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Abstract: Nowadays, there has been an increase in security concerns regarding fingerprint biometrics. This
problem arises due to technological advancements in bypassing and hacking methodologies. This has
sparked the need for a more secure platform for identification. In this paper, we have used a deep Convolu-
tional Neural Network as a pre-verification filter to filter out bad or malicious fingerprints. As deep learning
allows the system to be more accurate at detecting and reducing false identification by training itself again
and again with test samples, the proposedmethod improves the security and accuracy bymultiple folds. The
implementation of a novel secure fingerprint verification platform that takes the optical image of a fingerprint
as input is explained in this paper. The given input is pre-verified using Google’s pre-trained inceptionmodel
for deep learning applications, and then passed through a minutia-based algorithm for user authentication.
Then, the results are compared with existing models.
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1 Introduction
We, human beings, are recognised by our unique characteristics and traits. These traits can be behavioural
or physiological in nature. At present, whenwe consider identification, we immediately associate it with bio-
metrics. Identification, in general, is done by observing and identifying the unique characteristics of an indi-
vidual. These characteristics can be features such as facial expressions, iris patterns, voice, and even finger-
prints.We have theorisedmanymethodologies for identifying individuals based on their unique features, but
most of them are left as theories due to the lack of computational power and speed. However, in this day and
age, we can convert these theories into practical uses, and can make them available for day-to-day use [10].

Previously, identification and validation of individuals were done by information-based systems, which
make use of passwords or cards for authentication. As these methods are unreliable and less secure, the
stored information can be easily hacked or lost. Therefore, there has been a need for more secure, com-
plex, and unique identifiers for user authentication. Hence, biometric traits such as such as fingerprints,
palm prints, face, iris, and retina are found to be very useful for the recognition of individuals. Among the
above-mentioned biometric traits, fingerprint-based authentication is the most popular one. Because of the
above-mentioned risks, people have adopted fingerprint sensors for biometric authentication inmany online
payment platforms [10].

Fingerprints have different patterns thatmake each individual fingerprint unique. The patterns aremade
by a combination of several dermal ridges. These ridges aremoulded during our time in thewomb,where sev-
eral factors such as friction, maternal conditions, etc. affect their final shape and structure. These patterns
develop all over thehumanbody, including thepalms, soles, and even toes. As somany conditions and factors
play an important role in determining the final ridge pattern, we consider fingerprint patterns to be unique
to each and every individual.
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Fingerprint authentication has become a norm in our day-to-day society that its vulnerability is never
challenged. However, due to technology advancements, malicious attempts which bypass security systems
using fake fingerprints have been increased. Many systems today use algorithms that match the records in
the database with the input provided by the scanner for user authentication. As these methods in specific
applications are not modified and updated regularly at a pace that equals or exceeds the progress made by
malicious individuals, it leaves biometric recognition at an increased risk and makes them susceptible to
cyber attacks.

Nowadays, there are many fingerprint-based systems that can authenticate at high speeds because of
new and improved algorithms. We heavily rely on man-made algorithms to provide us with great results. In
this research, we are focusing mainly on fingerprint biometrics and how we can further improve its security
by using enhanced verification platforms.

2 Related Works
Fingerprints are identifiers that are unique to every individual. Fingerprints can be considered as a pat-
tern of ridges and valleys (Figure 1). Thus, fingerprint classification and verification is a pattern recognition
problem. This particular type of problem is considerably tricky to solve because of the large intra-class and
small inter-class differences. Optical images of fingerprints can be classified based on the details of its ridge
configuration. We can break them down into three different classes, as shown below.

The topmost or first-layer (also known as global) classification is based on the visual representation
formed by the ridge pattern, which gives us three distinct regions named loop, whirl, and delta. In the second
layer, we can drill down further to find more unique and detailed characteristics in these ridges, which are
commonly referred to as minutiae. Finally, in the last layer, we can classify on the basis of all the features of
the ridge pattern.

There are already many existing fingerprint biometric applications available in the market. These appli-
cations make use of feature-based learning algorithms. The features include global features such as the
orientation of the optical input, ridge pattern, singular points, etc. Gabor filters [2] may be applied to high-
light the selected features of the data input. These features can be extracted and classified in multiple ways
depending on the methodology used. Many of these algorithms are verified for accuracy and performance
against popular fingerprint databases such as NIST SD4, SD14, and SD9.

The global characteristics of fingerprints are also used for classification, in particular ridgeline flow, ori-
entation image, singular points, and Gabor filter responses. Among them, the orientation image is the most
widely used. Feature extraction can be performed in several ways, depending on the kind of feature, the
quality of the image, and the accuracy that the following classification phase requires.

Figure 1: Ridges and Valleys in a Fingerprint.



V.M. Praseetha et al.: Secure Fingerprint Authentication Using Deep Learning | 1381

The goal of the classification stage is to learn a classifier based on labelled fingerprints. The algorithms
proposed by various authors can be categorised as follows:
– Rule: These algorithms break down the provided fingerprint data input on the basis of the singularities,

taking into account their number and positions. Here, the singularity points are found and the final clas-
sification is done based on the pattern formed by these singularities. A fine example is demonstrated in
Ref. [8].

– Syntactic: These algorithms are based on a general grammar, like in the case of natural language process-
ing applications. Here, the features extracted from the input data are stored as symbols in the database.
The symbols are formed from ridgeline flows, which are then classified by a set of grammar. We can see an
example of this in Ref. [13].

– Structural: These algorithms break down the fingerprint input and store it in specific data structures
and formats like graphs and trees, to better understand and convert the features into a higher-level
representation. An example of this can be seen in Ref. [9].

– Statistical: These algorithms are completely based on the statistical data computed. These data are gen-
erally calculated by using common statistical applications such as Bayesian decision rule, support vec-
tor machine (SVM), and K-nearest neighbour (KNN). We can see an example of statistical approaches in
SVM-based classification and improvement of fingerprint verification in Ref. [12].

– Neural network: These algorithms make use of multilayer perceptrons. The input data are taken and the
extracted features are passed through the algorithm after reducing the dimensions [3]. The extracted fea-
tures are generally singularities and the orientation of the image, which is used to train the perceptron
to improve its performance. These networks give great classification results. A Convolutional Neural Net-
work (CNN)-based approach for the segmentation of latent fingerprints is proposed in Ref. [19]. The CNN
is trained using overlapping patches of multiple sizes to find out a fingerprint. A CNN-long short-term
memory (LSTM) architecture is explained in Ref. [18] to find face anti-spoofing by combining the LSTM
units with CNN. The architecture has two convolutional layers with 48 and 96 numbers of 3 × 3 filters,
respectively, in each layer to learn the end-to-end features from video sequences.

– Multi-classifier: These algorithms include all the approaches that combine two or more classifiers [11].

This research is unique, as we make use of the statistical (minutiae-based) and neural network-based
approaches and combine them to achieve better security and accuracy. The model proposed here is the first
one of its kind, and it differs from the previous works in the following aspects:
– Our experiment proceeds through two phases – pre-verification phase and verification phase. In the pre-
verification phase, good and bad fingerprints are filtered out. Then, the verification phase verifies a good
fingerprint. Fingerprint images with poor quality are considered as bad or fake fingerprints. By using the
pre-verification phase, the security of the system can be increased.

– We have applied the technique of transfer learning in the pre-verification phase.
– Google’s Inception-v3, which is a pre-trained deep CNN model, is used for training the pre-verification

phase.
– Verification of the fingerprints is done by using Gabor filter and KNN-based methods.

3 Proposed Method

3.1 Pre-classifier CNN

3.1.1 Data Samples

The optical input that is captured from the fingerprint sensor is stored and accessed by the system in spe-
cific formats (e.g. .bmp, .jpeg, etc.). We are using these captured inputs to train our neural network. These
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Figure 2: Proposed Methodology Diagram.

inputs should be given extra care beforehand, as, generally, issues arise during the verification process
(Figure 2).

For training toworkwell,we should gather at least a hundred visual samples of the fingerprints. Themore
we gather, the better the accuracy of the trained model. We also need to make sure that the inputs provided
are good to help us in the verification and classification processes.

The input data that we have collected will not be completely used for the training process, as this can
cause a chance for overfitting the neural networkmodel. This common problem is easily resolved by dividing
our data samples and using a part of them for the training process. Using a part of the data prevent themodel
frommemorising the samples provided.We can use the remaining data inputs to check whether overfitting is
occurring or not. The amount of overfitting is measured by the accuracy and precision of the trained model.
We have the option to split the input data into different ratios. Generally, neural network-based applications
split the input data by 1:1:8. The 80% of the split is used for the training process; the 10% of the samples is
used to validate the input data during the training process; and the remaining 10% is used as the testing data
input to verify the accuracy and performance of the now trained model [15].

The produced results can be further improved by applying various transformations to the input data (e.g.
cropping, brightening, deforming, etc.). These transformations will help the classifier to adapt real-world
scenarios to further improve the accuracy and performance.

We have used a regular optical fingerprint sensor to capture our fingerprint input. The .NET framework,
which makes use of tensorflow [1], is used to develop the neural network model for the pre-classification
process.

3.1.2 Inception Model

We are using a CNN for the classification of the input images (Figure 3). CNNs are neural networks that
comprise multiple layers and are generally used to classify optical data. CNNs take the optical input and
process them in the form of tensors. Tensors are the representation of the data input in the form of a multi-
dimensional matrix. The optical image is generally processed by applications as a two-dimensional (2D)
input. Here, the model will convert the 2D input to a 4D matrix [16].

The CNNmodel we are using is Google’s Inception-v3 [4]. This model has already been pre-trained on all
image data from ImageNet [5]. As this is a pre-trained model, the training time required for the classification
process can be reduced by many folds. This model can be retrained using transfer learning, by which we can
modify the model for our needs. The decrease in training time is possible because we are only training the
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Figure 3: Basic Inception CNN Architecture.

last layer of themodel tomake it suitable for our application. ImageNet is a database that consists of multiple
nodes, and each node comprises >100,000 images organised by the WorldNet hierarchy.

We have used the technique of transfer learning in which the pre-trained Inception-v3 model is applied
for filtering out good fingerprints. Inception-v3 uses a deep CNN architecture. In this architecture, the lower
layers identify the low-level features and the higher levels identify high-level features. Thus, when we want
to use this model for a different purpose, we need to train only the last layer of this model. The output layer
should also be redefined. Except for the last layer, the parameters we use are the same, which the model has
learned from ImageNet. The last layer of the model has 2048 filters of 1 × 1 size. We have changed this layer
to a fully connected layer. This fully connected layer contains 2048 neurons. During training, the network

Table 1: Parameters Used for the Proposed Model.

Parameter Value

Number of neurons in the last layer 2048
Loss function Cross entropy
Optimiser Adam
Learning rate 0.001
Epochs 100
Batch size 32
Dropout 0.5
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Figure 4: Skip Connection Typically Used in Residual Networks.
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learns the weights between the neurons and the bias of output neurons. Table 1 gives the parameters of the
model.

Google’s Inception-v3 model consists of multiple convolutional kernels that vary in size. Each of these
convolutional kernels identifies features for eachdimension and scale. Thismodel adopts the formof residual
network that makes use of skip connections (Figure 4). Residual networks take the input data and add them
to the output, thus enabling the network to predict the residual input rather than the expected output [6].

The inception model is trained to classify whether the provided input is a form of fingerprint or not. This
model helps filter out bad inputs that have resembling features to that of a fingerprint input. Thus, this clas-
sifier is able to identify inputs with a certain level of noise. An accuracy of between 90%and 95% is obtained,
although the exact value varies from run to run. This is due to the randomness in the training process.

3.2 Minutiae Verification for Authentication

3.2.1 Feature Requirements

The output of the inception model is a good fingerprint that is a distinct pattern of ridges and valleys. A ridge
is defined to be a single curved segment, whereas a valley is the area between two adjacent ridges. Minutiae
points are the major features of the fingerprint and are used to match the fingerprints. These minutiae points
are used to determine the uniqueness of the fingerprint. A good quality fingerprint can have 25–80 minutiae
depending on the sensor and scanner used [14].

Minutiae can be defined as the points in the fingerprint where the ridges end or divide. There are several
types of divisions or ends in a ridge line, which can be segregated as below:
– Ridge dots – these are extremely tiny ridges that are too short to be considered as a ridge line.
– Ridge endings – these are the end points of a ridge line.
– Ridge ponds/lakes – these are the cavities formed in between diverging ridges.
– Ridge islands – these are longer ridge dots that are found inside ridge ponds.
– Ridge bifurcations – these are points where ridges begin to diverge.
– Ridge spurs – these are the inclinations found on a ridge line.
– Ridge bridges – these are found on the point where two tiny ridges adjacent to each other join.
– Ridge crossovers – these are found at the point of overlap between two ridge lines.

Our minutiae verification algorithm takes the filtered fingerprint from the classifier as input and finds the
minutiae from the fingerprint. We have extracted the ridge endings and bifurcations from the fingerprints.
Then, these points are used for matching with the database.

3.2.2 Feature Extraction and Minutiae Matching

The first step for this verification approach is normalisation, which results in a better contrast of the fin-
gerprint input. Then, this input is transformed into a grey scale representation. We will then apply several
correctional adjustments to the input, such as changing the image brightness and contrast. Then, the noise
distortion in the input is filtered out using a Gabor filter [2].

The Gabor filter is a linear filter that determines the output using a harmonic function, which is then
multiplied using a Gaussian function. It consists of an orientation- and frequency-specific sinusoidal plane
that is adjusted by a Gaussian envelope [17]. The Gabor filter provides a suitable visual representation of the
input. Then, the feature map is created, which is used as the template. This template is matched in the sub-
sequent matching step with templates of other fingerprints. The result of the matching is the matching score,
which represents how good two fingerprints resemble each other.

Template matching is done by using the KNN algorithm [7]. The KNN algorithm makes use of the
Euclidean distance, which can be calculated by using the following formula:

d(x, y) =
√︁
(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2. (1)
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The KNN algorithm assigns a class label to each minutia. Then, the k closest members are found by com-
puting the Euclidean distance between the minutiae. In our experiment, the value assigned for k is 2. Thus,
our algorithm finds two nearest minutiae for each minutia. Then, during matching, a local matching is per-
formed to findwhich are theminutiae in the query fingerprint that matchwith theminutiae in the fingerprint
templates in the database. Then, a global matching is done to find out how many minutiae of the query fin-
gerprint match with the minutiae of the template fingerprint. Based on that, a matching score is generated,
which give an indication onwhether the fingerprint matches with any of the fingerprints in the database [14].

4 Results and Discussion
Currently, systems and sensors have a certain amount of false acceptance and false rejection, which is fac-
tored into during the verification process.We have used transfer learning rather than going for the traditional
approach to reduce the training time.

Using tensorflow, we have achieved 94% accuracy for our model, which can be seen in Figure 5. The blue
line shows the accuracy of the model on the testing set and the orange line is the accuracy of our model on
the training set.

A fingerprint scanner that embeds a fake finger detectionmechanism has to decide, for each transaction,
if the current sample comes from a real finger or from a fake one. The error in this decision should be as low
as possible.

Let us assume the below:
FARfd and FARiv – the identity verification error rates.
FRRfd – the proportion of real-finger transactions where the system incorrectly considered the input to

come from a fake sample.
FRRiv – the proportion of fake-finger transactions where the system incorrectly considered the input to

come from a real finger.
For the fake-detectionmechanism, the overall false rejection ratio (FRR) error can be estimated as follows

(for an authorised user trying to be authenticated normally using the real enrolled finger):

FRR = FRRfd + (1 − FRRfd) * FRRiv . (2)
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Figure 5: Training (Orange) vs. Test (Blue) Accuracy on Our Trained Model.
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Table 2: Regular Minutiae Matching vs. Proposed Enhancement.

FRMSM FRMSM(DL)

FNAR 0 0
FAR 0.026 0.00156

Table 3: Comparison of Various Pre-trained Deep Networks.

Model Accuracy range Depth Parameters

NASNetMobile 0.744–0.919 – 5,326,716
VGG19 0.713–0.900 26 143,667,240
VGG16 0.713–0.901 23 138,357,544
ResNet50 0.749–0.921 168 25,636,712
Inception-v3 0.779–0.937 159 23,851,784

The overall false acceptance ratio (FAR) error can be estimated as follows (for an attacker trying to be
authenticated using a real finger, different from the enrolled one):

FARReal−Non-enrolled = (1 − FRRfd) * FARiv . (3)

Then, we can write

FARFake−Non-enrolled = FARfd * FARiv (4)

(for an attacker trying to be authenticated using a fake reproduction of a finger that is not the enrolled one)
and

FARFake-Enrolled = FARfd * γ (5)

(for an attacker trying to be authenticated using a fake reproduction of the enrolled finger), where γ <

(1− FRRiv). If a fake fingerprint is created by using professional equipment, its quality is usually lower than
the real finger it is designed to imitate, and therefore the chance that the identity verification algorithm does
not match it with the user’s real template is higher.

Generally, the FAR in fingerprint verification systems have a certain low value; let us assume it to be x.
We have found that the accuracy of fingerprint classification is around 94%. Thus, as our CNN is act-

ing as a pre-filter, we can reduce the FAR of any system by using themultiplication rule of probability. Hence,
(1−94/100), which is the probability that the CNN falsely accepts a fake fingerprint is multiplied by x, which
is the FAR of any system. Therefore, we get the following equation:

FARnew = FAR * (1 − 94/100) = 0.06 * FAR. (6)

Let us take the experimental results from our KNN algorithm. We computed the FAR to be 0.026 and
the false non-acceptance ratio (FNAR) to be 0. The resulting FAR = 0.026 can be improved as FARnew =
0.026 * 0.06 = 0.00156, thus improving the accuracy by approximately 90–95%.

Table 2 shows the comparison of the FNARandFAR for existingmethods of Fingerprint Recognition using
Minutia Score Matching (FRMSM) with the proposed method. It is observed that the FNAR for both methods
is zero, and the FAR is 0.026 for the existing method and 0.00156 for the proposed method.

We have tested our model with batch sizes 4, 8, 16, and 32. The model gives good results when the batch
size is 32. The network is trained for 20, 40, and 100 epochs. It is found that the model works well for 100
epochs. To avoid overfitting of the model, early stopping is also applied. Table 3 shows the comparison of
various pre-trained deep network models.
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5 Conclusion
We have done a novel experiment on fingerprint verification where the first phase is pre-filtering of bad fin-
gerprints and the second phase is fingerprint verification. The inception model is used for filtering out bad
fingerprints. If the output of the inceptionmodel says that it is a good fingerprint, it is given to the verification
module where matching of the fingerprint is performed. By combining a deep CNN pre-filter to the minu-
tiae matching fingerprint verification algorithm, we have achieved an improved accuracy of approximately
90–95%. There are many upcoming technologies pertaining to fingerprint biometrics, such as in the case of
smartphones. Qualcomm is coming upwith sensors for ultrasound that can pass through solid objects to cap-
ture information fromour fingertips. These technologiesmayhave several noise factors associatedwith them.
As noise is directly related to a high FAR, our incorporation of a pre-filter CNNwill reduce noise substantially
to maintain security to current authentication standards.
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