. The overlapped cell edge needs to be closed, so that
the cell region can discriminate from the background.

— To close the open-edge portion of the cell region, an iterative thinning (skeletenization) and thickening
(dilation) morphology is utilized in this research work. Dilation is carried out with a square structural ele-
ment or disk of size four. The dilation of histopathology image A by the structuring element B is described
using equation (11).

AxorB = b 2 BA, (11)

— In this research work, the size of the structural element is 12. All overlapped cells in the histopathology
image segmented are shown in Figure 6. To make the segmentation of the overlapped cell more reliable
and robust for any size of cell, it is better to use the small-size structural element rather than use the large
structural element. In this experimental research, the disk structural element with radius 4 is utilized fol-
lowed by skeletenization iteratively three times. This procedure depends on the number of iterations that
happens after the closing of the overlapped cell edge; hence, the maximum limit of iterations does not
affect the reliability of the overlapped cell segmentation process.

Figure 6: Sample image of the EBFT.
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Figure 7: Sample-labeled image.

— The dilated thick line from equation (11) is skeletonized by eliminating the pixels from each side with
respect to the central pixels of the line. This procedure makes the boundary lines more sharp with less
gap. Then, the sharp boundary line is added to the overlapped cell without any gap.

— The holes in the overlapped cells are filled as shown in Figure 6. In the filled cell image, the overlapped
nuclei and non-nuclei cells are effectively distinguished.

The labeling is utilized to better distinguish the overlapped nuclei cells and non-nuclei cells. The sample-
labeled image is denoted in Figure 7.

4 Experimental Analysis

For experimental simulation, MATLAB (version 2017a) was employed on a PC with 3.2 GHz with i5 processor
[2]. In order to estimate the efficiency of the proposed algorithm, the performance of the proposed method
was compared with the diffusion-weighted approach [22] and DCNN [13] on a database: TMAD. The perfor-
mance of the proposed methodology was compared by means of precision, recall, specificity, accuracy, and
Jaccard coefficient.

4.1 Performance Measure

Performance measure is defined as the regular measurement of the outcomes and results that develops a
reliable information about the effectiveness and efficiency of the proposed system. Also, it is the procedure
of reporting, collecting, and analyzing information about the performance of a group or individual. The
general formula for calculating the precision, recall, specificity, and accuracy of lung cancer detection is
mathematically represented in equations (12)—(15).

Precision = ﬁ 100 (12)
TP
. _ TN
Specificity = TP+ TN 100 (14)
+
Accuracy = TP+ TN 100 (15)

TN+ TP+ FN+FP
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Additionally, for segmentation validation, the Jaccard coefficient is expressed in terms of TP, TN, FP,
and FN counts, which is obtained by matching the segmented result to the ground truth image. The general
formula utilized to calculate the Jaccard coefficient is represented in equation (16).

. TP
Jaccard coefficient = m 100 (16)

where FP is represented as false positive, TP is denoted as true positive, FN is indicated as false negative, and
TN is specified as true negative.

4.2 Quantitative Analysis on TMAD Dataset

In this experimental analysis, the TMAD dataset is used for comparing the performance evaluation of the
proposed approach and the existing segmentation methods. In Table 1, performance evaluation of the pro-
posed method (modified KFCM) and the segmentation methods (FCM and KFCM) are validated by means
of precision, recall, and Jaccard coefficient. The TMAD dataset contains three classes of histopathology lung
images: normal, adenocarcinoma, and squamous. Here, the performance evaluation is validated for one sam-
ple image in each class with two random multi-region ROIs. The validation result shows that the proposed
method outperformed the existing methodologies by means of precision, recall, and Jaccard coefficient.

For the collected histopathological image, the mean or average precision of the proposed technique is: for
the modified KFCM, 68.32%, and the existing methodologies FCM and KFCM delivers 56.71% and 58.4% of the
average precision. The average recall of the proposed technique is 99.22%, and the existing methodologies
delivered 96.38% and 97.33% of the average recall. Similarly, the average Jaccard coefficient of the proposed
technique delivers 67.96%, and the existing methodologies attained 55.55% and 57.82% of the average Jaccard
coefficient. The graphical comparison of the average precision, recall, and Jaccard coefficient is denoted in
Figures 8 and 9. Similarly, the standard deviation of the proposed technique precision is 5.2561, and the exist-
ing techniques (FCM and KFCM) delivered 2.837 and 3.0480. The standard deviation of the proposed technique
recall is 0.5178, and the existing techniques achieved 1.0200, and 0.1892. Finally, the standard deviation of

Table 1: Precision, recall, and Jaccard coefficient comparison of the proposed and existing methods.

Images Clustering TP N FP FN  Precision (%) Recall (%) Jaccard
technique coefficient (%)
FCM 3480 59,178 2520 130 58 96.3989 56.77
KFCM 3611 60,181 2380 100 60.2737 97.3053 59.2842
Modified 4801 72,681 1947 35 71.14 99.28 70.70
KFCM
FCM 3821 65,646 3326 186 53.463 95.3581 52.1069
KFCM 4018 67,706 3256 122 55.2378 97.0531 54.3267
Modified 4724 77,734 2853 63 62.3466 98.6839 61.83
KFCM
FCM 3436 50,637 2419 92 58.6849 97.3923 57.777
KFCM 3546 51,689 2293 85 60.7296 97.659 59.8582
Modified 4556 59,711 1816 13 71.5003 99.7155 71.35

KFCM
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8
[9)
=
0 10 20 30 40 50 60 80
Percentage (%)
Figure 9: Graphical comparison of the Jaccard coefficient.
Table 2: Accuracy and specificity comparison of the existing and proposed method.
Images Clustering TN P FP FN Specificity (%) Accuracy
technique
FCM 49,923 3045 2401 166 95.4113 95.3777
KFCM 51,957 3128 2209 146 95.9218 95.9001
Modified 59,000 4149 2008 81 99.8629 96.79
KFCM
FCM 50,946 3132 2584 109 95.1728 95.2564
KFCM 51,440 3179 2580 104 95.224 95.3161
Modified 64,948 3713 2181 12 99.9815 96.90
KFCM
FCM 60,831 4223 2648 74 95.8285 95.9838
KFCM 64,194 4401 2482 56 96.2775 96.432
Modified 74,338 4678 2315 47 99.9368 97.09
KFCM

Class: squamous

the proposed technique Jaccard coefficient is 5.3154 and the existing techniques (FCM and KFCM) delivered

3.0264 and 3.0415.

In Table 2, performance evaluation of the existing and proposed method is validated in terms of accu-
racy and specificity. In this section, performance evaluation is validated for one sample image in each class
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of TMAD dataset. For the collected image, the average accuracy of the proposed technique is: for the modified
KFCM, 96.92%, and the existing methodologies FCM and KFCM delivered 95.53% and 95.88% of the average
accuracy. In addition, the average specificity of the proposed technique is 99.92%, and the existing method-
ologies delivered 95.47% and 95.80% of the average specificity. Correspondingly, the standard deviation of
the proposed technique’s accuracy is 0.1517, and the existing techniques (FCM and KFCM) delivered 0.3914
and 0.5602. Similarly, the standard deviation of the proposed technique specificity is 0.0598, and the existing
techniques (FCM and KFCM) achieved 0.3286 and 0.5346.

Tables 1 and 2 confirmed that the proposed approach performs effectively compared to the existing seg-
mentation method on the TMAD dataset. The modified KFCM encodes both the local and shape features of
the wavelet transformed histopathology image for improving the segmentation efficiency of lung cancer. The
proposed modified KFCM algorithm fuses different pixel information, which represents a different correlation
space to produce a new correlation value. The graphical comparison of the average accuracy and specificity
is denoted in Figure 10.

4.3 Comparative Analysis

Tables 3 and 4 represent the comparative study of the existing work and the proposed work performance.
Yin et al. [22] developed an image analysis chain that was utilized to study the correlation between tumor
cellularity from serial histopathological slides of a resected NSCLC tumor and diffusion coefficient (D value)
calculated from the diffusion-weighted magnetic resonance imaging (DWI). On digitized histological image,
color deconvolution along with cell nuclei segmentation was used in determining the cell type and local
two-dimensional densities. Then, the DWT sequence information was over-laid with resected histology using

Table 3: Performance comparison of the proposed and existing approach by means of accuracy and specificity.

Method Cancer stages Accuracy (%) Specificity (%)
Diffusion weighted [22] Combined stages 94.7 0.016 94.3 0.029
Modified KFCM Normal 97.53 0.007 99.95 0.0121
Adenocarcinoma 97.02 0.023 99.94 0.074
Squamous 97.31 0.012 99.97 0.0225
Combined stages 97.28 0.014 99.95 0.0075

Table 4: Performance comparison of the proposed and existing approach by means of precision, recall, and Jaccard coefficient.

Methodology Cancer stages Precision (%) Recall (%) Jaccard coefficient (%)
DCNN [13] Combined stages 92 92 92
Modified KFCM Normal 99.21 71.81 91.40
Adenocarcinoma 98.90 64.58 94.12
Squamous 99.54 70.04 95.81

Combined stages 99.21 68.81 93.77
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non-invasive imaging modality data and prominent anatomical hallmarks of histology tissue blocks. Finally,
spatial tumor cell density and cell number information were determined on the basis of the DWT data. For
sample 30 histopathological images, the average accuracy of the proposed technique is: for the modified
KFCM, 97.28  0.014% and for the existing methodology: diffusion weighted [22] delivers 94.7 0.016% of
the segmentation accuracy. Similarly, the specificity of the proposed technique delivers 99.95  0.0075%,
and the existing methodology delivers 94.3  0.029% of the specificity. Compared to the existing method, the
proposed methodology shows 3-5% of improvement in specificity and accuracy. The graphical comparison
of accuracy and specificity is denoted in Figure 11.

In Table 4, performance evaluation of the proposed method is: for the modified KFCM and the existing
methodology: DCNN [13] is validated by means of precision, recall, and Jaccard coefficient. Khosravi et al. [13]
developed numerous computational methodologies on the basis of CNN and also built a stand-alone pipeline
for classifying the histopathology images across dissimilar types of cancer. In this research paper, stand-alone
pipeline demonstrates the discriminate between two sub-types of lung cancer, five bio-markers of breast can-
cer, and four bio-markers of bladder cancer. The classification phase includes the ensemble of two algorithms
(ResNe and inception), a basic CNN architecture, and Google’s Inceptions with three training approaches. The
average precision of the proposed technique is: for the modified KFCM, 99.21% is delivered and the existing
methodology: DCNN attains 92% of segmentation precision. Similarly, the Jaccard coefficient of the proposed
technique delivers 93.77%, and the existing methodology achieves 92% of the Jaccard coefficient. Compared
to the existing method, the proposed methodology shows better segmentation results by means of precision
and Jaccard coefficient. Additionally, the recall of the proposed technique delivers 68.81%, and the existing
methodology delivers 92% of the recall value. The proposed approach shows less recall value because while
performing with multiple ROI on input histopathology image, the size of the pixel is decreased that reduces
the performance of the proposed approach. The graphical representation of precision, recall, and Jaccard
coefficient is denoted in Figure 12.
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Figure 11: Graphical comparison of the proposed and existing method by means of accuracy and specificity.
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Figure 12: Graphical comparison of the proposed and existing method by means of precision, recall, and Jaccard coefficient.
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4.4 Discussion about Proposed Methodology

Histopathology image segmentation plays a major role in cancer diagnosis, which delivers the necessary
information for separating the non-cancer region from the cancer region. In this experimental research,
histopathological image segmentation is carried out for the disease: lung cancer, which is one of the grow-
ing diseases in the medical field. Previously, several methodologies were developed to distinguish the cancer
cells from non-cancer cells, but existing researches do not concentrate on the overlapped cancer and non-
cancer cells. It is essential to distinguish the overlapped cancer and non-cancer cells for best recognition
or segmentation. In this research, a new unsupervised machine learning approach was developed for seg-
menting the overlapped cancer cells from non-cancer cells. The effectiveness of the proposed methodology
is shown in Tables 3 and 4. The performance analysis is verified by determining the performance metrics like
precision, recall, specificity, accuracy, and Jaccard coefficient. Under such circumstance, the accuracy of the
proposed methodology is 2.5% better than the existing approach (diffusion weighted). Additionally, precision
and the Jaccard coefficient of the proposed methodology shows 7% and 1.5% improvement compared with the
existing approach (DCNN). The proposed segmentation methodology includes numerous advantages: assists
the doctors during surgery, cost efficient related to other existing machine-learning approaches, and earlier
detection of lung diseases.

5 Conclusion

In this research paper, a new texture-based histopathological segmentation methodology is proposed, which
is based on the modified KFCM with ROI. The modified KFCM is the most effective methodology in histopatho-
logical lung cancer segmentation. In this experimental research, the modified KFCM, along with the EBFT,
is utilized for segmenting the cancer and non-cancer regions in histopathological images. The proposed
methodology effectively combines the advantage of the EBFT and the modified KFCM methodology. The
experimental investigation was verified on a publicly available database (TMAD dataset), which shows a
superiority of the proposed methodology. The modified KFCM scheme delivered an effective segmentation
performance, compared to the other obtainable approaches in histopathological lung cancer detection. The
proposed methodology showed 2.5-5% of the enhancement in segmentation compared with the existing
methods in terms of segmentation accuracy. In future work, an appropriate classification methodology will
be used in classifying the cancer and non-cancer regions in the segmented histopathology image.
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