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Abstract: Controlling liquid flow is one of the most important parameters in the process control industry. It
is challenging to optimize the liquid flow rate for its highly nonlinear nature. This paper proposes a model
of liquid flow processes using an artificial neural network (NN) and optimizes it using a flower pollination
algorithm (FPA) to avoid local minima and improve the accuracy and convergence speed. In the first phase,
the NN model was trained by the dataset obtained from the experiments, which were carried out. In these
conditions, the liquid flow rate was measured at different sensor output voltages, pipe diameter and liquid
conductivity. The model response was cross-verified with the experimental results and found to be satisfac-
tory. In the second phase of work, the optimized conditions of sensor output voltages, pipe diameter and
liquid conductivity were found to give theminimum flow rate of the process using FPA. After cross-validation
and testing subdatasets, the accuracy was nearly 94.17% and 99.25%, respectively.

Keywords: Process control, optimization, neural network, flower pollination algorithm.

1 Introduction
In most industrial applications, there is a need to calculate the inputs to a process that will drive its out-
puts in a desired way and thus achieve the optimum (desired) goal. In such applications, a mathematical
input–output model for the process is usually derived. Most of the process control systems are at threat due
to improper input parameter settings.

To optimize the performance of a multivariable process, control through the classical method is inflexi-
ble and time-consuming. Themain drawback of classical optimization is getting a response that is influenced
by individually independent variables. When a response is measured with respect to the influence of a par-
ticular variable, then other input variables should be kept constant. In general, interactiveness between the
input variables is absent in classical optimization, that is why it can generate the overall effects on an inde-
pendent variable with respect to a particular response. A precaution is that the total number of experimental
trials, if increased, is time consuming. That is why an alternative approach is adopted wherein mathematical
modeling (computational optimization) of the process is designed (input–output relationship) using differ-
ent computational intelligence (CI) techniques. The model could be based on either physical phenomena or
historical input–output data for a given system. Once the model is developed, mathematical techniques can
be applied to determine the inputs to the process that will satisfy a certain given criterion. Normally, in a
liquid flow control process, flow rate depends on several important factors like sensor output, pipe diameter,
liquid conductivity, liquid viscosity, etc. In this present investigation, the authors developed a mathematical
model between the abovementioned variables using one of the efficient bio-inspired neural network (NN)
model CI techniques such that it can describe the liquid flow control process in an efficient manner.
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Flow rate measurement is one of the high precision operations performed in most of the process control
industries; it can suffer from the setback of various effects like the effect of energy associated with a flow-
ing fluid through a pipeline, the Doppler effect and the effect of the speed of the fluid suction pump, which
are important causes for rejection of a sensor in the process industry. The liquid flow rate passing through
the pipeline can be measured by the various types of flow sensor such as a positive displacement type sen-
sor [13, 14, 16, 21, 24, 29, 34], a mass flow rate sensor such as coriolis, a vane type sensor and anemometer
where mass flow rate is relied upon for the product of volume flow rate and liquid density. To overcome all of
these problems, an anemometer-type mass flow rate measurement sensor has been described in refs. [11, 12,
17]. The flow rate of the fluid as a function with temperature-sensitive resistance is converted to heat energy.
The transducer output of the anemometer flow sensor is nonlinear with flow rate. Therefore, it minimizes
the nonlinearity characteristic of transducer output and liquid flow rate. The present investigation proposes
an NN model of the flow rate of a process based on an experimental investigation where controlling of this
transducer output, pipe diameter and liquid density was also considered. Furthermore, this work found the
optimum condition of flow using the flower pollination algorithm (FPA).

The FPA is already being utilized in different domains of optimization. Anewhybrid optimizationmethod
[9] has been described by the FPA with particle swarm optimization to improve the searching accuracy in
global optimization. Abdel-Baset and Hezam [1] proposed a new method that was developed based on the
FPA combined with chaos theory (IFPCH) used to test several ratio optimization problems’ (ROPs) bench-
mark; a hybrid optimization method called the hybrid FPA with a genetic algorithm (FPA-GA) was described
in ref. [2] to improve the searching accuracy in seven benchmark optimization problems. Abdel-Baset and
Hezam [4] described – by combining with the features of FPA – an improved simulated annealing algorithm
proposed (FPSA) for the optimization of engineering problems. They [3] also proposed a novel technique to
solve the ill-conditioned system of linear and nonlinear equations by hybridization and combined the feature
of FPA and the conjugate direction (CD) method. A new binary version of flower pollination [5, 8] is proposed
for solving the 0-1 knapsack problem. Application of modified FPA is discussed in refs. [6, 7].

Except for FPA, other soft computing techniques are also applied in different fields with real-life appli-
cations like a genetic-based NN ensemble applied for the estimation of daily soil temperature [25] by using
a sequential genetic-based negative correlation learning algorithm. A comparative study was done between
the modular model (MM) and global models (GM) for the prediction of the stream flow [37] by employing
the binary coded swarm optimization for the identification of filter parameters and model structure while an
extreme learningmachinewas used to reduce the computation time. How the CImethods investigated hydro-
gen production [10] and explained the performance in the prediction, assessment and optimization tasks
related to different types of hydrogen production methods were also studied. An application of a CI-based
survey [22] (single and hybrid methods) in flood management system (FMS) and a comprehensive survey of
FMS have been explained. An artificial NN approach was employed [15] to determine the implicit limit-state
functions for reliability evaluations in performance-based design and to optimally evaluate a set of design
variables under specified performance criteria and corresponding desired reliability levels in design.

The present paper studies a bio-inspired algorithm FPA for the optimization of an NN model to avoid
the local minima, improve accuracy and reduce the convergence speed of a liquid flow process. Here FPA
advances the performance of NN after optimizing the weights and bias value to explore large search spaces
and increases the ability to choose a similar solution. That is why a flower-pollination-based neural network
algorithm (FPNN) is more suitable in convergence speed and accuracy than a BAT Cuckoo search algorithm
and particle swarm optimization for an optimized NN model.

For a liquid flow control process [14, 29], the relationship between output (i.e. flow rate) and
input variables (i.e. sensor output voltage, pipe diameter, liquid conductivity, liquid viscosity, etc.) is
assumed to be nonlinear in nature. Several nonlinear models [12] like regression analysis, response
surface methods, analysis of variance (ANOVA), etc. are very popular, wherein polynomial, logis-
tic, quadratic, exponential, logarithmic and power equations can be used to represent the behav-
ior of a system [17]. During a numerical extraction method, an efficient optimization technique is
required to optimize the model parameters such that the experimental curve fits best with the
simulated output. Therefore, accurate modeling of a liquid flow control process is a typical example
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of a nonlinear optimization problem where we need to identify the optimal parameters for the
model. The accuracy of the extracted parameters depends on the selection of a suitable optimization
technique.

Unsupervised machine learning method [18], support vector machine (SVM) and K nearest neighbor
(KNN) were developed as functional classifiers, which can correctly and automatically classify the actual
level of the flow rate from unseen datasets. But it is difficult to choose a better kernel function to construct the
model, and other disadvantages are the long training time on large datasets and difficulty in understanding
and interpreting the final model, variable weight and individual impact.

This paper is organized as follows: in the Introduction, the design of a flow sensor and the experimental
set up are briefly introduced in Sections 2 and 3. Section 4 introduces the modeling and optimization tech-
nique. In Section 5, the proposed algorithms NN and FPA are described, while the results are discussed in
Section 6, and finally, conclusions are presented in Section 7.

2 Flow Sensor Design
The present research was done by using a semiconductor-based anemometer flow sensor instead of other
types of flow sensor, which are used as process control industry alternatives. The present work sensors are an
electromagnetic flow sensor, an ultrasonic flow sensor, a hall effect flow sensor, a Venturimeter, an ultrasonic
flow sensor, etc. This sensor has the following advantages: low cost, application of the cooling technique,
Doppler effect, negligible fluid suction pump and energy association, applicability for a wide range of fluid
speeds (up to 600 lpm for the present experiment) by means of the convection method, can be used a long
period of time, high resolution and less interference of noise on the output.

An anemometer flow sensor is designed by placing four transistors in diametrical plane of a polyvinyl
chloride (PVC) pipe at right angles to each other to form a bridge circuit. The base and emitter terminal of
each transistor are shortened to form a P terminal, while the collector terminal is considered as an N termi-
nal so that the transistor can be considered as a conventional PN junction diode. After forming aWheatstone
bridge circuit, one pair of transistor operates in a forward biasedmodewhile the opposite arm transistor oper-
ates in a reverse bias. Due to the cooling technique, the change in resistance for the forward biased transistor
and reverse biased transistor will be different. The resulting bridge output voltage is the sum of the positive
and negative half cycle output voltage, which again linearly depends on the change in forward biased resis-
tance. As the change in resistance is linearly proportional to the flow rate, the sensor output produces a linear
voltage corresponding to the flow rate.

3 Experimental Setup for the Liquid Flow Process
The experimental work was carried out with the flow and level measurement and control setup. The setup
was used along with the flowing parts, which are given in Table 1.

The experimental workwas done in a process control setupwith flow and levelmeasurement and control
(model no. WFT-20-I), as shown in Figure 1. In the present investigation, the liquid velocities measured were
in the range of 0 lpm–600 lpm. Flow sensor voltages were calibrated against liquid flow velocities, which

Table 1: Experimental Setup.

Machine/Tools Specification/Description

Process control setup flow and level measurement and control Model no. WFT-20-I
Anemometer flow sensor Designed by the SL 100 transistor
PVC pipe Diameter with 20 mm, 25 mm and 30 mm
Digital multimeter 3 1/2
Rotameter Taking the reading of the flow rate ranging 0–600 lpm



790 | P. Dutta and A. Kumar: Modeling of Liquid Flow Process using ANN Based FPA

Figure 1: Semiconductor-based Anemometer.

were determined by a special mass flow control unit to have an inaccuracy of 1% from the reading. Overall
temperature variation of the liquid was typically less than ±0.5°C during the course of the entire experiment
at room temperature. The purpose of water flow control process is to keep the water flow in the tube at a
desired rate and track the reference trajectory. In this paper, water is considered as the liquid to check the
nonlinearity of the cylindrical tank. A reservoir tank collects the water that is pumped to the cylindrical tank.
The flow is calculated by using an anemometer-type flow sensor. In this experimental setup, water is pumped
into in a PVC pipe from the reservoir tank (see Figure 2). A DC motor is connected in the reservoir to drive the
system. The rate of change of thewater flow ismeasured by using a rotameter indicator. A nonlinear electrical
signal is achieved across the noncontact type liquid flow sensor connected at the end of the PVC pipe. Here,
we used a transistor-based flow sensor wherein four transistors were connected in a diametrical plane of the
PVC pipe to form a bridge-type full wave rectifier. A change in water flow affected the output of the sensor
signal. Water from the sensor fell into the cylindrical tank, which was again connected to the main water
reservoir through a pipe so that a cyclic process is formed. A pneumatic control valve allowed water to flow
into the tube from the tank and caused a flow rate change in the tube. The operation was repeated through-
out the control process until the water flow rate in the tube was set to a reference. A reference trajectory or
flow rate was first set to be followed by the system. From the above experimental setup, we obtained a sensor
output voltage with respect to the variation of the water flow rate under the different combination of pipe
diameter and water parameters [19].

Experiments were carried out at different flow rates, sensor output, pipe diameter and liquid density. The
output variable was considered as the liquid flow rate predicted by the optimization technique defined by the
function of input parameter sensor output, pipe diameter and liquid density. The experimental conditions are
shown in Table 2.

Sensor 

 PVC  

Tank

Reservior 

Motor
Rota meter 

Valve 

Figure 2: Experimental Setup for Liquid Flow Rate Measurement [19].
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Table 2: Ranges of the Process Parameters.

Process conditions (input parameters) Range of the parameters

Sensor output voltage 210 mv–285 mv
Pipe diameter (mm) 20, 25 and 30
Water conductivity (W/m.k) 606, 615 and 622

4 Proposed Methods for Modeling and Optimization of Liquid Flow
Process

Before going through the detailed process for NN-based modeling and optimization using FPA, some prelim-
inary concepts about NN and FPA are discussed here.

4.1 Preliminary details of an Artificial Neural Network (ANN)

An ANN is one of the models of AI that are inspired by the human neuron topology applied to overcome the
nonlinearity problem between input and output data (see Figure 3). Thismodel constructs the complex struc-
ture for the datasets for which we predict output for the unknown input variable that lies in a domain [14]. An
ANN has great potential to predict and determine more practical results compared with the traditional meth-
ods [29]. The sole goal of an ANN is to make a computer learn something so that the network would adapt to
a given dataset. Like human beings, ANN can learn by example and apply these into a training purpose, that
is why it is suitable for pattern recognition, speech recognition or data classification problems [23].

The construction of an NN involves three different layers with feed forward architecture. This is the most
popular network architecture in use today. The input layer of this network is a set of input units that accept
the elements of input feature vectors. The input units (neurons) are fully connected to the hidden layer with
the hidden units. The hidden units (neurons) are also fully connected to the output layer. The output layer
supplies the response of the NN to the activation pattern applied to the input layer. The information given to
a neural net is propagated layer by layer from the input layer to the output layer through (none) one or more
hidden layers. The following is the simplest NN model.

The factorsW1,W2, . . . ,Wn are weights to determine the strength of input vectors I = [I1,I2,. . . , In]T. Each
input is multiplied by the associated neuron connection ITW, which can be given as the following equation.
The positive weights excite and the negative weights inhibit the node output.

I = IT ·W = I1W1 + I2W2 + . . . + InWn =
n∑︁

i=1
IiWi (1)
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Figure 3: A Simple Neuron.
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The nodes interval or threshold F is the magnitude offset. It affects the activation of node output O as
follows:

O = f (I) = f
{︃ n∑︁

i=1
IiWi − Φk

}︃
(2)

For the classification task, the ANN needs to be trained for the networks to be able to produce the desired
input–output mapping. For training purposes, a set of examples or data is fed into the network, and con-
nection weights, which are also called the synaptic weight, are adjusted by using a learning algorithm. The
objective of the NN system is to give a desired output in response to some input signals. Before the train-
ing of the NN, the system is initialized to its default or random values. While the network is being trained,
the weights that define the connection between the nodes can be modified, and depending on the input and
hidden values, the structure can also be changed using some conventional learning algorithms like the back
propagation algorithm [27, 32]. This implies that it is possible to optimize the NNs modifying the structure of
the solution andmodifying the way that the weights are calculated. However, recently, different evolutionary
optimization techniques or metaheuristics [28, 31, 33, 36] were successfully employed to learn the weights of
an NN.

4.2 Preliminaries of an FPA

A FPA is typically associated with the transfer of pollen [38] for the reproduction or flowering of plants, and
pollinators such as insects, birds and bats are mainly responsible for such transfer. An FPA [39–41] was
recently proposed metaheuristic optimization that is based on some simplified rules for pollination. Biotic
cross-pollination can be assumed as a process of global pollination, and pollen-carrying pollinators follow
Levy flights during transport (Rule 1). For local pollination, abiotic pollination and self-pollination are used
(Rule 2). Pollinators may develop flower reliability, which is proportional to the resemblance of two flow-
ers, i.e. reproduction probability (Rule 3). The switching of local to global pollination can be controlled by a
switch probability p ∈ [0, 1], slightly biased towards local pollination (Rule 4). Here, each pollen or flower
corresponds to a solution of the optimization problem being considered. Global and local pollinations (i.e.
search) are done according to the following two equations [36], respectively.

xt+1
i = xti + γ Lévy (λ)

(︁
g* − xti

)︁
(3)

xt+1
i = xti + ε

(︁
xtj − xtk

)︁
(4)

Here, xti is the pollen i or solution vector xi at iteration t, γ is the scaling factor to control the step, g* is the
current best solution found among all solutions at the current iteration, xtj and xtk are pollens from the differ-
ent flowers of the same plant species, and ε stands for randomwalk step size within a uniform distribution in
[0, 1]. The reason behind selecting an FPA as an optimization method is that it gives better convergence and
accuracy than do other popular metaheuristic techniques.

5 Proposed Approach for Modeling
The objective of this work was to find an optimal point during a flow process control where flow rate will
be at minimum, i.e. the most suitable condition for grinding. Three conditions or constraints of the process
are chosen on which different flow rates are obtained. These conditions are flow sensor output, pipe diame-
ter and liquid (water) conductivity. To obtain the optimal condition, NN modeling of a liquid flow process is
proposed here. The proposed method has two stages: in the first phase, a single NN model for flow rate was
developed by assuming a linear relationship between inputs (conditions during flow process) and outputs
(flow rate). These neural models were then optimized using an FPA, which was used to find out the optimal
value of weight and bias parameters of the NN model by minimizing the training error. In the second phase,
a search or optimization was carried out to find the best value of the flow sensor output, pipe diameter and
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liquid (water conductivity) so that the combined function of derived neuralmodels for flow rate isminimized.
For this optimization, FPA is used again.

5.1 Finding NN Model for the Flow Rate

In this work, it is considered that flow rate (F) is the linear function of output of sensor voltage (E), pipe
diameter (D) and water conductivity (k). A simple neuron without any hidden layer is used to represent a
linear function. So, it can be written as follows:

F = f1 (E, D, k) (5)

For each of these neurons, nodes of the input layer are sensor output, pipe diameter and conductivity,
whereas the flow rate is the node of the output layer. There are three weights, i.e. w1, w2, w3, which are asso-
ciated with the three inputs, respectively, and the bias term β is associated with the output node. Here, we
do not consider any activation function, as this work is not a classification problem. So, according to the NN
model, temperature or force can be expressed as follows:

F = E * w1,F + D * w2,F + k * w3,F + βF (6)

Now, theseweights and bias parameters are unknown, and their optimal values are needed to be derived.
For this optimization purpose, an FPA is introduced to find out the NN structure, i.e. function F. For learning
the NN, the experimental data that were obtained from the experiments are used for training. This training
dataset consists of a set of values of output of the flow sensor, pipe diameter and fluid conductivity (water) as
inputs and corresponding values of the flow rate as outputs. A total of 20 such types of data are generated by
experimentation. However, 80% of these data, i.e. 17 cases, are used for training, and the rests or the three
data are used for testing of a new case for the purpose of validation. Initially, the FPA generates some ran-
dom populations; those can be considered as the initial solutions for the problem. A set of w1, w2, w3, β is
considered as the populations. Form number of training data, the squared error can be given as follows:

E =
m∑︁
i=1

(ti − oi)2, (7)

where t is the target output and o is the calculated output from the training data. This training error E is used
as a fitness or objective function of the FPA, which needs to be minimized. Based on the training error, the
best and optimal solution is obtained after completion of all iterations. For the implementation of the FPA,
the following parameter setting is considered for optimizing the weights and bias of the NN (Table 3).

After implementation of the FPA, the flow rate (F) can be written as follows:

F = E * 0.13719 + D * (−0.0166) + k * (−1.0519e − 05) + (−0.03575) (8)

To observe the effectiveness of these models, one validation technique is utilized. First, these models are
tested against a training dataset, i.e. cross-validation. Next, these models are validated for three new data, or

Table 3: Parameter Setting for FPA for NN Modeling of Flow Rate.

Parameter of FPA Value

No of parameter to be optimized 3
Range of E 0.180–0.265
Range of D 0.20–0.30
Range of k 550–650
Number of initial solution 20
Maximum iteration 2000
probabibility switch 0.8
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those that were not used for training. So, for cross-validation, the values of flow rate are found out using the
mentioned equations for 17 training conditions, and the calculated values are compared with the experimen-
tal values, which are shown in a flowchart in Figure 6. From Tables 4 and 5, it can be seen that these models
can predict the flow rate for different training conditions with a very satisfactory accuracy of 94.17%. Thus,
this process validates our proposed approach.

Figure 4 shows a comparative study between the experimental and calculated values of the outputs with
respect to the number of instances; both the experimental and calculated flow rate are increased proportion-
ally to the instances. Figure 5 represents the graph between deviation

(︁
= Xexp−XCal

Xexp

)︁
and experimental flow

Table 4: RMSE for Cross-validation.

Parameters RMSE Accuracy

Flow rate 5.83% 94.17%

Table 5: Results for Testing New Data.

Parameters Experimental value Calculated value RMSE Accuracy

Flow rate (F ) 0.0056 0.005236926 0.75% 99.25%
0.0064 0.005659794
0.0072 0.006695997
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Figure 4: Calculated Flow Rate vs. Experimental Flow Rate.
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Figure 6: Flowchart of the Proposed Methodology.

rate, where deviation is minimum between the flow rate of 100 lpm and 400 lpm. The prediction error can be
calculated using the root mean square error (RMSE), which can be defined as follows:

RMSE =

⎯⎸⎸⎷ 1
m

m∑︁
i=1

(︂
Xexp − XCal

Xexp

)︂2
* 100% (9)

Accuracy = (100 − RMSE)%, (10)

where Xexp is the experimental value, Xcal is the calculated value andm is the number of training data.

5.2 Finding Optimal Condition for Flow Rate

In the next phase of this work, the best condition for the proper flow rate is found by searching optimal values
of sensor output voltage, pipe diameter and water conductivity so that, at that point, the liquid flow rate is
minimized. Now, a new fitness or objective function (OF) is defined where the numerical values are only con-
sidered and not their unit. Again, FPA is implemented to minimize this combined function of derived neural
models for temperature and force. It is clear that OF will have minimum value when the flow rate will have a
minimum value. In this case, a set of random values of E, D and k is used as initial solutions or populations.
So, these three parameters are needed to be optimized by the FPA such that the value of theOF is minimized.
The search ranges of these parameters are selected so that they match with the experimental conditions.

6 Result Analysis
The overall optimization is done by 20 experimental datawith flow sensor output, pipe diameter and conduc-
tivity as input and flow rate as the output. Among the 100% datasets, 80% (17) datasets are used for training
purposes and cross-validated by the optimization technique to determine the RMSE and the accuracy of the
predicted flow rate, as shown in Table 4.
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Next, the NNmodels are validated using the remaining 20% data (here, three new cases); those were not
used for training previously. It can be observed that themodel is able to predict a flow rate for new conditions
with good accuracy. Table 5 shows a comparison between predicted and experimental values of the flow rate.
This proves the effectiveness of the proposed model, as shown in Figure 6.

After the completion of iteration, it is found that the optimal condition is found as 0.200, 0.3 and
590, respectively, for sensor output voltage, pipe diameter and water conductivity and minimum error is at
−0.006718.

As the sensor output voltage increases, the semiconductor-based anemometer flow sensor allows the
increment of the liquid flow rates. This flow rate is very much affected by the primary input parameter, sen-
sor output. When pipe diameter is increased for the same sensor output, the flow rate is also proportionally
increased. Although the sensor is placed in a diametrical plane of the PVC pipe, the change in pipe diameter
also has an impact on the liquid flow of the process control. Irrespective of the liquid density, conductivity
also proportionally affects the flow. The FPA analysis also shows that minimum sensor output with the appli-
cation of large pipe diameter and least liquid conductivity is the optimized condition for the process flow.
Therefore, an FPA can be a perfect tool to optimize the liquid flow process.

7 Conclusion
Modeling of liquidflowcontrol in aprocess industry is an interesting task for the researchers. Generally, liquid
flow and level measurement control unit depends on the voltage output of a sensor (anemometer), diameter
of the pipe, liquid viscosity and liquid conductivity. Initially, 118 Measurements (i.e. liquid flow rate) were
observed in a laboratory at different experimental conditions (i.e. for different values of pipe diameter and
sensor voltage). In this study, our aimwas tomodel the liquid flow control process so thatwe could find a rela-
tionship between liquid flow rate, pipe diameter and sensor voltage output by keeping the liquid viscosity and
conductivity at a constant level. For mathematical modeling purposes, we used analysis of variance (ANOVA)
as a nonlinear model to establish the relationship between variables of the liquid flow control process.

Now, in finding the suitable ANOVA-based model for a nonlinear optimization problem, we need to find
the optimal values of the coefficient of the models using some suitable metaheuristic optimization tech-
niques so that the estimated liquid flow rate best fits with the experimental results. For this purpose, we
have proposed FPNN and observed its efficiency for the modeling of liquid flow control process.

Both the NN and flower pollination are theoretically very simple and relatively easy to implement due to
the very fewparameters that need to be adjustedduring the optimizationprocess. AnANN-basedFPAcandeal
with the continuous optimization problem as well as has a great potential to solve real-time problems with
great accuracy. Here, this algorithmwas successful in solving the optimization problemwith a higher degree
of accuracy of 94.17% for cross-validation and 99.25% for three subtesting data. The result of the experiment
shows that this unimodal optimization technique is very successful in finding one solution for a multiple
number of runs. Two of the main advantages of this hybrid optimization technique are that it quickly yields
the optimal solution and it does not require any additional input parameters for optimization purposes.

In future applications, this hybrid optimization technique can be used for multimodal process control
optimization purposes; more detailed and accurate modeling of the liquid flow control process (including
liquid viscosity and conductivity as the input variable) could be a future aspect of this work. Moreover, fur-
ther tunings of themetaheuristics are necessary to achievemore efficiency, accuracy, convergence speed and
stability.
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