
J. Intell. Syst. 2020; 29(1): 1226–1234

Safa Jida*, Hassan Ouallal, Brahim Aksasse, Mohammed Ouanan,
Mohamed El Amraoui and Mohamed Azrour

Clay-Based Brick Porosity Estimation Using
Image Processing Techniques
https://doi.org/10.1515/jisys-2018-0191
Received April 21, 2018; previously published online February 23, 2019.

Abstract: This work intends to apprehend and emphasize the contribution of image-processing techniques
and computer vision in the treatment of clay-based material known in Meknes region. One of the various
characteristics used to describe clay in a qualitative manner is porosity, as it is considered one of the prop-
erties that with “kill or cure” effectiveness. For this purpose, we use scanning electron microscopy images,
as they are considered the most powerful tool for characterising the quality of the microscopic pore structure
of porous materials. We present various existing methods of segmentation, as we are interested only in pore
regions. The results show good matching between physical estimation and Voronoi diagram-based porosity
estimation.
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1 Introduction
The structural ceramic tiles and clay materials industry is an important regional industrial segment consum-
ing an important quantity of raw materials, especially clay. Morocco is among the world’s top 20 producers
and consumers of clayey building materials. The industry of ceramic tiles and bricks is most predominant in
northern central Morocco. Clayey materials are plentifully used in this region; they take an important part
in the national economy, with a production of about 45% for building materials (bricks, ceramic tiles and
refractories).

Many factors can affect the quality of the clay-based material, for example density, porosity, pore size,
permeability and mechanical strength. The effects of porosity on the physical properties of clay have been
demonstrated in many studies on sintering and in development programs designed to establish production.

Physics have provided various techniques to calculate the void. For example, porosity can be estimated
by computing volumetric measurements of core samples, or from geophysical logs, which calculate a prop-
erty of a rock and infer its porosity, or from petrographic image analysis, which evaluates the pore size of a
small sample. This field is conducted towards themeasurement of porosity in clay samples, because it affords
the basic concepts for understanding.

The sophisticated structures of porous materials bring important challenges to characterization tech-
niques. In the field of computer science, due to its non-destructive and deep investigating capability, numer-
ous projects have used imaging methods and image analysis to characterize the behaviour of porous media
[7, 11, 14, 22, 31, 38]. These works mainly used computed tomography (CT) to describe and analyse some of
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themost important features of porousmedia, such as conductivity, permeability and porosity. An example of
an application using images is structure quantification [13, 36, 39], where the main focus is to demonstrate
the utility of industrial-quality CT scanning and density scaling for driving fractal parameters, including the
ability of two-dimensional (2D) scans to represent 3D structures. The results of flowmodelling and behaviour
analysis inside porous media [19, 33, 38], where relative permeability is computed directly from a digitised
image of the fluid phase, are in agreement with experimentally measured values. The mechanics of porous
media [1, 34] are also studied via imaging using X-ray tomography, such as shear zone, curved shape, and
varying degrees of dilatancy and crack opening (in time and space). The properties of 2D porosity [37] are
experimentally investigated to detect the penetration of pores by introducing a new concept, homogeneous
dimension minimum, which essentially exploits the difference of the greyscale values between two images
at the same pixel i. Pore diameter is considered one of the challenging tasks in material characterization.
She et al. [30] introduced a new parameter called effective pore diameter calculated from a scanning electron
microscopy (SEM) image, the algorithm of which is based on Euclidean distance transform. Another inter-
esting field is 3D representation and reconstruction [4, 8, 29] to identify and analyse the microstructure of
materials, and direct simulation of 3D flow in the reconstructed pore space.

In this paper, we consider image-processing techniques and physical experiments together in order
to measure the porosity of clay materials. The performances of some of the described methods will be
demonstrated by comparing the imaging results with the experimental calculations.

In the rest of the paper, we present the physical analysis method that we have used in order to mea-
sure porosity for the clay samples. Next, we describe the imaging method we have used to estimate porosity.
Later,wedemonstrate theutility of imaging techniques by comparingour resultswith those foundbyphysical
analysis. Finally, we discuss and interpret the obtained results and provide our conclusion.

2 Physical Analysis Method
In this work, the porosity of the test pieces is determined by the method of impregnation in boiling water
according to ISO 10545-3. It is calculated by following the works presented in Refs. [2, 27]. The method can be
summarized in the following steps:
– Dry the sample in an oven at 150 °C for 2 h or at 110 °C for 24 h.
– Determine the dry mass (Msec).
– Put the samples in a bath of distilled or filtered water and boil them for 5 h, taking in consideration that

the specimens are covered with water.
– After boiling, leave the samples for an additional 24 h in the bath.
– Determine the mass (Mh) of each sample suspended in water. Perform weighing by placing the specimen

in a basket attached to the scale.
– After determining the hanging mass, lightly wipe the sample with a lint-free tissue or cotton tissue to

remove any excess water from the surface.
– Determine the saturated mass (Msat).

The measurement procedure should be performed as quickly as possible to minimize errors caused by water
evaporation from the sample.

Finally, we calculate the porosity by applying Eq. (1):

P = 100(Msat − Msec)
(Msat − Mh)

(%). (1)

In total, we have four samples of clay in three different firing temperatures: S0 is brut clay; S5, S10 and
S15 are, respectively, three clay samples with 5%, 10% and 15% of organic matter. The principal objective of
adding organic matter is to see its impact on porosity in terms of the firing temperature along with the high
mechanical resistance at high temperatures.
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3 SEM Images
Here, we describe a non-destructive process using computer vision for porosity estimation. This technique
is basically used for characterizing materials such as ceramic. Its basic principle is to give a shot of electron
beam to the studied surface. The atoms of the sample release secondary electrons with lower energy, which
are processed by a detector that provides the surfacemicrograph of the sample on a control screen. To observe
non-conductive ceramic samples, carbon or platinummetallization is required to make them conductive.

The scanning electron microscope used was FEI QUANTA 200 (FEI, Hillsboro, OR, USA).

3.1 Image Analysis Method

Before attempting any kind of treatment, we conduct image enhancement due to the presence of some
noise. These fundamental pre-processing steps help the further steps to work well and lead to a successful
interpretation. For this purpose, we apply a filter that reduces the noise level.

3.2 Segmentation Techniques

Here, we give a description of the segmentation method we have used in investigating the sample used. For
measuring the porosity, pore size and pore distribution of the clay, the result of segmentation was used.
Segmented images are none other than a binary image. Thus, a whole package of grey-level treatment can be
exploited.

3.2.1 Thresholding Segmentation

A very simple and fast segmentation and edge detection technique is performed by first creating a binary
image through setting an image threshold. The binarization threshold is computed from the grey-level
histogram that well separates the class.

This is a prevalent approach to designate classes to the pixels in an image. The idea is based on estimat-
ing the global threshold level from the intensity histogram of the image. The pixel classes are attributed by
comparing the intensity with this threshold value.

A classic method of this type is described by Otsu [26], where the criterion is to minimize the in-class
variance while maximizing the between-class variance. The noise is identified as Gaussian, and an alterna-
tive method is to fit a sum of Gaussian functions on the histogram data and use the estimated parameters
to determine the optimal threshold levels using decision theory, see e.g. Ref. [21]. Metrics based on the his-
togram entropy has also been used to identify threshold levels [20]. Finding the threshold in mono-modal
histograms, Rosin [28] used a method based on the location of the histogram knee, i.e. the point where the
tangent of the main histogram peak meets the tangent of the asymptotic low-probability tail.

Generally, using strict grey-level intervals provided by histogram-based thresholdingmethodsmay result
in a number of incorrectly classified pixels, which makes these methods inadequate as a final segmenta-
tion method. However, histogram-based thresholding is often used as an initial condition for more complex
methods, described in the following sections.

3.2.2 Watershed Segmentation

The watershed is highly used in 2D image segmentation. It expresses the image in a geographical term. Its
origin is not purely a product of mathematical morphology. It is derived from the geological topology.

This algorithm decomposes the image into homogeneous regions. A greyscale image can be perceived
as a topographic relief. The grey level of a pixel in the image can be interpreted as its altitude in the topo-
graphic relief. The dark pixels thus correspond to the valleys and basin of the relief, whereas the clear pixels
correspond to the hills and ridges.
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One of the difficulties of the implementation of this intuitive analogy is that it gives free choice to its for-
malization. The watershed algorithm can be implemented in two ways: one is based on recursive immersion
algorithm [35] and the other is based on the use of geodesic distance function [25].

Unfortunately, the real images are usually rather noisy when calculating the watershed of their gradient;
it shows a strong oversegmentation because the gradient has manyminima generated by noise. To overcome
this problem, many methods are proposed:
– The first is to filter the original image in order to delete most of the non-significant minima: filtering

approach.
– The second is to choose the number of local minima, hence the number of zones we want to highlight with

the watershed: swamping approach.
– Finally, we can first apply watershed to obtain a marker for a second application of watershed. As a first

result, we obtain a mosaic image. This image is no longer built by pixels but as a planar graph.

3.2.3 Clustering-Based Segmentation Method

The clustering-based methods are defined by segmenting images into clusters with pixels sharing the same
characteristics. There are two major types of clustering methods: supervised clustering, which needs human
interaction to decide the clustering criteria, and unsupervised clustering, which decide on the criteria itself.
Each one of these two major techniques includes various approaches (hierarchical [6, 40] and density-based
methods) that aim for image segmentation.

An example of the best-known method is adaptive K-means clustering. The algorithm starts with the
selection of K elements from the input data set. The K elements are selected haphazardly from the seeds
of clusters. The properties of each element also form the properties of the cluster that is constituted by the
element.

3.2.4 Voronoi Exploitation

TheVoronoi diagram (VD) as a data representation structure has been extensively studied in the field of geom-
etry and applied in different disciplines. Regarding image analysis, the VD arouses a particular interest. In
fact, it is an effective way to describe, manipulate and interpret geometric entities. Among the works based
on the use of the Voronoi graph, we can cite colour image segmentation [9, 15] and texture segmentation [32].
All these works share in common the fact that they apply VD directly on the image itself.

In order to avoid high computational time, several authors [5, 16–18] proposed a new approach based on
VD using the generated clusters of intensity values given in the vertices of the external boundary of Delau-
nay triangulation. They applied this method in order to segment face features. In this approach, the authors
applied VD on a few selected points (≤255) from the 1D image histogram instead of the image itself.

4 Tests and Results
In Figure 1, we give the results of segmenting clay SEM images using themethodmentioned above. In the raw
(B–E), the segmented pores are coloured green, red or white.

For the 12 images, we calculate the percentage of pores existing compared to the whole surface of the
image. We obtained a noteworthy result, described in Figure 2.

An important remark to take into consideration is measurement scale; the measurement from the scale
bar is respected, as the instruments have been calibrated when it was commissioned.

Figure 2 shows the evolution of porosity in terms of firing temperature. By analysing the results, we
can confirm that the sample’s porosity is very important towards the lowest temperatures (800 °C) for the
different pieces elaborated because the sintering phase is not done well at this temperature [24].



1230 | S. Jida et al.: Porosity Estimation Using Image Processing

From Figure 2, the estimation using VD is close enough to the physical analysis. We can explain the
increase in porosity estimation using the imaging method according to the fact of having different types of
pores (cavernous) and also fracture samples. Consequently, the SEM image shows them as pores.

Clustering and thresholding methods as seen in Figure 3 give the furthest estimation from the experi-
mental results we can rely on. This can be explained by the fact that K-mean segments are not connected and
can be scattered very widely. This effect can be reduced by using pixel coordinates as features, an approach
that tends to result in large regions being broken up. The thresholding method gives a binary image with a
pore/non-pore image, whereas in the SEM image a pore can possess different greyscales.

Comparing Figures 2 and 3, we can notice an important increase in porosity with the introduction of
organic matter, as it increases from 13.5% for the support with 0% organic matter to 23.5% with 10% organic
matter at 1000 °C. In parallel, the volume goes from 13.63% for the support with 0% organic matter to 35.94%

Figure 1: Segmentation Results.
(A) Original images; (B) corresponding VD segmentation; (C) corresponding threshold segmentation; (D) corresponding
clustering segmentation; and (E) corresponding watershed segmentation.
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Figure 1 (continued)
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Figure 2: Porosity Estimation-Based VD versus Physical Process for the Sample S0.
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Figure 3: Porosity Estimation-Based VD versus Physical Process for the Sample S10.
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Figure 4: Illustration of Horizontal and Vertical Feret Diameters of a Particle, Fh and Fv, respectively (Wikipedia).
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Figure 5: Pore Size Distributions in Raw Clay.

with 15% organic matter at 1000 °C. At this point, we made sure to keep the porosity as high as possible
despite the high firing temperature by adding organic matter.

For the imaging methods we have tested, VD exploitation seems to give a better estimation. The choice
of segmentation method should not be done randomly but with suited processing. Recall that the main pur-
pose of any segmentationmethod is to have an optimal partition based on a given criterion. This requires the
definition of the criterion as well as a rule for assigning each point to the appropriate class.

As the pores have an undefined geometric shape, we calculate the pore diameter by using the minimal
Feret diameter (Figure 4), which is a measure of an object size along a specified direction. In general, it can
be defined as the distance between the two parallel tangents on opposite sides of the image of a randomly
oriented particle [23].

In Figure 5, we present the pore distribution of the three temperatures in order to see the effect of firing
on the behaviour of the pore.

Analysing the behaviour of the figure, we can notice a decrease in micropore (<2 µm) size as long as
the firing temperature increases. Some of the particles begin to melt and form a new component, glass,
between the others that pull them even closer. A crucial observation is the decrease of pore size from 900 °C,
which is in agreement with the expected trend in refractory clay materials in which new crystalline phases
develop [3, 10, 12]. The decrease in pore size strengthens the results of low porosity towards high temperature
(Figures 2 and 3).

5 Conclusion
In this work, we have presented different imagingmethods for porosity estimation in clay-based bricks along
with physical analysis. The segmentation phase is seen to be crucial for a correct quantitative image analysis
of the microstructure. Classical and direct segmentation methods may lead to an inaccurate result, whereas
the hybrid method can reform the flaws of the classical method. The hybrid method is seen to be more objec-
tive, reliable and economical either in time execution or in physical analysis requirements. An example of the
hybridmethodwehavepresented isVD-based segmentation,which seems to give good results comparedwith
other segmentation techniques for porosity estimation. Fromporosity estimation to pore size distribution, the
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imagingmethod canbeusedwidely to describe clay-basedmaterials, such as correlating the imagingporosity
estimation with some other physical characteristics like mechanical strength and transport properties.
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