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Abstract: Precise and timely diagnosis of Parkinson’s disease is important to control its progression among
subjects. Currently, a neuroimaging technique called dopaminergic imaging that uses single photon emis-
sion computed tomography (SPECT) with ?I-Ioflupane is popular among clinicians for detecting Parkin-
son’s disease in early stages. Unlike other studies, which consider only low-level features like gray matter,
white matter, or cerebrospinal fluid, this study explores the non-linear relation between different biomark-
ers (SPECT + biological) using deep learning and multivariate logistic regression. Striatal binding ratios are
obtained using '**I-Ioflupane SPECT scans from four brain regions which are further integrated with five bio-
logical biomarkers to increase the diagnostic accuracy. Experimental results indicate that this investigated
approach can differentiate subjects with 100% accuracy. The obtained results outperform the ones reported
in the literature. Furthermore, logistic regression model has been developed for estimating the Parkinson’s
disease onset probability. Such models may aid clinicians in diagnosing this disease.

Keywords: Parkinson’s disease (PD), striatal binding ratio (SBR), biological biomarkers, multivariate logistic
regression (MLR), risk prediction, deep learning.

1 Introduction

According to Booij et al. [3], Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by
loss of dopaminergic neurons in substantia nigra of the midbrain which further results in loss of dopamine
transporters in striatum. Till date, there is no blood/lab test for identifying PD and its progression. If PD
is detected in the advanced stages, its speed of progression becomes difficult to contain. Thus, early and
accurate diagnosis of this disease is necessary for better management and to evade unnecessary medical
examinations involving financial expenses and other risks [5].

Hence, the focus of this study is to investigate the non-linear relation between imaging and biological
biomarkers so that the accuracy of PD detection would increase. Another objective of this study is to create
a logistic regression model for the risk estimation of this disorder. To fulfill our objectives, we showcased a
different supervised classification approach based on deep learning [30] and statistical approach based on
multivariate logistic regression (MLR) [23] to build the classification as well as risk estimation/prediction
model. For this study, the dataset, in terms of matched biomarkers, has been collected from Parkinson’s
Progressive Markers Initiative (PPMI). Matched biomarkers mean that those subjects have been considered
for which both biomarkers, i.e. single photon emission computed tomography (SPECT) as well as biological
features, were available. The obtained results clearly indicate the potential of this study over the existing
studies.
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The rest of the paper is outlined as follows. Section 2 describes the motivation behind this study and
represents the review of literature on this proposed approach. Section 3 discusses the methods and materi-
als used to model the diagnostic tool based on deep learning and MLR. Section 4 provides the results, and,
finally, Section 5 concludes the work along with future prospects.

2 Review of Literature

Diagnosing the PD at its early stage is important. Therefore, nowadays, SPECT with ZI-Ioflupane (DaTSCAN)
is being widely used to identify PD-affected persons by illustrating the presynaptic dopaminergic deficiency
in striatum, i.e. left caudate (LC), right caudate (RC), left putamen (LP), and right putamen (RP), even in the
starting stages of this disease [3, 23, 26, 27, 33]. Striatal binding ratio (SBR), calculated from SPECT, is becom-
ing a valuable tool for diagnosing this disease [23]. In order to accurately detect PD, researchers are focusing
on identifying the biomarkers that can support clinicians in diagnosing PD in a stage where therapy is likely
to be most effective [4, 25, 28]. Various biological biomarkers for identifying PD symptoms are plasma, serum,
urine, cerebrospinal fluid (CSF), and ribonucleic acid (RNA) [21]. Both SBR values and biological biomarkers
are contributing towards PD diagnosis. Therefore, we proposed a different approach to classify the subjects
using deep learning and MLR by integrating both types of features (SBR values from SPECT and biological
biomarkers). In addition, the diagnostic/indicative tools, which are based on deep learning and MLR, are
being widely used for PD diagnosis, as these tools can assist clinicians in the early detection, management,
and progression tracking of the neurodegenerative diseases [23, 30]. Deep learning has been increasingly
used in the fields of speech, image, video, text mining, etc., due to its strong ability to represent the features
[12, 13]. Motivated by the work done so far, we also tried to take advantage of deep learning to improve the
classification accuracy for PD diagnosis. To realize the latent representation from neuroimaging and biologi-
cal biomarkers, ‘stacked auto-encoder’ [30] has been used. Similar kind of deep learning-based architectures
have also shown their efficacy in detecting other neurodegenerative diseases like Alzheimer’s [30]. Zhang [35]
presented a smartphone based on stacked auto-encoder, which can diagnose PD using the voice of the sub-
jects. Though the research conducted by Zhang was very motivating and has potentials for diagnosing PD,
further advancements are required due to stability and robustness issues of telediagnosis systems. Recent
studies conducted by Martinez-Murcia et al. [16] and Kadam and Jadhave [9] indicated the potential of deep
learning-based architectures in diagnosing PD accurately. These research studies highlighted the accuracy of
over 93% using DaTSCAN and over 90% using publically available voice dataset respectively.
Studies available in the literature also support the use of 1?’I-Ioflupane in depicting the progression of
dopamine degeneration in PD [14, 26]. Martinez-Murcia et al. [14] proposed a fully automated system for
diagnosing PD using Z’I-ioflupane images and observed an accuracy of 97.4% using leave-one-out cross-
validation (LOOCV) method. Though promising results have been observed by these researchers, but with
higher computational cost. Segovia et al. [26] did the classification of the subjects by extracting the voxels
from the corresponding striatum and then performed data analysis using partial least squares method. An
accuracy of 94% has been observed using support vector machine (SVM) classifier. Kish et al. [10] examined
the loss of dopamine in striatum in eight idiopathic PD patients and observed that there is complete deple-
tion of dopamine in putamen and caudate in affected persons as compared to normal subjects. Although
these researchers provided detailed information on neurosurgical strategy of autografting in patients with
PD, the sample size taken for analysis was very small. Takaya et al. [31] performed image-based classification
for detecting PD using an integration of dopamine transporter and SPECT images. Total diagnostic accuracy
of 86.1% was observed using LOOCV method. Martinez-Murcia et al. [15] achieved 95.5% accuracy and 96.2%
sensitivity for classifying PD affected and non-affected subjects by employing convolution neural networks
(CNNs) using SPECT images. However, the existing studies have limitations and they include the following:
(1) The dataset used in the studies was of limited size. In some studies, it is limited to 10 patients or healthy
subjects.

(2) The studies mandate the usage of feature subset selection methods, which lead to information loss. This
impacts the accuracy.

(3) Correlation information is missing among biomarkers employed during the studies.
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Thus, the contributions of this study are the following:

(1) Usage of only four SBR features and five biological biomarkers for developing the classification model
for PD identification, without compromising the accuracy. SBR values are computed from four striatal
regions, namely, LC, RC, LP, and RP, using automated algorithms [36] which are publicly available at
PPMI. The five most affecting biological biomarkers are also available on PPMI. PPMI is one of the largest
databases in the public domain which provide data to researchers and scientists for further studies on
PD. In addition, PPMI database involves subjects from different countries, thus making the dataset more
robust. The performance of softmax classifier has been evaluated on the integrated dataset (by consid-
ering different possible combinations), and it has been observed that the obtained accuracy is higher
than the accuracy available in the literature [15, 23].

(2) To the extent of our knowledge, this is the first instance of jointly using the deep neural network and
logistic regression approaches for classification/prediction modeling using neuroimaging (SPECT) and
biological biomarkers. Further, the matched dataset taken is quite significant (532 subjects — 384 PD and
148 normal) resulting in higher accuracy.

3 Methods and Materials

In this research, SBR values from the four regions (LC, RC, LP, and RP) have been considered, and these values
were calculated from DaTSCAN SPECT images and are openly available at http://www.ppmi-info.org/data. In
addition to these features, five biological biomarkers have also been factored to enhance the accuracy of the
proposed method. The schematic diagram of the proposed method is shown in Figure 1.

3.1 Database Details

The database was downloaded on 20th of December 2017. Although SBR values from a large number of
subjects were available, we considered only 532 subjects (384 PD and 148 normal subjects) because of the
availability of other matched biomarkers. The demographic details of the subjects used in this study, along
with the SBR values and biological biomarkers, are depicted in Table 1. The steps outlined by the Imaging
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Figure 1: Steps of the Analysis Carried Out for Classification/Prediction of PD Subjects.
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Core of PPMI for calculating SBR from a definite region of DaTSCAN are described at http://www.ppmi-
info.org/about-ppmi/who-we-are/study-cores/. After the collection of raw projection data, Central SPECT
Core lab performed the reconstruction, noise correction, and data analysis with a standard region of interest
template on caudate, putamen, and occipital lobe regions. The region count densities for LC, RC, LP, and RP
were extracted. The SBR of a target region is obtained by dividing the density of target region count with refer-
ence region count, i.e. SBR of a target region = (Density of target region count)/(Density of reference region
count).

3.2 Identification of Statistically Significant Features from Independent and
Integrated Dataset

In this study, for assessing the statistical significance (p < 0.05; where p is the probability value) of SBR-
based features and biological biomarkers, Minitab statistical tool, available at http://www.minitab.com/en-
us/downloads, was used. To visualize the SBR features and biological features of normal and PD subjects’
population, histograms (Figure 2A—F) and box plots (Figure 2G-L) have been plotted. Box plots are used to
demonstrate the distribution shape, central value, and the variations of a dataset. The central line in the
box plot signifies the median, and the edges of the box denote the 25th (lower quartile) and 75th (upper
quartile) percentiles of the data. The variations outside the 25th and 75th percentiles (which are not con-
sidered as outliers) are plotted with the help of the extended whiskers. From the box plots (Figure 2G-L)
it can be observed that the SBR values LC, RC, LP, and RP of PD subjects is significantly less when com-
pared to the healthy subjects. The histogram plots illustrate the extent of overlapping of distribution between
PD and the normal subjects’ population. If the overlapping between the plots is more, it is more difficult to
classify the subjects. The application of diagnostic tools, based on statistical theory and deep learning algo-
rithms, come into play as both these approaches have the capability to integrate the characteristics across
the distributed populations having high dimensional feature set. The flow of work carried out in this study
has been shown in Figure 1. Since we used integrated dataset from different modalities along with class
labels, it is required to check the significance of the features. For this purpose, first, we checked the sig-
nificance of the features individually and then by feature combinations with the boundary as p < 0.05.
Further, we checked whether PD is dependent on age and gender. This was done by checking the value
of p, which was greater than 0.05 (p > 0.05). Hence, it was inferred that PD is not dependent on age and
gender.

3.3 Classification/Prediction Modeling to Categorize the Subjects Using Deep
Learning and MLR

Deep learning and statistical modeling methods are widely used in biomedicine for model creation, and
they facilitate the clinicians in better decision making [1, 6, 23, 30]. The goal of deep learning algorithms is
to extract information from raw data and represent it in the form of a model which can be used for inter-
preting other data that has not been modeled yet [7]. On the other hand, statistical modeling deals with
the formalization of relationships between variables in the form of mathematical equations. Deep-learning
techniques have been successfully applied in various fields, and the obtained results have dominated the
traditional methods which are based on artificial intelligence [7, 17, 20, 22]. Deep learning techniques have
been primarily categorized as CNNs and auto-encoder (AE). CNNs are biologically inspired by animal visual
cortex and consist of ‘convolutional layer,” ‘pooling layer,” and ‘fully connected layer’ [6]. However, overfit-
ting may happen due to complicated and fully connected layers in CNN. On the other hand, the aim of AE
is to learn a representation for a set of data to reduce the dimensionality [30]. In addition, it is easier to cre-
ate AE model and further train it. AE has been successfully implemented for content-based image retrieval
[11], image super-resolution [34], and prediction and classification [17, 20, 29]. Therefore, in this study, we
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used the stacked AE and softmax classifier for differentiating PD patients from the normal population.
For statistical/prediction modeling, MLR has been used. Logistic regression not only calculates the class-
conditional probabilities but also yields estimated probabilities, which give more meaningful information to
clinicians.
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Figure 2: Histogram and Box Plots of SBR Values for Left Caudate (A, G), Right Caudate (B, H), Left Putamen (C, 1), Right Putamen
(D, J), CSF Biomarker (E, K), and Urine Biomarker (F, L) for PD and Normal Subjects Population.



DE GRUYTER G. Pahuja et al.: Early Detection of Parkinson’s Disease =— 1335

D
2507 J SBR of right putamen for normal and
early PD subjects
=] T
200~ H
3 35T T
a J o\ I
% 150 3+ |
» | -g |
— / \ B | |
° 100+ \ o> 25 +
5 ] £ +
p=4 =] 'g ok i
50— — e 2 T
PO con Y S 15F \ -
‘B 8 © I
/ pr 1 . = I
0 1S T 2 a o e ® 1f —
- 0105 1 14182227 3.1 35 4.0 44 E
0.. 4 7 3 6 9 2 5 8 1 4 05F +
SBR L
0
— PD —— Normal 0 1
Histogram: SBR of right putamen for normal and Box plot-SBR of right putamen for normal and
PD subjects PD subjects
E K Biological biomarker (CSF) for normal and early
PD subjects
350+ . ,
L + 4
300~ g 30
%) \‘ “l b
3 250+ i W 25
2 [\ 3
g 200~ 1 (3 o0t + ]
u= \‘ \ ]
g 150- i E 4 Ll
. E 15} : 1
2 400l | . s  E— E
[ ©
50 AN §7 10 _f_
| . ©
0 +m——8= g—r—‘“i" T a8 h%) 5F * 4
-3..0 326496 1. 16 1..2.. 2. 2.. 32 3.. i
CSF or + + ]
—— PD —— Normal 0 1
Histogram: CSF biomarker for normal and PD subjects Box plot-CSF biomarker for normal and PD subjects
F L Biological biomarker (urine) for normal and early
PD subjects
300 30F T T -
=] + +
250 - S
o 257 + + 1
8 200- £
£ T 20f . ]
3 1507 § - —
o
) s 15f 1
g 100 - . =) é E‘ i—il
z [/ S 4ol - \ ]
50 1 “\' 7 L B’ % _i_
L/ o +
0~ Ihr—"""rn 7177‘ T T L e © 5f i 1
5 0 5 10 15 20 25 30 35 N
Urine or + J
—PD —— Normal 0 1
Histogram: urine biomarker for normal and PD subjects Box plot-urine or normal and PD subjects

Figure 2 (continued)

3.3.1 Stacked AE-Based Classification

An ‘AF’ is defined as a feed-forward neural network comprising an encoder and decoder (Figure 3). Similar to
multilayer perceptron, it also contains an input layer, single or multiple hidden layers, and an output layer.
The output layer consists of the same number of nodes as the input layer [24]. The study conducted by Bengio
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Figure 3: Auto-encoder Structure.
X, Y, A, Wi, and W, Represent an Input Vector, Output Vector, Output of the Hidden Layer, and Weight Matrix of the Encoder and
Decoder, respectively.

[2] indicates that the deep architectures are helpful not only to find the non-linear relationships but also to
find complex patterns in the dataset.

Since the dataset being used in this study was also non-linear, sparse auto-encoder (SAE) [30] has been
considered for representing the features. In SAE, the non-linear relation can be obtained by using more
number of hidden layer units as compared to the input dimensions. If sparsity is imposed on the hidden
units while training the data, then AE can acquire useful and interesting patterns from the input data which
is helpful in pre-training for classification tasks.

Let the dataset representation be x; 2 Rd, i=1, 2,..., n,where nis the total number of observations,
and d is the number of features which is 9. Let N; and Ny represent the number of input and hidden units,
respectively. Given an input vector 2 RM, an AE maps it to a compressed/latent representation Y, by using
the following deterministic mapping [30]:

A =f(W1X + by) 4]

where W is the weight matrix and W; 2 RNrNu , by is the bias vector and b, 2 RNH , and f is an activation
function which is a logistic sigmoid function, i.e.

f(z) =1/(1 +exp( 2)) @

After that, the decoder stage maps A (A 2 RV¥) to the reconstruction Y (Y 2 RM) of the same shape as X,
by using another deterministic mapping:

Y=f(WA+by)~X 3

where f’, W, and b, are the activation function, weight, and bias, respectively, for the decoder, which may
vary based on f, W1,, and b; for the encoder. The core function of an ‘AE’ is error minimization between input
vector X and output vector Y, which can be expressed as

1.. ..
F(Wy, Wa, by, by) = SjiY  Xjj? ()
From Equations (1) and (2), Y can be written as
Y:h(XjW1,W2,b1, bz) (5)

Equation (4) can be rewritten as

1.. ..
F(Wy, W2, b1, by) = Siih(XI(W1, W2, by, b2)  Xij® (6)
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Figure 4: Structure of Deep Neural Network.

where X is generally averaged over some of the input training set.

To improve the classification accuracy in diagnosing PD, we have optimized the assumed deep architec-
ture in a supervised manner. For this purpose, another layer called ‘softmax classifier’ has been stacked on
SAE (Figure 4) as the last layer to classify the subjects [9, 29]. Since softmax classifier gives more intuitive out-
put that is easy to interpret than SVM (SVM provides uncalibrated and perhaps difficult to interpret output),
we have considered this classifier in this study.

Softmax classifier uses ‘softmax’ as the activation function, i.e. fj(z) = % This function captures
a random vector with real value scores in z and minimizes it to a vector of values in the range (0, 1), and
aggregating to 1 [9].

3.3.2 Prediction Modeling through MLR

To develop the prediction model for estimating PD risk, MLR method has been widely used [23, 32]. Since
PD detection is a dichotomous classification problem, binary logistic regression method has been employed
here to estimate the probability of occurrence of one class (it can be control or PD, but we have considered
PD class). This method predicts the probability of occurrence of PD by fitting the predictors to a logistic curve
using ‘logit’ logistic function [23] and is given by

logit(Ppp) = In[Ppp(x1,X2,...,X)/(1  Ppp(X1,X2, ..., XDl = Po+fixi + oo +...+ fxxk  (7)

where Ppp represents the probability of the subject’s outcome to be PD for every observation, By is
the constant which represents the intercept in the model, and B = [B1, B2, ..., Bkl are the predictor’s
regression coefficients. Thus, the probability (risk predictor) of PD for each subject/observation can be
expressed as [23]

1
T 1+ e (BO+Pixi)

(8)

Ppp

4 Results and Discussion

This section discusses the PD classification/risk prediction modeling results obtained using SAE along with
softmax classifier and MLR, respectively.

4.1 Automatic Classification Based on Softmax Classifier

The proposed method’s performance using SAE with softmax classifier is assessed using true positive rate
(TPR), true negative rate (TNR), precision (PRE), accuracy (ACC), and F1-score [9, 18, 19]. These values are
calculated as follows:

TPR = TP/(TP + FN) 9)
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PRE = TP/(TP + FP) (10)

TNR = TN/(IN + FP) (12)

F1-score = 2TP/(2TP + FP + FN) (12)
ACC = (TP + TN)/(TP + FN + TN + FP) (13)

where TP, TN, FP, and FN represent the number of true positive, true negative, false positive, and false
negative cases, respectively. In general, TPR measures the ratio of positive cases correctly identified from
the total positive cases in the subjects. TNR specifies the correctly classified negative cases. Accuracy speci-
fies the overall performance, i.e. total cases, irrespective of positive and negative classes, which are correctly
identified [19]. The dataset used in this study is an imbalanced dataset; therefore, merely calculating the
values of TNR, TPR, and ACC is not sufficient due to the possibility of getting biased results [18]. Hence,
along with the said performance parameters, PRE and Fl-score were also computed. PRE measures the
fraction of relevant classes among the retrieved classes and is based on an understanding and measure
of relevance. Fl-score denotes the test accuracy, and it is calculated as the weighted average of PRE and
recall.
All the experiments in this study were performed using Matlab 2017b under Windows environment.
Softmax classifier has been used to develop the classification model for identifying the PD subjects from nor-
mal subjects, because softmax classifier gives more intuitive output than SVM. The highlights of this study
are
(1) The performance of the proposed method was evaluated through TP, TN, FP, FN, and ACC using deep
neural network architecture. These performance measures have been calculated for individual SBR fea-
tures, five most effective biological biomarkers, and various combinations of SBR-biomarkers. They are
depicted in Table 2.

(2) Limited features have been used for PD detection. Therefore, there is no need for feature selection
methods. Thus, the computational complexity of the proposed method is reduced.

(3) The matched sample size, in terms of age, gender, SBR values, and biological biomarkers (plasma, RNA,
CSF, urine, and serum), is significantly large.

(4) To the extent of our knowledge, this is the first instance where the classification/prediction model is
developed based on the integration of SBR and biological biomarkers.

(5) As explained later, higher PD detection/risk estimation accuracy is observed using the proposed
approach.

4.1.1 Performance Comparison Using the Combination of Different Biomarkers

Higher accuracy of 96.99% in PD detection has been obtained if only SBR values from LC, RC, LP, and RP were

considered. This accuracy value is more than the accuracy value obtained using SVM [23]. The maximum

accuracy of 100% was achieved by integrating four SBR features and only three biological biomarkers. Fur-
ther, performance parameters were analyzed by considering different combinations of biological biomarkers
with SBR values of LC, RC, LP, and RP.

(a) Analysis based on SBR and individual biological biomarker: In case of the combination of SBR and
individual biological biomarkers, a best accuracy of 99.62% was achieved with SBR and plasma.

(b) Analysis based on SBR and biological biomarkers in pair/triplets/quad: Table 2 highlights promising
results by using biological biomarkers in pair/triplets/quad along with SBR features. This study proves
that SBR values from four regions, when integrated with only one biological biomarker, gives higher
accuracy in identifying the PD patients from normal subjects.
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Table 2: Performance Parameters of Classification Model Using Softmax Classifier.

Features TPR TNR PRE ACC F1-score
SBR (LC, RC, LP, and RP) 93.24 98.44 95.83 96.99 94.52
5 Biological biomarkers 19.59 97.66 76.32 75.94 31.18
SBR + 5 biological biomarkers 100 100 100 100 100
SBR with individual biological biomarker
SBR + CSF 93.20 98.44 95.80 96.80 94.16
SBR + RNA 93.24 98.44 95.83 96.99 94.52
SBR + plasma 98.65 99.68 97.23 99.62 99.32
SBR + serum 98.65 98.96 97.33 98.87 97.99
SBR + urine 93.24 97.92 94.52 96.62 93.88
SBR with biological biomarkers in pair
SBR + serum + urine 90.5 97.6 93.71 95.6 92.10
SBR + plasma + urine 89.9 97.4 93.01 95.3 91.41
SBR + RNA + urine 90.54 97.40 93.06 95.49 91.78
SBR + urine + CSF 90.54 96.41 94.37 95.86 92.41
SBR + serum + CSF 99.32 99.74 99.32 99.62 99.32
SBR + RNA + serum 92.57 98.18 95.14 96.62 93.84
SBR + serum + plasma 99.45 99.48 98.67 99.62 99.33
SBR + CSF + RNA 99.32 99.48 98.66 99.44 98.99
SBR + CSF + plasma 93.92 97.66 93.92 96.62 93.92
SBR + plasma + RNA 96.62 98.70 96.62 98.12 96.62
SBR with biological biomarkers in triplets
SBR + CSF + RNA + plasma 100 99.7 99.33 99.8 99.66
SBR + CSF + RNA + serum 90.5 97.4 93.06 95.5 91.78
SBR + CSF + RNA + urine 99.3 99.7 99.32 99.6 99.32
SBR + CSF + plasma + serum 100 100 100 100 100
SBR + CSF + plasma + urine 100 100 100 100 100
SBR + CSF + serum + urine 100 100 100 100 100
SBR + RNA + serum + urine 100 99.7 99.33 99.8 99.66
SBR + RNA + serum + plasma 90.5 97.4 93.06 95.5 91.78
SBR + RNA + urine + plasma 91.2 96.9 91.84 95.3 91.53
SBR + serum + urine + plasma 100 100 100 100 100
SBR with biological biomarkers in quad
SBR + CSF + RNA + plasma + serum 100.00 99.48 98.67 99.62 99.33
SBR + CSF + plasma + serum + urine 91.89 97.66 93.79 96.05 92.83
SBR + CSF + plasma + RNA + urine 91.89 97.66 93.79 96.05 92.83
SBR + serum + RNA + plasma + urine 90.54 97.40 93.06 95.49 91.78

4.2 PD Risk Prediction Modeling

Table 3(a) shows the risk estimation PD model using SBR and biological biomarkers. It was observed that the
value of ‘p’ for RC, plasma, and serum was greater than 0.05; hence, these features were not contributing to
the results obtained by this model. However, these features are of great importance as discussed in the litera-
ture; hence, these features cannot be ignored. To satisfy this constraint, an interaction term (a product of the
features) is introduced, instead of working with those individual features.

Table 3(b) reflects the calculated 8-predictor model. Subsequently, it was observed that p-value was less
than 0.05 and R-Sq value was significantly high for 8-predictor model. It shows that the logistic model is fitting
the data. The obtained model can be expressed as Ppp = exp(Y’)/(1+ exp(Y”)), where

Y= 20.5 0.492 CSF+266.1 RNA+2.690 wurine 5.51 LP
4.494 RP+0.722 (LC RC)+ 0.00802
(CSF plasma serum) 19.80 (RNA urine) (14)

The terms with negative sign in the above equation indicate that PD is negatively correlated with CSF, LP,
RP, and the product of RNA and urine.
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4.2.1 Goodness-of-Fit Test

Goodness-of-fit test [23] measures how well the observed data correspond to the fitted model. The Hosmer-
Lemeshow test [8] is one of the goodness-of-fit tests used in this study to compare the observed values with
the predicted values. This test is based on dividing the samples into groups according to their predicted risks.
The Hosmer-Lemeshow test statistics is calculated using the following formula [8]:

, X , ,
G = Oi E]' /[E] 1 E,-/n,- ] =X (15)
j=1

where y? is called chi-square, and 0, Ej, and n; represent the number of observed cases, expected cases,
and observations in the jth group, respectively. The output of this test is chi-square value and p-value. The
p-value must be high to fit the observations in the model. Table 4 depicts the outcome of Hosmer—Lemeshow
goodness-of-fit test. It was observed that the obtained p-value (0.972) was closer to 1 and chi-square value was
small with 8 degrees of freedom. The results indicate that the overall model is a fit to the data. This model is
helpful in PD risk prediction because the actual output was not different from what was predicted by the risk
prediction model.

4.2.2 Predicted Probability’s Validation Using MLR

To obtain the accuracy of the identified regression equation, we implemented it on a known training dataset.
The quantum to which the predicted probabilities concur with the actual outcome is depicted in the classifi-
cation table (Table 4). From this table, we can infer that the probability and high PD risk are related to each
other.

The overall classification accuracy achieved is 97.37%, indicating high performance accuracy when 8-
predictor model is used. The obtained accuracy is higher when compared to the accuracy reported in the
literature [23]. Further, to validate the obtained logistic regression model, it was executed on a known test
dataset which was different from the training dataset. After the logistic regression, the classification table
obtained shows even greater accuracy (Table 5) on the test data. Hence, it is proved that the logistic model
fits the data better and can aid the clinicians in diagnosing the PD.

Table 4: Classification Table.

Observed Predicted
Normal PD % Correct

Normal 143 9 96.62

PD 5 375 97.66

Total N 148 384 97.37

N correct 143 375

Proportion 0.9662 0.9766

Sensitivity = 97.66%, specificity = 96.62%, and accuracy = 97.37%.

Table 5: Classification Using Test Dataset.

Observed Predicted
Normal PD % Correct

Normal 27 1 93.1

PD 2 73 98.6

Total N 29 74 97.1

N correct 27 73

Proportion 0.931 0.986

Sensitivity = 98.6%, specificity = 93.1%, and accuracy = 97.1%.
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Figure 5: ROC Analysis.

4.2.3 Analysis of Receiver Operating Characteristic Curve

A receiver operating characteristic (ROC) curve [8, 26] is a graph plotted between sensitivity (TPR) and speci-
ficity false positive rate (FPR) for a classification procedure due to variation in discrimination threshold. The
optimal solution refers to TPR and FPR of 100% and is located in the upper left corner of the curve. If the over-
all accuracy of the classification procedure is high, then the ROC curve is much closer to the upper left corner.

Figure 5A-D depicts the ROC curve for the proposed method. Figure 5A represents the curve when SBR fea-
tures alone were used for classifying the PD subjects. The graph highlights the importance of all the four SBR
features for PD diagnosis. Considering further accuracy enhancements, some identified biological features
have been processed through SAE/softmax classifier. Figure 5B shows the usefulness of biological biomark-
ers for PD identification. Since both SBR and biological features are contributing towards PD detection, new
heterogeneous dataset was created and fed to the SAE/softmax classifier. The obtained results were better
than the ones received from individual analysis. ROC in Figure 5C shows the effectiveness of our integrated
approach for PD detection. The ROC curve in Figure 5D represents the accuracy, obtained using SBR with
plasma, which is also much closer to the upper left corner.

5 Conclusion

This research presented a novel approach to create a prediction/identification model by combining the
biological biomarkers with SBR values of only four brain regions, i.e. LP, RP, LC, and RC. The developed model
is further validated for its accuracy using a known test dataset.
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SBR values from four brain regions and five biological biomarkers, i.e. plasma, serum, urine, RNA, and
CSF, of 532 subjects have been obtained from the PPMI database. It has been observed that merely by adding
one biological biomarker plasma, PD diagnosis accuracy increases to 99.62%, which is higher than the accu-
racy reported in the literature. In addition to the PD classification model, PD risk estimation model has also
been developed using MLR to showcase that the developed prediction model fits the data well.

Although impressive results have been obtained by the proposed approach, these results need to be val-
idated on a larger dataset if matched features are available. Furthermore, the developed model needs to be
validated for the ‘scans without evidence for the dopaminergic deficit’ subjects.

Acknowledgment: The authors thank PPMI-a, public-private partnership funded by Michael J. Fox Founda-
tion, for providing data for this research.
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