DE GRUYTER J. Intell. Syst. 2020; 29(1): 1135-1150

Amarjeet Prajapati* and Jitender Kumar Chhabra
Optimizing Software Modularity with
Minimum Possible Variations

https://doi.org/10.1515/jisys-2018-0231
Received May 18, 2018; previously published online December 4, 2018.

Abstract: Poor design choices at the early stages of software development and unprincipled maintenance
practices usually deteriorate software modularity and subsequently increase system complexity. In object-
oriented software, improper distribution of classes among packages is a key factor, responsible for modularity
degradation. Many optimization techniques to improve the software modularity have been proposed in the
literature. The focus of these optimization techniques is to produce modularization solutions by optimizing
different design quality criteria. Such modularization solutions are good from the different aspect of quality;
however, they require huge modifications in the existing modular structure to realize the suggested solution.
Thus these techniques are costly and time consuming if applied at early stages of software maintenance.
This paper proposes a search-based optimization technique to improve the modularity of the software system
with minimum possible variation between the existing and produced modularization solution. To this con-
tribution, a penalized fitness function, namely, penalized modularization quality, is designed in terms of
modularization quality and the Move or Join Effectiveness Measure metric. Furthermore, this fitness func-
tion is used in both single-objective genetic algorithm (SGA) and multi-objective genetic algorithm (MGA) to
generate the modularization. The effectiveness of the proposed remodularization approach is evaluated over
five open-source and three random generated software systems. The experimentation results show that the
proposed approach is able to generate modularization solutions with improved quality along with lesser per-
turbation compared to their non-penalty counterpart and at the same time it performs better with the MGA
compared to the SGA. The proposed approach can be very useful, especially when total remodularization is
not feasible/desirable due to lack of time or high cost.

Keywords: Modularization; restructuring; optimization; genetic algorithm; refactoring.

1 Introduction

The majority of software systems are designed and developed by decomposing their overall structure into
smaller independent units or modules [35]. Such decomposition helps in reducing the system complexity and
therefore improves design quality. In an object-oriented (OO) software system, classes play the role of mod-
ules which encapsulates the methods and variables. For large and complex OO systems, it has been reported
that a package can play the role of a module which groups a set of collaborating classes together to provide
well-identified services to the rest of the system [40]. It has been observed that a software system consisting
of modules that exhibit low coupling and high cohesion is easier to understand and maintain [21].

It has been found that in regular maintenance of the software system, the maintainers usually do not
follow the principles of the module design guidelines, which in turn deteriorates modularity quality [3]. In
case of 00 software, improper distribution of classes among packages is a key factor, responsible for modu-
larity degradation. The poor modular structure makes the software system difficult to understand and evolve
[35]. To improve the modularity of the system, the elements of software need to be reorganized into appro-
priate modules based on different module design principles. The reorganization of software elements into

*Corresponding author: Amarjeet Prajapati, Department of Computer Science and Engineering, JIIT, Noida 201309, Uttar
Pradesh, India, e-mail: amarjeetnitkkr@gmail.com
Jitender Kumar Chhabra: Department of Computer Engineering, NIT Kurukshetra, Haryana 136119, India

3 Open Access. © 2020 Walter de Gruyter GmbH, Berlin/Boston. This work is licensed under the Creative Commons Attribution
4.0 Public License.

3

https://doi.org/10.1515/jisys-2018-0231
mailto:amarjeetnitkkr@gmail.com

1136 —— A.Prajapati andJ.K. Chhabra: Optimizing Software Modularity DE GRUYTER

modules based on quality criteria is generally termed as software remodularization. Since software remodu-

larization is considered to be the most crucial NP-hard problem, a large number of search-based optimization

techniques have been proposed in the literature to solve the problem (e.g. [16, 17, 26, 29, 31]).

Even after a significant progress made in remodularization, most of the research works focus on improv-
ing the modularity quality (e.g. coupling and cohesion) of software as much as possible, without considering
the variation between the existing and the produced modular structure. Such approaches can be useful
when the software system’s quality has deteriorated up to the point where further working with the sys-
tem is not possible and the system needs complete overhauling. However, in case of early stages of software
maintenance, these approaches cannot be feasible because remodularization of the system as a completely
new modularization solution compared to the original modular structure is the costly and time-consuming
process.

To overcome the aforementioned difficulties and challenges, this paper proposes a search-based opti-
mization technique to improve the modularity of the software system with minimum possible variation
between the existing and produced modular structure. To this contribution, a penalized fitness function,
namely, penalized modularization quality (PMQ), is designed in terms of modularization quality (MQ) and
Move or Join Effectiveness Measure (MoJoFM) metric. Furthermore, this fitness function is used in search-
based metaheuristics (single- and multi-objective) to drive the remodularization solution which reflects high
modularity quality with minimum variation from the existing modular structure.

Software remodularization with minimum possible perturbation can also be achieved by applying the
constraints on the movement of classes among the packages, but this approach may lead towards a subopti-
mal solution. The main advantage of applying the PMQ fitness function is that it helps in exploring all possible
feasible solutions in the search space. Moreover, PMQ helps in guiding the search-based meta-heuristic algo-
rithms towards a good quality solution by minimizing changes in the original modular structure. To confirm
this assumption, PMQ is evaluated with the SGA (simple genetic algorithm) and MGA (multi-objective genetic
algorithm, i.e. non-dominated sorting genetic algorithm — NSGA-II) proposed by Deb et al. [19]. We chose these
search-based metaheuristic algorithms, in particular, because they have been used in related literature [1, 16]
to solve similar software remodularization problems. Apart from the genetic algorithm, other search-based
metaheuristics can also be used to evaluate the PMQ. However, they will need a huge amount of time for
parameter tuning, and if the parameters are not tuned properly, the generated result may be a suboptimal
solution. The advantage of using the mentioned genetic algorithm-based optimization technique is that their
parameter values have been tuned by the previous researchers. The major contributions of this paper are
summarized as follows:

— The paper presents a search-based optimization technique to the problem of improving the modular
structure of an existing OO software package organization with regard to minimum possible perturbation.

— To guide the search algorithms towards a solution with improved quality with minimum possible modifi-
cation, a novel fitness function, namely PMQ, has been proposed.

— To confirm the supremacy of the PMQ fitness function, it has been introduced and optimized with the SGA
and MGA to address the remodularization problem.

— An empirical study is conducted to evaluate the effectiveness of the proposed method over five real-world
and three random systems. The primary finding of the study are as follows: (1) the proposed approach with
penalized optimization is able to achieve the similar level of MQ with minimum perturbation with global
optimization in both single- and multi-objective GA; (2) the MGA performs better for both penalized and
global optimization than SGA.

The rest of the paper is organized as follows: Section 2 presents the related work material on software remod-
ularization. Section 3 provides the description of the problem. Section 4 describes the proposed methodol-
ogy. Section 5 presents the experimentation details. Section 6 presents the finding and analysis. Section 7
concludes the paper.

DE GRUYTER A. Prajapati and J.K. Chhabra: Optimizing Software Modularity = 1137

2 Related Work

In the context of various programming languages such as C, COBOL and Pascal, the software remodulariza-
tion research field is relatively old. However, it is still really important and requires innovative approaches to
deal with the complexity of modern systems especially those developed in OO programming languages [12].
A lot of works in the context of OO software have been proposed for modularizing the classes into module/
packages in order to improve the software design. The studies [11, 13, 18, 22, 27, 32, 33] impart that software
remodularization is an important and challenging problem in the field of software engineering.

In the last two decade, many remodularization approaches have been proposed by researchers and aca-
demicians working in the software engineering field. Wiggerts [37] was the first who established a theoretical
concept regarding software remodularization. They presented a software remodularization problem as a soft-
ware clustering problem which can be solved by using clustering techniques and cluster evaluation criteria.
They discussed various similarity criteria of the software entities useful in clustering evaluation and pro-
vided a summary of applicable clustering algorithms of clustering techniques. Later many deterministic and
intelligence-based approaches to solve the remodularization problem as a clustering problem was proposed
in the literature (e.g. [2, 4, 6, 10, 11, 25, 28, 29]).

The development of various intelligence techniques specially designed to solve the different science and
engineering problem opens a new avenue for the clustering problem [5, 6, 8, 9, 15, 23, 25, 29, 30, 34, 38, 39].
Although remodularization was done over the procedural systems, many conclusions may be applied to OO
systems as well. Mancoridis et al. [25] introduced a search-based clustering technique to create a high-level
view of software organization. Anquetil and Lethbridge [14] conducted an intensive study on the application
of clustering techniques for software remodularization. Their empirical study includes a comparison between
different clustering algorithms, different representation schemes and different coupling metrics between
files.

Later, Mitchell and Mancoridis [29] used the same clustering techniques and developed a tool Bunch,
which support the automatic software module clustering. Abdeen et al. [2] proposed a single-objective opti-
mization approach for reducing the dependences between the packages of existing software organization.
Recently, Praditwong et al. [31] formulated the software clustering problem as a search-based multi-objective
optimization problem. They use the genetic-based two-archive multi-objective evolutionary algorithm.

The above-mentioned approaches utilize structural, dynamic, semantic and conceptual information to
design various quality measures for suggesting the software remodularization solution. Most of the remodu-
larization approaches utilize the structural information to derive the quality measure [26, 31]. Bavota et al. [17]
used the structural information and proposed an interactive multi-objective optimization approach for soft-
ware remodularization. Barros [16] performed an empirical study to analyze the effect of composite objectives
in multi-objective software modularization.

Most of the existing approaches performed software remodularization from scratch rather than improv-
ing the existing software modular structure. In literature, few research works addressed the problem of soft-
ware remodularization within existing software decomposition [4, 28]. Recently Abdeen et al. [1] proposed a
single-objective software remodularization approach based on the simulated annealing (SA) technique. Their
approach aimed to reduce the package coupling and improve the package cohesion by moving the classes
into the existing packages. However, as a single-objective remodularization approach, SA can optimize some
objective on the cost of another objective. To address these limitations, the same authors [3] proposed a
multi-objective optimization for software remodularization on the existing package organization. Although
the approach is promising and effective, they have used the limited aspects of relationships contributing to
the coupling between software elements. Inspired by the software remodularization approach by Abdeen
et al. [3], we propose search-based remodularization for improving the existing package organization. The
proposed approach ensures that the optimization is carried out in a way that the existing package orga-
nization gets altered to the minimum possible extent. The advantage of such methodology is that cost of
remodularization remains low.

1138 = A.Prajapati and J.K. Chhabra: Optimizing Software Modularity DE GRUYTER

3 Problem Description

During the maintenance of large and complex software systems, the quality of the original program design
degrades. To improve the quality of the existing program design, the software systems are often repaired
using the remodularization approach. The automatic remodularization approach which is based on cluster-
ing techniques generally suggests a totally new modularization solution compared to the original package
organization. The implementation of such a modularization solution is costly and difficult to understand.
Hence, to minimize the cost, the perturbation made over the original modular structure with regard to quality
improvement needs to be controlled.

In order to remodularize the software system, the maintainers require a wide range of structural infor-
mation of the software elements for designing the different quality criteria. The formal information such as
the relationship with their strength among classes is widely used. Formally, the definition of our remodular-
ization problem is to improve the specified modularity quality criteria of an existing package organization
of an OO software system with regard to minimum possible perturbation. For the remodularization problem,
package structure, class relations and class coupling strength are constrained by the following assumptions:
— The package of an OO system is referred to as module and classes are referred to as software entities.

— The module is defined as a cohesive group of classes, meaning that all classes within a package have strong
coupling strength.

— Averyimportant constraint to consider is that any class in a software system must be contained in one and
only one package in the resulting modularization solution.

— During remodularization, the number of packages does not increase or decrease.

— The classes within the system can be connected by a structural relationship.

— The relationships can be weighted or unweighted.

4 Software Remodularization Approach

In this work, a software remodularization approach aiming to improve the quality of the existing package
structure of the 00 system has been designed and developed. In particular, the main goal of the proposed
approach is to improve modularity quality, particularly the MQ metric of the existing package structure with
minimal possible modification in the original package organization. To achieve the goal, the software remod-
ularization problem is formulated as a search-based single- and multi-objective optimization problem where
software modularity is optimized along with minimum possible perturbation in the existing modular struc-
ture with the help of a genetic algorithm. Specifically, the optimization process of the genetic algorithm is
controlled by incorporating a penalized fitness function, namely PMQ.

In single-objective optimization PMQ is maximized, and in multi-objective optimization the same PMQ
is optimized with other supporting quality criteria such as follows: (1) maximize MQ; (2) minimize pack-
age coupling; (3) maximize package cohesion. The supporting objective functions are used to just guide the
optimization process towards a better primary objective (PMQ).

The general structure of software remodularization is illustrated in Figure 1. It takes as an input the orig-
inal package organization of the OO software system and penalized objective criteria. The remodularization
process generates an output of the remodularization suggestion needed to be applied to the software system
in order to improve the system quality. In the following subsection, the detailed descriptions are given.

4.1 System Structure Representation

In order to formulate the software remodularization problem as a search-based optimization problem, the
software system needs to be represented in a way such that various operators can be applied. In this paper,
we represent the system with weighted graph (Gy) and unweighted graph (G,). The weighted graph Gy, is
defined as a 3-tuple Gy = (V, E, W), where V = fvy, v1,...,vng is the set of vertices where each vertex rep-
resents a class, E = fe(v;, vj)g V Vis the set of directed edges and each edge represents a connection

DE GRUYTER A. Prajapati and J.K. Chhabra: Optimizing Software Modularity = 1139

Object-oriented software system

Data collection & modeling Problem formulation Re-modularization
Extract classes, packages Define package quality Apply single and
and relation criteria multi-objective GA
Modeling as weighted Single & multi-objective Selection criteria of
and un-weighted graph formulation solution from pareto front

Re-modularize suggestion >

Figure 1: An Approach for Software Remodularization.

between two classes, and W is the set of weights for each edge and it can be any real value depending on
connections among the respective classes. The unweighted graph G, is also defined as a 2-tuple Gy = (V, E),
where V and E have the same meaning as in the weighted graph. The presence of an edge shows that there
exists at least one connection among the two classes.

In an OO software system, a class can be linked with another class by zero or more relations with different
types. Such links are called connection. The connection weight is computed by considering the three aspects:
(1) types of relations; (2) number of instances of relations; (3) weights of each type of relations. To calculate
the connection weight, the eight well-known relationships [i.e. extends (EX), Has Parameter (HP), Reference
(RE), Calls (CA), Implement (IM), Is of Type (IT), Return (RE), and Throws (TH)] as discussed in Amarjeet and
Chhabra [6, 8, 9] have been considered in this paper. The connection weight CW;; between classes c; and class
¢; is defined as follows:

8
EUndefined ifi=j
CWi]' = % (1)
= wini(ci, ¢j) otherwise
k=EX

where n(c;, ¢j) denote the total number of instances of the k-type relation between classes ¢; and ¢;; and wy
represents the weight of the class k-type relation. The weight of each relation in this paper is considered to
be equal to 1. For example, Figure 2 illustrates two calls and one reference relation between class C; and class
C,. Hence, according to the definition the connection weight is 3 in the weighted graph while the connection
weight is 1 in the unweighted graph.

To represent the weighted and unweighted graph as a chromosome, a simple array is used, where the ith
element indicates the package to which the ith class is assigned. A modularization solution with the same
value for all elements means that all classes are placed in the same package. The modularization solution
representation of the hypothetical OO software system given in Figure 2 can be represented as f1, 3, 3, 1, 1, 2,
2, 2g9. For example, classes Cy, C3 and C,4 are in the same package (i.e. package 1). The same representation
for the chromosome is used in the SGA and MGA.

4.2 Penalized Fitness Function

To guide the optimization process of the genetic algorithm towards the improved modularization solution
exhibiting minimum variation from the existing modular structure, an adequate fitness function is required.

1140 — A. Prajapati and).K. Chhabra: Optimizing Software Modularity DE GRUYTER

A B C

P3 P1 P3 Pl P3 P1

CA, CA, RE

Figure 2: Weighted and Unweighted Version of a Hypothetical Object-Oriented Software System.

In this paper, we define a novel fitness function, namely PMQ, where the modularity quality criterion, i.e. MQ

metric, is penalized with the MoJoFM metric. The MQ and PMQ metrics are defined as follows:

— Modularization quality (MQ): The MQ metric is designed to evaluate the modularly of a software sys-
tem. It is formulated as the sum of modularization factors (MFs) and MF is measured in terms of the
inter-package coupling and intra-package coupling.

8
50 ifi=o0

MQ = MF;, where MF; = i 2
k=1 Z_1_ ifi>o0
i+ 3j

where i is the intra-package coupling and j is the inter-package coupling and n is the total number of pack-
ages. MQ shows a tradeoff between coupling and cohesion. The other metric such as basic MQ [25] can
also be used to evaluate the modularity. The major disadvantage of basic MQ is that it cannot be used to
measure the quality of modularization solution obtained from graphs having weighted edges.

— PMQ: In PMQ, we redefine the MQ metric by multiplying perturbation degree (PD) as a penalty. The PD
is defined in terms of the move and join operation of remodularization and it is derived from the MoJoFM
metric [36].

mno(Mnew, Morg)
max(mno(SMnew, Morg))

PMQ=MQ PD where PD=1 3)

where mno(Mnew, Morg) is the minimum number of Move or Join operations to transform the modular-
ization solution Mpew into the modularization solution Morg and max(mno(Mnew, Morg)) is the maximum
possible distance of any new modularization solution Mpew from the original modularization solution Morg.
The purpose of the MoJoFM metric is to compute the similarity between two modularization solutions.
There are other similarity metrics such as architecture-to-architecture (a2a) [24] and cluster-to-cluster cov-
erage (c2ccvg) [20] that exist in the literature. However, the MoJoFM metric is more appropriate than a2a
and c2ccvg in this context. If the software remodularization solutions being compared consist of the same
classes (as in our case), a2a and c2ccyg Will give results with a small range of variation, which makes it
difficult to differentiate the remodularization solutions. Hence, in our cases, the MoJoFM metric is more
appropriate than a2a and c2ccvg,

The rationale of introducing PMQ is to penalize the improvement of MQ, to keep the minimum possible
restructuring cost. The smaller the PD value, the smaller is the number of movements of classes among the
existing packages. However, our objective is not to minimize the PD in an absolute way, but to ensure that the
achieved improvement of the package structure is made at the cost of minimum possible class movements.
Apart from MQ and PMQ quality criteria, we also consider the other conflicting criteria such as coupling,

DE GRUYTER A. Prajapati and).K. Chhabra: Optimizing Software Modularity = 1141

cohesion and number of isolated packages. Based on these quality criteria, we formulate the remodular-
ization problem as a single- and multi-objective optimization problem which is described in the following
subsections.

4.2.1 Single-Objective Remodularization

In a single-objective software optimization problem, only the single objective is optimized. It determines a
modularization M for which

F(M) = min/maxF(M) j M 2 ¢ (@)

where 1 is the set of all feasible modularizations. M is the software remodularization solution such as F:
Y — R is an objective function. Here function F can be a minimization function or maximization func-
tion. Most of the software modularization problems are based on the single-objective optimization problem.
Different single-objective optimization approaches vary with the optimization function F and optimization
method. In the previous remodularization approaches the MQ has been widely used as design quality criteria
[26, 31]. In this paper, we optimize the PMQ metric as a fitness function and use the single-objective GA.

4.2.2 Multi-objective Remodularization

In multi-objective software optimization, more than one objective is optimized. It determines a set of
modularizations M for which

F(M) = min/max(F,(M), F2(M), ..., Fm(M)) j M2 ¢ (5)

where 1 is the set of all feasible modularizations and m is the number of objective functions. F; represents
the ith objective function. In multi-objective software optimization, there is usually no single best solution,
but there can be more than one non-dominated modularization solution. For two modularization solutions
M, M; 2 1, solution M; is said to dominate solution M, (denoted as M; M) if and only if

8i2(1,...,m)Fi(M1) Fi(Mz)A 9i2(1,...,m)F1-(M1)<Fl~(M2) (6)

Otherwise, M; and M, are said to be non-dominated solutions. The set of all non-dominated solutions in
objective space is called Pareto front. The multi-objective modularization techniques provide flexible modu-
larization solutions where the developer has more options for selection of the best solution based on his or
her requirements.

The reason for the use of multi-objective optimization is to improve the single-objective function PMQ
with the help of other supporting objective functions. Motivation is similar to one of Praditwong et al. [31],
which demonstrates that the MQ value of the software system improves more as multi-objective optimiza-
tion with the support of other conflicting objective functions such as coupling and cohesion, as compared
to improvement through single-objective optimization. We consider the PMQ metric as a primary objective
and cohesion, coupling, and number of isolated packages as supporting objectives. The goal of the pro-
posed multi-objective optimization approach is to maximize the PMQ and package cohesion and minimize
the package coupling and number of isolated packages.

5 Experimental Setup

This section explains the experimental setup conducted to assess the proposed approach. The whole exper-
imentation is divided into three major parts and it is done under the scenario of the SGA vs. MGA and
unweighted vs. weighted system model: (1) assessment of global optimization, where no constraints or
penalty is applied; (2) assessment of penalized optimization, where penalty is incorporated to limit the
perturbation; (3) comparison of penalized optimization and global optimization.

1142 — A. Prajapati and J.K. Chhabra: Optimizing Software Modularity DE GRUYTER

5.1 Software Systems Studied

The experiment studies the application of the proposed approach to five different real-world open source OO
software systems based on Java language and three random systems. The real-world systems include JavaCC,
JUnit, Java Servlet API, XML API DOM, DOM4] and the random systems include Random50, Random100 and
Random 100. The software systems are modeled into two types. The first type is a weighted model where
the edge weight is assigned according to the method discussed in the previous section. The second type is
an unweighted model where edge weight is assigned a binary value. The details about the selected problem
instances are given in Table 1.

We choose these 00 software systems for our assessment since they range from a medium to a large num-
ber of classes and packages and have a different level of complexity. The different sizes and complexities of a
software system can provide a clear insight into the modularization techniques. It also helps to mitigate the
biasing of the results. These systems have also been used in similar problems by other previous researchers
to evaluate their methods for the remodularization problem.

5.2 Algorithmic Parameters

In this paper, the SGA is used for single-objective optimization and the NSGA-II for multi-objective optimiza-
tion. The NSGA-II is a meta-heuristic genetic algorithm that is based on the non-domination sorting concepts
of the multi-objective optimization technique. It generates a set of non-dominated solutions that is known
as the Pareto set. This paper uses the same parameter configuration for these GAs as also used in the litera-
ture [7, 16, 25, 31]. The parameter values are as follows: (1) population size is 10 times the number of classes
(N), (2) single-point crossover operator and uniform mutation operator, (3) crossover probability is set to 0.8,
while the mutation probability to 0.004 log,(N), (4) the maximum number of generations is 200 times the
number of classes (N).

5.3 Collecting Results from Experiment

In the proposed remodularization approach, the main goal is to improve the MQ value of the existing package
organization with the minimum possible movements of classes among packages. Hence, we are only inter-
ested in the modularization with the highest PMQ value, although they might not be one with the highest
values for other objectives. The motivation is similar to the one of Praditwong et al. [31], which used MQ to
select the best solution in the Pareto fronts of the multi-objective evolutionary algorithm. Each SGA and MGA
are executed 31 times on each of the real-world and random systems. As the SGA generates only one solution
with the highest PMQ value at each execution. As for the MGA, we again select the modularization with the
highest PMQ value at each execution.

Table 1: Characteristics of Software Systems.

Systems Version Abbreviation No. of connections No. of packages No. of classes

Real-world problem

JavaCC 1.5 JC 722 6 154
JUnit 3.81 Ju 276 6 100
Java Servlet API 2.3 JS 131 4 63
XML API DOM 1.0.b2 XA 209 9 119
DOM 4] 1.5.2 DJ 930 16 195
Random problems
Random50 NA R1 218 7 50
Random100 NA R2 342 12 100

Random150 NA R3 534 17 150

DE GRUYTER A. Prajapati and J.K. Chhabra: Optimizing Software Modularity = 1143

5.4 Results Assessment Criteria

To assess the solutions obtained by the proposed approach, we use the MQ measure to evaluate the quality of
modularization and rate per refactoring of achieved improvement (RRAI) measure proposed by Abdeen et al.
[3] to measure the perturbation. The RRAI with respect to MQ measurement is defined as follows:

RPMC(MQ)

RRAIMQ) = RPC(MQ)

@
where RPC(MQ) represents the rate per class of MQ measurement and it is computed as follows:
RPC(MQ) = MQot/jCj, where MQor is the value of MQ of the original software package structure and C is the
set of all classes. The RPMC(MQ) represents the rate per moved class of MQ measurement and it is defined as
follows:
AMQ
RPMC(MQ) = ——= 8
(MQ) = T ®)
where AMQ is the increased value of MQ in new modularization and NC is the number of classes that
change their packages in new modularization. The larger the value of RRAI(MQ), the smaller the modifica-
tion with respect to the MQ measurement. Ideally, the RRAI(MQ) value should always be greater than 1 (i.e.
RPMC(MQ) > RPC(MQ).

6 Results and Analysis

This section presents the results of the empirical study. The results concern two optimizations, global and
penalized optimization, two genetic algorithms, single- and multi-objective GA, and two system models,
weighted and unweighted graph. The usefulness and effectiveness of the suggested modularization solution
of the proposed penalized optimization are assessed through MQ quality measures and RRAI measure [3] and
further compared with global optimization.

Since the metaheuristic algorithms are a stochastic optimizer, a pairwise statistical analysis using the
Wilcoxon test (@ = 0.05) is performed to compare the results of two metaheuristic approaches. The main rea-
son behind using the Wilcoxon test is that it is more effective for the non-normal distribution while the other
alternate test such as the t-test is more appropriate in case of the normal distribution.

6.1 Modularization Quality

This section presents the results of the experiments that compare the MQ values obtained from both global
and penalized optimization in all scenarios discussed in Section 5. Table 2 presents the results of the mean,
median and standard deviation of the MQ values produced by the SGA and MGA in global optimization over
unweighted and weighted software systems. Similarly, Table 4 presents the results obtained by the proposed
penalized optimization. Figure 3 shows the comparison of mean MQ values results between the global and
penalized optimization.

6.1.1 Single-Objective vs. Multi-Objective GA

In this part, we analyze the MQ values produced by the SGA and MGA in both global and penalized optimiza-
tion over both unweighted and weighted software systems. The detailed analysis is given as follows: (1) global
optimization and unweighted system: the results presented in Table 2 show that the MGA performs better
than the SGA in six cases out of eight cases in which two cases are significantly better; (2) global optimization
and weighted system: Table 2 shows that the MGA performs better than the SGA in all problem instances in
which six cases are significantly better; (3) penalized optimization and unweighted system: Table 3 shows

1144 — A. Prajapatiand).K. Chhabra: Optimizing Software Modularity DE GRUYTER

Table 2: Mean, Median and Standard Deviation of MQ Measure Obtained by Global Optimization.

Problems MGA SGA MGA vs. SGA

Mean Median Standard Mean Median Standard A p-Value Winner
deviation deviation

Unweighted
JavaCC-1.5 4.007 4.132 0.015 3.854 4.051 0.062 +0.081 0.862 =
Junit-3.8.1 4.298 4.325 0.013 4.224 3.621 0.027 +0.704 0.012 —
Servlet API-2.3 3.547 3.621 0.023 3.407 3.687 0.046 0.066 0.394 =
XML API-1.0.b2 8.249 8.327 0.063 8.160 7.214 0.055 +1.113 0.001 —
DOM 4J-1.5.2 6.557 6.471 0.049 6.752 6.453 0.042 +0.018 0.256 =
Random 50 4.077 5.018 0.075 4.019 4.034 0.089 +0.984 0.112 =
Random 100 6.230 6.501 0.053 5.997 5.674 0.081 +0.927 0.135 =
Random 150 7.358 7.234 0.081 7.138 8.443 0.039 1.209 0.002 —

Weighted
JavaCC-1.5 6.607 6.213 0.045 6.096 6.151 0.086 +0.062 0.024 =
Junit-3.8.1 6.455 6.316 0.072 6.061 5.281 0.071 +1.035 0.006 —
Servlet API-2.3 6.574 6.415 0.047 5.113 5.211 0.054 +1.204 0.015 «—
XML API-1.0.b2 8.721 8.101 0.037 7.123 8.015 0.046 +0.086 0.637 =
DOM 4J-1.5.2 9.754 10.031 0.079 8.170 8.042 0.081 +1.989 0.001 —
Random 50 6.356 6.581 0.098 5.901 5.312 0.069 +1.269 0.006 —
Random 100 8.316 8.531 0.065 7.895 7.154 0.097 +1.377 0.008 —
Random 150 9.244 9.643 0.104 9.020 8.179 0.071 +1.464 0.017 «—

The symbol * —> ’ denotes the cases where the MGA exhibited the superior performance in the pairwise Wilcoxon test at 95%
significance level (0@ = 0.05); the symbol ¢ <— ’ indicates the cases where the SGA exhibited the superior performance; and
the symbol ‘=’ indicates cases in which there is no statistical difference between the MGA and SGA. The delta values A denote

the difference between the median values MGA and SGA.

Multi-objective GA with un-weighted systems
10

ollllllll

& &
\‘b&b \ 5/ ‘Jrr/

= Global

NJRO\OO

m Penalized

N Q O
Q@@‘)\Q\

Q.,/ Q.,/

Single-objective GA with un-weighted systems

10
I.III.II
C/

N N Q N\ Q
Q ‘2 Q AN N
\’b \ Q,/ ﬂ.,/ @ < Q./ @/

EGlobal

[=3N SR e e]

®Penalized

Multi-objective GA with weighted systems

12
10
8
6/
4 I I I u Global
3 ® Penalized
& @ L & &
\‘7”4% w 5/ ﬂ.,/ @ 7 Q~> Q~>
Single-objective GA with weighted systems
10
® Penalized

. NN Q O
\"QQQ$\Q~‘> \Q\

& o +/ R

Figure 3: Analysis of MQ Values in Penalized Optimization from Global Optimization.

that the MGA performs better than the SGA in six cases out of eight in which one case is significantly better;
(4) penalized optimization and weighted system: Table 3 shows that the MGA performs better than the SGA
in all problem instances in which five cases are significantly better.

DE GRUYTER A. Prajapati and).K. Chhabra: Optimizing Software Modularity = 1145

Table 3: Mean, Median and Standard Deviation of MQ Measure Obtained by Penalized Optimization.

Problems MGA SGA MGA vs. SGA
Mean Median Standard Mean Median Standard A p-Value Winner
deviation deviation

Unweighted
JavaCC-1.5 3.563 3.621 0.012 3.458 3.566 0.062 +0.055 0.759 =
Junit-3.8.1 3.975 3.923 0.023 3.917 3.865 0.027 +0.058 0.127 =
Servlet API-2.3 3.186 3.045 0.028 3.276 3.187 0.046 0.142 0.035 —>
XML API-1.0.b2 7.274 7.387 0.067 7.243 7.314 0.055 +0.073 0.654 =
DOM 4J-1.5.2 6.356 6.143 0.052 6.367 6.652 0.042 0.509 0.042 —>
Random 50 3.573 3.498 0.071 3.551 3.434 0.089 +0.064 0.132 =
Random 100 5.716 5.824 0.047 5.564 5.176 0.081 +0.648 0.025 —
Random 150 6.819 6.756 0.074 6.896 6.745 0.039 +0.011 0.212 =

Weighted
JavaCC-1.5 5.983 5.812 0.052 5.536 5.645 0.086 +0.167 0.082 =
Junit-3.8.1 5.764 5.713 0.063 5.453 5.689 0.071 +0.024 0.126 =
Servlet API-2.3 5.812 5.756 0.058 4.532 4.437 0.054 +1.319 0.015 —
XML API-1.0.b2 7.763 7.834 0.029 6.364 6.431 0.046 +1.403 0.002 —
DOM 4J-1.5.2 8.967 8.823 0.087 7.549 7.672 0.081 +1.151 0.015 —
Random 50 5.564 5.678 0.124 5.196 5.675 0.069 +0.003 0.126 =
Random 100 7.462 8.521 0.085 7.127 7.254 0.097 +1.267 0.008 —
Random 150 8.231 8.376 0.074 8.082 7.679 0.071 +0.697 0.017 —

The symbol * — * denotes the cases where the MGA exhibited the superior performance in the pairwise Wilcoxon test at the
95% significance level (a = 0.05); the symbol ¢ <— ’ indicates the cases where the SGA exhibited the superior performance;
and the symbol ‘=’ indicates cases in which there is no statistical difference between the MGA and SGA. The delta values A
denote the difference between the median values MGA and SGA.

6.1.2 Global vs. Penalized Optimization

Figure 3 shows the percentage loss in MQ values in penalized optimization compared to global optimization.
The results clearly indicate that there is very small percentage loss in MQ values of penalized optimization
than global optimization in both single- and multi-objective optimization algorithm.

6.2 Achieved Optimization vs. Applied Modification

This section presents the results of experiments that compare the degree of modification obtained from both
global and penalized optimization in all scenarios discussed in Section 5. Table 4 presents the results of
a number of moved classes and RRAI values produced by the SGA and MGA in global optimization over
unweighted and weighted software systems. Similarly, Table 5 presents the results produced by the proposed
penalized optimization. Figure 4 shows the comparison of percentage movement of classes for the global and
penalized optimization.

6.2.1 Single-Objective vs. Multi-Objective GA

We compare the experimental results produced by the SGA and MGA in terms of the number of moved
classes and RRAI values. The comparison is performed in the following scenario: (1) global optimization
and unweighted system: the results for a number of moved classes presented in Table 4 show that the MGA
performs significantly better than the SGA in all problem instances except Junit and Random150. Similar to
the number of moved classes, the RRAI values, the MGA performs significantly better than the SGA for all
problem instances except Junit and Random100; (2) global optimization and weighted system: in this sce-
nario, the results for a number of moved classes given in Table 4 show that the MGA performs significantly
better than the SGA in all problem instances except Junit and Random150. Similar to the number of moved

1146 —— A.Prajapatiand).K. Chhabra: Optimizing Software Modularity DE GRUYTER

Table 4: Mean Values of Moved Classes and RRAI in Global Optimization.

Problem Moved classes RRAI
MGA SGA A p-Value Winner MGA SGA A p-Value Winner
Unweighted
JavaCC-1.5 40.03 47.72 3.73 0.012 —> 0.001 0.001 +0.0003 0.015 «—
Junit-3.8.1 27.44 18.27 +5.34 0.091 = 0.001 0.002 0.0012 0.023 =
Servlet API-2.3 18.37 21.00 2.13 0.014 —> 0.002 0.002 +0.0007 0.017 —
XML API-1.0.b2 35.10 37.16 1.61 0.017 —> 0.004 0.003 +0.0015 0.024 —
DOM 4J-1.5.2 47.55 56.52 5.43 0.001 —> 0.001 0.001 +0.0002 0.018 —
Random 50 21.24 21.87 0.91 0.021 —> 0.004 0.003 +0.0014 0.035 —
Random 100 21.96 28.86 4.31 0.013 —> 0.003 0.002 +0.0012 0.001 «—
Random 150 46.32 39.10 +7.86 0.085 = 0.002 0.002 0.0002 0.085 =
Weighted
JavaCC-1.5 21.76 25.52 2.16 0.012 —> 0.003 0.002 +0.0016 0.022 —
Junit-3.8.1 19.93 22.72 1.14 0.034 —> 0.005 0.004 +0.0018 0.014 —
Servlet API-2.3 15.91 20.40 2.13 0.014 e 0.011 0.004 +0.0342 0.036 —
XML API-1.0.b2 24.28 26.28 1.19 0.018 —> 0.006 0.004 +0.0023 0.003 «—
DOM 4J-1.5.2 45.19 47.14 1.98 0.011 —> 0.002 0.001 +0.0001 0.007 —
Random 50 11.54 14.17 2.43 0.023 —> 0.017 0.011 +0.0041 0.008 —
Random 100 20.85 22.08 1.67 0.017 —> 0.007 0.006 +0.0001 0.014 —
Random 150 27.30 31.28 2.13 0.002 —> 0.005 0.004 +0.0001 0.012 —

The symbol * — ’ denotes the cases where the MGA exhibited the superior performance in the pairwise Wilcoxon test at the
95% significance level (a = 0.05); the symbol ¢ <— ’ indicates the cases where the SGA exhibited the superior performance;
and the symbol ‘=’ indicates cases in which there is no statistical difference between the MGA and SGA. The delta values A
denote the difference between the median values MGA and SGA.

Table 5: Mean Values of Moved Classes and RRAI in Penalized Optimization.

Problem Moved classes RRAI
MGA SGA A p-Value Winner MGA SGA A p-Value Winner

Unweighted
JavaCC-1.5 27.56 31.58 3.84 0.012 —> 3.152 2.526 +0.83 0.002 «—
Junit-3.8.1 16.21 22.34 4.12 0.032 — 1.935 1.597 +0.86 0.003 «—
Servlet API-2.3 13.23 14.67 1.24 0.013 — 1.365 1.234 +0.13 0.015 —
XML API-1.0.b2 22.45 24.34 1.67 0.029 — 1.511 1.454 +0.15 0.017 —
DOM 4)-1.5.2 28.78 33.87 4.15 0.003 — 1.214 1.927 +0.93 0.008 «—
Random 50 12.61 13.54 0.91 0.028 —> 1.319 1.198 +0.14 0.024 «—
Random 100 14.87 18.33 3.26 0.017 —> 1.501 1.440 +0.56 0.035 «—
Random 150 29.25 31.39 1.86 0.008 — 1.398 1.221 +0.92 0.028 «—

Weighted
JavaCC-1.5 15.82 17.45 1.23 0.005 — 4.447 3.257 +1.19 0.005 «—
Junit-3.8.1 12.27 13.87 1.16 0.016 —> 3.737 2.738 +1.21 0.008 «—
Servlet API-2.3 9.12 11.39 2.07 0.031 —> 3.993 1.275 +2.86 0.004 «—
XML API-1.0.b2 14.81 16.67 1.36 0.001 —> 8.183 4.972 +3.01 0.012 «—
DOM 4)-1.5.2 25.23 27.34 2.08 0.003 — 3.230 1.382 +2.12 0.015 «—
Random 50 7.34 8.48 1.11 0.024 — 3.255 2.241 +1.24 0.018 —
Random 100 13.56 15.35 1.29 0.005 — 2.569 1.875 +1.01 0.006 —
Random 150 16.23 18.26 1.54 0.018 — 2.785 2.282 +1.11 0.007 —

The symbol * — * denotes the cases where the MGA exhibited the superior performance in the pairwise Wilcoxon test at the
95% significance level (a = 0.05); the symbol ¢ <— ’ indicates the cases where the SGA exhibited the superior performance;
and the symbol ‘=’ indicates cases in which there is no statistical difference between the MGA and SGA. The delta values A
denote the difference between the median values MGA and SGA.

classes, the results of RRAI values also show that the MGA performs significantly better than the SGA in all
problem instances except Junit and Random150; (3) penalized optimization and unweighted system: Table 5
shows that in all problem instances the number of moved classes with the MGA is significantly smaller than

DE GRUYTER A. Prajapati and J.K. Chhabra: Optimizing Software Modularity = 1147

Multi-objective GA with un-weighted systems Multi-objective GA with weighted systems

B Global 1 Global

3 N S S .0 M Penalized 0 3 < ¥ Penalized
& & I N & 38 RO
R D R & < S %/ e R

Single-objective GA with un-weighted systems Single-objective GA with weighted systems

1 Global 20 # Global

® Penalized 0 ¥ Penalized

Figure 4: Percentage of Class Movement in Global and Penalized Optimization.

that with the single-objective GA. Similar to the number of moved classes, the RRAI values, for all problem
instances the MGA also performs better than the single-objective GA. In this scenario the mean of the RRAI
values in both SGA and MGA is larger than the baseline value (which is 1); (4) penalized optimization and
weighted system: Table 5 shows that in all problem instances the number of moved classes with the MGA is
significantly smaller than that with the single-objective GA. Similar to the number of moved classes, the RRAI
values, for all problem instances the MGA also performs better than the single-objective GA. In this scenario
also the mean of RRAI values in both SGA and MGA is larger than the baseline value (which is 1).

6.2.2 Global vs. Penalized Optimization

Now we compare the percentage decrement in the number of class movements in both global and penalized
optimization. Figure 4 sows the comparison of both optimizations. The data clearly indicate that there is very
large percentage decrement in class movement of penalized optimization than global optimization in both
single- and multi-objective optimization algorithm.

6.3 Compromised Quality vs. Reduced Perturbation

Figure 5 shows the percentage reduction in the number of moved classes and MQ values in penalized opti-
mization over global optimization. The x-axis represents the problem instances and the y-axis represents the
percentage reduction.

Figure 5 clearly indicates that a relatively large percentage of moved classes among the packages can
be reduced in both SGA and MGA compared to MQ. For example in the multi-objective and weighted case,
penalized optimization reduced moved classes on average by approximately 37% for all problem instances
at the cost of a reduction in MQ values just on average by approximately 10%. Hence results proved that the
proposed penalized optimization technique is able to reduce the significant movement of classes among the
existing package organization without much compromising in the MQ values.

The overall experimentation results provide significant evidence that the presented penalized optimiza-
tion approach for software remodularization is able to improve the modularization quality of the existing
package organization by doing minimum possible perturbation. The empirical results also show that multi-
objective formulation, MGA, outperforms single-objective formulation, SGA, in mostly all scenarios except
some cases. The reason for outperforming the MGA is that MGA formulation is more capable of exploring
all possible modularization search space compared to the SGA. In the SGA only a single aspect of quality is

1148 —— A. Prajapati and).K. Chhabra: Optimizing Software Modularity DE GRUYTER

Multi-objective GA with un-weighted systems Multi-objective GA with weighted systems
, 50 , 50
b A S R
5 - = —— MQ values 8 o
5 20 8 20
510 ety 8 10—ttty —+MQ values
OQQ Q\\ \Vg\@ ‘)Q QQ ‘9 —=— Number of OQQ Q\\ @ 60 QQ ‘9 —#— Number of classes
l« QEQ
& VTS Yo e & ST R
Single-objective GA with un-weighted systems Single-objective GA with weighted systems
50
50
% 40 = 8 40— A
5 20! —— MQ values 5
% IO‘W‘W E Tg —+— MQ values
A~ 0 A ,__,_fgw
QQ Q\ ng N QQ 60 #— Number of 0 —— Number of classes
& N S classes (TR O .
S %/~\~/0 LRy ¢ o@zg@g N

O
VIS Yo

Figure 5: Percentage Reduction in the Number of Moved Class and MQ Values.

optimized, and in the MGA more than one objective is optimized simultaneously. Overall, the above remod-
ularization approach is an effective and useful way of improving the existing package organization of 0O
software systems.

7 Conclusion and Future Works

This paper presented a new approach for OO software remodularization to improve the quality of the exist-
ing package organization with minimum possible perturbation. Such software restructuring exhibiting lesser
perturbation is highly useful for maintainers to obtain a significant improvement in modularization quality
of software without opting for total remodularization because that can be very costly, time consuming as well
as hard to interpret. To achieve the goal, a PMQ metric in terms of the original MQ and MoJoFM metric has
been designed as a fitness function. The approach has been evaluated on eight real and random weighted
and unweighted software systems. The obtained results provided sufficient empirical evidence that the pro-
posed approach is able to improve the quality of the existing package organization by modifying the original
package organization as less as possible. The significance of the results is that by much lesser perturbations,
we are able to improve the almost same quality level, which could have been achieved by total remodulariza-
tion. Hence it can be concluded that the approach proposed in this paper is very useful for the maintainers to
improve the structural quality of software with lesser cost and time. The major limitation of the work is that
the exploration of the genetic algorithm degrades if the number of objectives increases by more than three. To
overcome this limitation, multi-objective-based genetic algorithms can be used. Future work in this direction
is possible to include other additional objectives and constraints such that more improvement of the package
structures is possible with even lesser perturbation so that this activity can be used more frequently during
maintenance.

Bibliography

[1] H.Abdeen, S. Ducasse, H. A. Sahraoui and I. Alloui, Automatic package coupling and cycle minimization, in: Proceedings
of WCRE’ 2009, pp. 103-112, IEEE Computer Society, Lille, 2009.

[2] H.Abdeen, S. Ducasse and H. A. Sahraoui, Modularization metrics: assessing package organization in legacy large
object-oriented software, in: Proceedings of WCRE’ 2011, pp. 394-398, IEEE Computer Society Press, Limerick, 2011.

DE GRUYTER A. Prajapati and J.K. Chhabra: Optimizing Software Modularity = 1149

(3]

[4]

[5

(6]

(71

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

H. Abdeen, H. Sahraoui, O. Shata, N. Anquetil and S. Ducasse, Towards automatically improving package structure while
respecting original design decisions, in: 20th Working Conference on Reverse Engineering (WCRE), pp. 212—221, IEEE,
Koblenz, 2013.

F. B. Abreu and M. Goulao, Coupling and cohesion as modularization drivers: are we being over-persuaded? In:
Proceedings of CSMR’ 2001, pp. 47-57, IEEE, Lisbon, Portugal, 2001.

P. Amarjeet and). K. Chhabra, An empirical study of the sensitivity of quality indicator for software module clustering, in:
7th International Conference on Contemporary Computing (IC3), 2014, pp. 206-211, |IEEE, Noida, India, 2014.

P. Amarjeet and). K. Chhabra, TA-ABC: two-archive artificial bee colony for multi-objective software module clustering
problem, J. Intell. Syst. 27 (2017), 619-641.

P. Amarjeet and J. K. Chhabra, Improving package structure of object-oriented software using multi-objective optimization
and weighted class connections, J. King Saud Univ. Comput. Inf. Sci. 29 (2017), 349-364. Available online 2 November
2015.

P. Amarjeet and J. K. Chhabra, Harmony search based remodularization for object-oriented software systems, Comput.
Lang. Syst. Struct. 47 (2017), 153-169.

P. Amarjeet and). K. Chhabra, Improving modular structure of software system using structural and lexical dependency,
Inf. Softw. Technol. 82 (2017), 96-120.

P. Amarjeet and). K. Chhabra, Many-objective artificial bee colony algorithm for large-scale software module clustering
problem, Soft Comput. 22 (2018), 6342-6361.

P. Amarjeet and). K. Chhabra, FP-ABC: Fuzzy-Pareto dominance driven artificial bee colony algorithm for many-objective
software module clustering, Comput. Lang. Syst. Struct. 51 (2018), 1-21.

N. Anquetil, S. Denier, S. Ducasse, J. Laval and D. Pollet, Software (re)ymodularization: fight against the structure erosion
and migration preparation, 2010.

N. Anquetil and T. C. Lethbridge, Experiments with clustering as a software modularization method, in: Working
Conference on Reverse Engineering, pp. 235-255, IEEE CS Press, Washington, DC, USA, 1999.

N. Anquetil and T. C. Lethbridge, Comparative study of clustering algorithms and abstract representations for software
re-modularization, IEE Proc. Softw. 150 (2003), 185-201.

S. F. Ardabili, Computational intelligence approach for modeling hydrogen production: a review, Eng. Appl. Comput. Fluid
Mech. 12 (2018), 438-458.

M. Barros, An analysis of the effects of composite objectives in multiobjective software module clustering, in: Proceed-
ings of the 14th International Conference on Genetic and Evolutionary GECCC-12, Terence Soule (Ed.). pp. 1205-212, ACM,
New York, NY, USA, 2012.

G. Bavota, A. D. Lucia, A. Marcus and R. Oliveto, Software re-modularization based on structural and semantic metrics, in:
Proceedings of WCRE’ 2010, pp. 195-204, IEEE, Beverly, Massachusetts, USA, 2010.

J. Corwin, D. F. Bacon, D. Grove and C. Murthy, MJ: A rational module system for Java and its applications, in: Proceed-
ings of the 18th ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and Applications,

pp. 241-254, New York, NY, USA, 2003.

K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. /EEE Trans.
Evolut. Comput. 6 (2002), 182-197.

J. Garcia, D. Le, D. Link, A. S. Pooyan Behnamghader, E. F. Ortiz and N. Medvidovic, An empirical study of architectural
change and decay in open-source software systems, Tech. Rep. USC-CSSE, 2014.

V. Gupta and J. K. Chhabra, Package Coupling measurement in object-oriented software. /. Comput. Sci. Technol. 24
(2009), 273-283.

Y. Ichisugi and A. Tanaka, Difference-based modules: a class independent module mechanism, in: Proceedings ECOOP
2002, 2374 of LNCS, Springer Verlag, Malaga, Spain, 2002.

S. M. R. Kazemi, Novel genetic-based negative correlation learning for estimating soil temperature, Eng. Appl. Comput.
Fluid Mech. 12 (2018), 506-516.

D. Le, P. Behnamghader,). Garcia, D. Link, A. Shahbazian and N. Medvidovic, An empirical study of architectural change
in open source software systems, Technical Report USC-CSSE-2014-509, Center for Systems and Software Engineering,
University of Southern California, 2014.

S. Mancoridis, B. S. Mitchell, C. Rorres, Y. F. Chen and E. R. Gansner, Using automatic clustering to produce high-level
system organizations of source code, in: Proceedings. 6th International Workshop on Program Comprehension. IWPC’98,
pp. 45-53, IEEE, Ischia, Italy, 1998.

S. Mancoridis, B. S. Mitchell, C. Rorres, Y. F. Chen and E. R. Gansner, Bunch: recovery and maintenance of software system
structures, in: Proceedings of the IEEE International Conference on Software Maintenance, pp. 50-59, IEEE, Oxford, UK,
1999.

S. McDirmid, M. Flatt and W. Hsieh, Jiazzi: new age components for old fashioned Java, in: Proceedings of the 16th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA *01), pp. 211-222,
ACM, New York, NY, USA, 2001.

H. Melton and E. Tempero, The CRSS metric for package design quality, in: Proceedings of ACSC’ 2007, pp. 201-210,
Australian Computer Society Inc., Darlinghurst, Australia, 2007.

1150 — A. Prajapati and J.K. Chhabra: Optimizing Software Modularity DE GRUYTER

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

B. S. Mitchell and S. Mancoridis, On the automatic modularization of software systems using the bunch tool, /EEE Trans.
Softw. Eng. 32 (2006), 193-208.

R. Moazenzadeh, Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran, Eng.
Appl. Comput. Fluid Mech. 12 (2018), 584-597.

K. Praditwong, M. Harman and X. Yao, Software module clustering as a multi-objective search problem, /EEE Trans. Softw.
Eng. 37 (2011), 264-282.

Y. Smaragdakis and D. Batory, Mixin layers: An object-oriented implementation technique for refinements and
collaboration-based designs. ACM Trans. Softw. Eng. Methodol. 11 (2002), 215-255.

R. Strnisa, P. Sewell and M. Parkinson, The java module system: core design and semantic definition, in: OOPSLA *07:
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object Oriented Programming Systems and Applications,
pp. 499-514, ACM, New York, NY, USA, 2007.

R. Taormina, Neural network river forecasting through base flow separation and binary-coded swarm optimization,

J. Hydrol. 529 (2015), 1788-1797.

P. Tonella, Concept analysis for module restructuring. IEEE Trans. Softw. Eng. 27 (2001), 351-363.

Z. Wen and V. Tzerpos, An effectiveness measure for software clustering algorithms.12th IEEE International Workshop on
Program Comprehension, pp. 194-203, 2004.

T. A. Wiggerts, Using clustering algorithms in legacy systems re-modularization, in: Working Conference on Reverse
Engineering, pp. 33-43, IEEE, Amsterdam, The Netherlands, 2000.

C. L. Wu, Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis, J. Hydrol. 399
(2011), 394-409.

S. W. Zhang, Dimension reduction using semi-supervised locally linear embedding for plant leaf classification, Lect. Notes
Comput. Sci. 5754 (2009), 948-955.

Y. Zhao, Y. Yang, H. Lu, Y. Zhou, Q. Song and B. Xu, An empirical analysis of package-modularization metrics: implications
for software fault-proneness. Inf. Softw. Technol. 56 (2015), 186—203.

	Optimizing Software Modularity with Minimum Possible Variations
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Software Remodularization Approach
	4.1 System Structure Representation
	4.2 Penalized Fitness Function
	4.2.1 Single-Objective Remodularization
	4.2.2 Multi-objective Remodularization

	5 Experimental Setup
	5.1 Software Systems Studied
	5.2 Algorithmic Parameters
	5.3 Collecting Results from Experiment
	5.4 Results Assessment Criteria

	6 Results and Analysis
	6.1 Modularization Quality
	6.1.1 Single-Objective vs. Multi-Objective GA
	6.1.2 Global vs. Penalized Optimization

	6.2 Achieved Optimization vs. Applied Modification
	6.2.1 Single-Objective vs. Multi-Objective GA
	6.2.2 Global vs. Penalized Optimization

	6.3 Compromised Quality vs. Reduced Perturbation

	7 Conclusion and Future Works

