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Abstract: In recent internet era, micro-blogging sites produce enormous amount of short textual informa-
tion, which appears in the form of opinions or sentiments of users. Sentiment analysis is a challenging task
in short text, due to use of formal language, misspellings, and shortened forms of words, which leads to high
dimensionality and sparsity. In order to deal with these challenges, this paper proposes a novel, simple, and
yet effective feature selection method, to select frequently distributed features related to each class. In this
paper, the feature selection method is based on class-wise information, to identify the relevant feature related
to each class. We evaluate the proposed feature selection method by comparing with existing feature selec-
tion methods like chi-square ( XZ), entropy, information gain, and mutual information. The performances
are evaluated using classification accuracy obtained from support vector machine, K nearest neighbors, and
random forest classifiers on two publically available datasets viz., Stanford Twitter dataset and Ravikiran
Janardhana dataset. In order to demonstrate the effectiveness of the proposed feature selection method,
we conducted extensive experimentation by selecting different feature sets. The proposed feature selection
method outperforms the existing feature selection methods in terms of classification accuracy on the Stan-
ford Twitter dataset. Similarly, the proposed method performs competently equally in terms of classification
accuracy compared to other feature selection methods in most of the feature subsets on Ravikiran Janardhana
dataset.
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1 Introduction

The popularity of micro-blog applications in the recent decade generates enormous amount of short textual
information. Millions of users make use of micro-blog sites to express their opinion or sentiment related to
a product, topic, or events which take place in day to day life [39]. An opinion may be regarded as state-
ments in which the opinion holder makes specific claim about a topic using certain sentiment [8, 24]. Many
marketing companies use micro-blog textual information to identify sentiments related to the product or an
event [10, 58]. The information retrieved from micro-blogs may involve at least two specific issues: firstly,
use of formal languages, all in electronic word-of-mouth, which may lead to misspellings and use of slang
words. Secondly, the limited characters which may tend to shortened words or sentences making analysis
difficult. The detection and analysis of sentiments in short texts is an attractive topic, for many researchers
and practitioners, to classify text into different polarities or classes.

A sentiment analysis is a process of automatically extracting opinions or emotions from text, especially
in user-generated textual content. Sentiment analysis is considered as a classification task which classi-
fies text into positive, negative, or neutral classes [4, 7, 16, 35, 55]. In order to create an automated system
that performs an effective sentiment analysis, several researchers [23, 32-34, 50] came up with two main
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approaches: semantic orientation [3, 50] and machine learning method [33, 52]. Semantic orientation-based
approach for sentiment analysis encompasses lexicon-based [47] and linguistic methods [46]. It has been
claimed that lexicon-based and linguistic methods do not perform well on sentiment classification, due to
the nature of an opinionated text, which requires more understanding of the text [48]. In addition to lexicon-
based and linguistic methods, machine learning methods have been widely used for sentiment analysis [20].
In literature [6, 14, 18], machine learning-based approaches yield better predictive performance for sentiment
analysis compared to lexicon-based methods. Generally, sentiment analysis based on machine learning algo-
rithms can be performed using five steps viz., preprocessing, feature extraction and selection, representation,
classification or clustering, and evaluation [17, 20]. Sentiment analysis on short texts needs to deal with high
dimensionality of the features, due to low occurrence rate of feature across short texts. Most of the features are
irrelevant and lead to poor performance of the classifier [36]. Therefore, selecting relevant features reduces
the size of the feature space without sacrificing the performance of the sentiment classification.

In sentiment analysis, feature selection is a method to identify a subset of features to achieve various
goals: firstly, to reduce computational cost, secondly, to avoid over fitting, and thirdly, to enhance the classi-
fication accuracy of the model [54]. Feature selection methods can be broadly divided into three categories, as
filter methods, wrapper methods, and embedded methods [40]. The filter method assesses the optimal subset
of features by looking only at the underlying properties of the data. The feature relevance scores are calcu-
lated, and low-scoring features are eliminated. The optimal subsets of features are presented to the classifier
[42]. Wrapper method evaluates these subsets of features by detecting the possible interactions between fea-
tures and learning model, i.e. wrapped around features and learning model to get an optimal subset of feature
[25]. Embedded methods make use of both filter and wrapper method to select the optimal subset of features
which increases the performance of the classifier. The most popular feature selection methods reported in
the literature are chi-square ( )(2), entropy, information gain (IG), and mutual information (MI). Further, the
selected features are used for the subsequent training of the machine learning classifiers.

The conventional feature selection methods consider the distribution of the short texts containing the
feature between the classes. However, they do not take into account the frequency of the features within the
classes. Hence, it is noted that a feature that is characteristic of a class must frequently appear in greater num-
bers in short texts belonging to the class than in other classes. This motivated us to propose a new, simple
yet effective feature selection method. The proposed feature selection method considers class-wise features
by computing the relevant features from each class. To determine the efficacy of proposed feature selection
method, the proposed feature selection method is compared with conventional feature selection methods
such as chi-square (y?) [45], entropy [44], IG [57], and MI [5]. The proposed method is evaluated using classi-
fication accuracy obtained from SVM, KNN, and RF classifiers on two publically available datasets: Stanford
Twitter dataset [12] and Ravikiran Janardhana dataset [37].

The remainder of this paper is organized as follows: Section 2 reviews the related work on feature selec-
tion methods for sentiment analysis. Section 3 describes methodologies and proposed work with illustration.
Section 4 contains experimental results and discussion. Section 5 concludes along with future work.

2 Related Work

Recently, micro-blogs data like tweets, Facebook posts, and reviews are growing at an unprecedented rate
[15, 28]. The vast amount of user-generated short textual information has made micro-blogs the largest data
source of public opinion. In micro-blogs, users make spelling mistakes and use slang words while expressing
their views or opinions. Moreover, these short texts contain enormous amount of noisy data like url, punc-
tuation, and special symbols that need to be preprocessed. The major challenges of sentiment analysis on
micro-blogs are limited text, slang terms, high dimensionality, and sparsity. The curse of dimensionality and
sparsity are a major concern in sentiment analysis where noisy, irrelevant features are present in feature
space. In order to deal with these challenges, many researchers [13, 21, 22, 26, 27, 31, 43, 49, 51] explored the
various machine learning approaches and concentrated their studies to the curse of dimensionality and used
feature selection methods to reduce high dimensional feature space. Zhang et al. [56] proposed a feature
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selection method by adopting an attractive hidden topic analysis and entropy-based feature ranking. The
method uses latent semantic analysis to find the latent structure of “topics” or “concepts” in a text corpus.
The entropy-based feature selection method is used to rank the features related to the topic. The maximum
entropy classifiers are used to evaluate the performance while curtailing the feature space significantly.

Zheng et al. [59] explored the effects of feature selection on sentiment analysis on Chinese online reviews.
The N-char-grams and N-POS-grams are used to select potential sentimental features. The feature subsets
are selected by using improved document frequency method, and feature weights are calculated by adopting
Boolean weighting method. The chi-square test is carried out to test the significance of experimental results.
The result suggests that low order N-char-grams can achieve a better performance than higher order N-char-
grams when taking N-char-grams as features. Omar et al. [30] conducted a series of experimental comparisons
on various feature selection methods for Arabic sentiment classification. The performance of various feature
selection methods like IG, principal components analysis, Relief-F, Gini index, uncertainty, and chi-square
feature selection methods were studied. The naive Bayes (NB), support vector machine (SVM) and K nearest
neighbor (KNN) classifiers were used to classify Arabic documents into different polarities. The experimental
result shows that the use of feature selection method increases the performance of the classifier. The SVM
classifier performed better compared to other classifiers for all feature selection methods.

Various experimental comparisons were conducted on prominent feature extraction for English review
analysis in Agarwal and Mittal [2]. The features were extracted using unigram, bi-gram, bi-tagged feature,
and dependency parsing tree-based features. Further, IG and minimum redundancy maximum relevancy fea-
ture selection methods were used to eliminate the noisy and irrelevant features from the feature vector. SVM
and multinomial NB classifiers were used to classify the review document into positive or negative class.
The result showed that the multinomial NB performs better than SVM in terms of accuracy and execution
time for binary sentiment classification. Wu et al. [53] proposed an improved text feature selection, based on
text word frequency information. The method modifies the expected cross entropy algorithm using the fol-
lowing aspects: the frequency distribution within category and the frequency distribution among different
categories. The experimental result shows that feature selection method based on occurrence of terms within
different classes is essential in reducing feature space and in improving the performance of the classifier.

In literature, many researchers developed various feature selection methods for sentiment analysis. The
existing feature selection methods consider the distribution of the short texts containing the feature between
the classes. However, they do not take into account the frequency of the features within the classes. Hence,
it is noted that a feature which is characteristic of a class must frequently appear in greater numbers in short
texts belonging to the class than in other classes. The proposed method selects the frequently distributed fea-
tures related to each class. This feature selection method is based on class-wise information to identify the
relevant feature related to each class. The proposed feature selection method is evaluated using classification
accuracy on three classifiers: SVM, KNN, and random forest (RF) classifiers.

3 Proposed Methodology

This section presents a detailed description of the methodology used for sentiment classification. Section 3.1
describes various preprocessing techniques used to eliminate less informative data from the dataset.
Section 3.2 briefs text representation used in the proposed method. Section 3.3 gives a detailed description
of the proposed feature selection method with an illustration. Finally, Section 3.4 briefs the classifiers used
to classify sentiments into positive, negative, and neutral classes.

3.1 Preprocessing

Preprocessing involves the elimination of trivial or less informative data, which does not contribute to the
sentiment classification. We used eight preprocessing techniques to process tweets, which are the following:
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In tweets, user posted a URL along with text to provide supporting information about the text such as
“http://bit.ly/IMXUM”, which does not contribute to sentiment analysis. Hence, URL is replaced with white
space.

Usually, tweets consists of username (@), which implies or indicates the user. This username does not
contribute much to the sentiment present in the tweets. Hence, we replace username with white space.

Hashtag (#) is associated with the particular topic and opinion expressed by the user in the tweets. We
removed only the symbol “#”, retaining the contents.

Negations play a vital role in sentiment classification; the co-occurrence of the negative word e.g. “not”,
“n’t”, etc., changes the orientation of text into different polarity. Hence, negation handling is used to expand
short terms such as “don’t”, “can’t”, “n’t”, etc., terms to “do not”, “cannot”, “not”, etc.

Usually, tweets contain exaggeration of terms such as “looovvvveee”, and it is necessary to deal with
these words to make them more formal. Hence, characters normalization is applied to replace consecutive
characters, such as a character that appears more than three times to a single character.

Punctuation symbols such as “,”, “’ 7, “$”, “?”, “I” etc. do not contribute to the sentiment of tweets
and are thus removed from the tweets. Finally, stop-words are eliminated and stemming is applied on each

tweet.

3.2 Representation

The preprocessed short texts are represented in machine understandable forms. The preprocessed short texts
are generally represented as vectors of terms using a bag of words [41] and n-gram (unigram and bigram)
[38]. The work of [4] suggests that unigram with term frequency (tf) performs well on sentiment analysis for
micro-blogging data. Hence, we have used unigram representation model, which is similar to Bag of Words
model. Each word is considered as a term, and term frequency schema is used to calculate the frequency of
terms appearing in each short text. The term weights are calculated by term frequency (tf;,) schema, i.e. tf;, =
number of times term t; appeared in a short text, where ¢; represent the terms (features) present in the short
text.

3.3 The Proposed Features Selection Method

In this section, we propose a novel feature selection method based on class-wise information. The class-wise
feature selection method comprises three steps: firstly, the class-related short texts are grouped; secondly,
the sum of the frequency of each feature corresponding to class are calculated. The obtained weights of fea-
ture values are sorted in descending order, and low weighted features are eliminated by fixing the threshold
value. Here, threshold value is fixed empirically which indicates the number of features selected from each
class. These processes are repeated for each class. Finally, the selected subsets of features from each class are
combined to get overall features. These features are used for the subsequent training of the classifiers.

Let there be j number of classes and each class contains k number of short texts. The short texts are
described by N dimensional term frequency vector (feature vector). The term document matrix, say S of
size (jk  N), is constructed such that each row represents a short text related to class C; and each column
represents a feature F, say F = ff1, f>,..., fnGQ.

Firstly, we compute the sum of the frequency of each feature f; corresponding to class C;, i.e.

K
ClassTermFrequency(C;, f;) = Frequency(Sst, fi) 1)
st=1

where Frequency(Ss, f;) is the frequency of occurrence of the features f; in short text Si; and k is the number
of short texts in the class C;.

The size of the resultant ClassTermFrequency(C;, f;) matrix willbe 1 N for each class. Further, we sort
the values of ClassTermFrequency in descending order to get the most frequent occurrences of terms within
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the classes. A subset N’ features are selected by fixing threshold values. Here, threshold value is fixed based
on empirical evaluation. The selected features are F'; = ff1, f>, ..., fyg, where N’ < N and F’; are features
corresponding to a class. Similarly, we repeat the procedure for each class. Further, we apply union function
to feature sets obtained from each class i.e.

L L
FF=F1 F,.. Fj @

The obtained F’ features from the above computation are used for the subsequent training of the
classifiers.

3.4 Illustration

In this section, a detailed illustration of individual steps involved in the proposed method is explained on
the term document matrix S. Initially, short texts are preprocessed using various preprocessing techniques
and represented using unigram representation model with term frequency (tf;,) schema. Table 1 presents an
example of term document matrix say S for k = 6, j = 2, t = 15. Here, k denotes the number of short texts, j
denotes the number of classes, and t denotes the number of terms as features.

In the first step, the class-related short texts are grouped to compute the relevant features which con-
tribute towards classes. The short texts Sy, S,, and S3 represent the term document matrix related to class Cj.
Similarly, short texts Sy, S5, and S¢ present the term document matrix related to class C-.

In the next step, ClassTermFrequency is computed for each class.

The ClassTermFrequency gives the sum of the frequency of features appearing in each class. Tables 2
and 3 give the results of the computation. The obtained matrix will be in the form 1 N, which consists of N
dimensional feature vector.

Further, we arrange the computed ClassTermFrequency in descending order based on the weight of fea-
tures associated with the classes. Tables 4 and 5 show the results of the computations. The resultant matrix
gives the highly relevant features that contribute to the classes.

In the next step, we select the threshold value for N’ for each class. The threshold value is arrived at
through multiple iterations of considering different values. We considered different values and arrived at
the threshold value N’. N’ = 5 is observed as the best value for the given example, where N’ is less than N.

Table 1: Term Document Matrix (S).

Short text t1 [ 23 t3 ty ts te ty ts tg tio ti1 ti12 t13 tig tis

1 2 3 4 0 1 2 3 4 2 1 3 4 1 2 1 Cq
2 1 4 2 1 0 2 2 1 0 1 0 0 2 1 2

3 1 1 0 2 3 3 1 0 1 0 0 0 0 0 0

4 4 0 1 2 3 2 1 0 0 0 1 0 0 1 0 (&)
5 2 3 1 0 2 3 4 1 2 0 0 0 1 0 1

6 1 2 3 1 4 1 0 1 1 0 0 1 1 0 1

Table 2: Computation of ClassTermFrequency for Class 1.

Class t t; ts ty ts ts t; ts to tio tu tiz ti3 ty tss
1 4 8 6 3 4 7 6 5 3 2 3 4 3 3 3
Table 3: Computation of ClassTermFrequency for Class 2.

Class ty t; t3 ty ts te ty tg ty tio t11 t1; ti3 tiy tis

2 7 5 5 3 9 6 5 2 3 0 1 1 2 1 2
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Table 4: Arranging ClassTermFrequency in Descending Order in Class 1.

Class t; ts t3 t7 ts ty ts t; ty ty [ £%1 ti3 tiy tis tio

1 8 7 6 6 5 4 4 4 3 3 3 3 3 3 2

Table 5: Arranging ClassTermFrequency in Descending Order in Class 2.

Class ts t te t; t3 ty ty ty ts ti3 t1s t11 tio tiy tio

2 9 7 6 5 5 5 3 3 2 2 2 1 1 1 0

Table 6: Selecting N’ = 5 for Class 1.

Class t, te t3 t; tg

1 8 7 6 6 5

Table 7: Selecting N’ = 5 for Class 2.

Class ts t; t5 t, t3

2 9 7 6 5 5

The resultant matrix will be the relevant feature vector for each class. Tables 6 and 7 give the N’ feature
vector where N’ < N. The selected features for class 1 are F/y = ft,, t¢, t3, t7, tsg and for class 2 are
FH = fts, t1, tg, ta, t3g.

Further, F’ is composed of the union of the first N’ selected feature vector for each classi.e. ' = F’;  F’5.
The selected features are F’ = ftq, t., t3, ts, tg, t7, tsg.

Finally, the selected features F’ are used for the subsequent training of the classifiers.

3.5 Classification

In order to evaluate the performance of the proposed feature selection method, we used three classifiers:
SVM, KNN, and RF. SVM is a widely used classifier in sentiment classification tasks. It can effectively conduct
classification tasks in higher-dimensional feature space [29]. On the other hand, the objective of KNN clas-
sifier is to classify based on majority vote of its neighbors, with the object being assigned to the class most
common among its KNN. Here “K” indicates the number of neighbors taken into account in determining the
class [1]. RF operates by constructing a multitude of decision trees at training time and outputting the class
based on the decision of individual trees [9].

4 Experimental Evaluation

In this section, we present experimentation of the proposed method, and results are compared with existing
feature selection methods.

4.1 Dataset Description

The experimentation was conducted on two publicly available datasets: Stanford Twitter Sentiment test
dataset (Dataset 1) [12] and Ravikiran Janardhana dataset (Dataset 2) [37]. Dataset 1 contains 498 tweets that
come with labels of 182 positive, 177 negative, and 139 neutral tweets. The total number of features obtained
after preprocessing (as explained in Section 3.1) is 1586 features. Dataset 2 consists of 9666 positive, 9667
negative, and 2271 neutral tweets, which are combinations of [19] and [11] publicly available twitter message
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datasets. Here, we randomly choose 6000 tweets from Dataset 2 as overall data, where equal proportions
of positive, negative, and neutral tweets are taken for experimentation. We obtained 10,349 features after
preprocessing (as explained in Section 3.1) technique.

4.2 Experimental Setup

In this section, we compared the performance of the proposed feature selection method with chi-square (x?),
entropy, IG, and MI feature selection methods. The experimentation is conducted under three splits of 50:50,
60:40, and 70:30 proportions of training and testing data. In the experiments, 10-fold cross-validation method
is utilized. The evaluation of the feature selection methods is based on the classification accuracy obtained
from SVM, KNN, and RF classifiers. The experiment was conducted using statistical computing toolkit R lan-
guage version R-3.1.3. In this experiment, we have used linear kernel SVM classifier, which is considered as the
basic form of SVM to classify the text corpus to different polarities or classes. In KNN, K value is fixed empir-
ically as 3, which gives higher accuracy than any other values. RF produces multi-altitude decision trees at
input phase, and the output is generated in the form of multiple decision trees. Here, the number of trees
(ntree = 100) is considered empirically, which gives higher accuracy as compared to other values.

4.2.1 Dataset 1 (Stanford Twitter dataset — 498 tweets)

Before performing the classification task, the short texts are preprocessed. The total number of features
obtained after preprocessing was 1586 distinct features. The proposed feature selection method was applied
by selecting threshold values as 100, 300, and 500 related to each class based on the empirical evaluation. The
total number of features obtained for 100 is 220 features, for 300 is 678 features, and for 500 is 1154 features.
Further increase in the threshold values achieved the original features i.e. 1586 features. Similarly, decrease
in the threshold value led to a very small feature set which would not yield good results. Hence, we restricted
the threshold values to be between 100 and 500. The obtained feature subsets from each threshold values are
taken for comparison with chi-square (x?), entropy, IG, and MI feature selection methods. The experimental
results are presented in Table 8.

In the first set of experiments (50:50 split), the classification accuracy obtained for the original 1586
features using SVM is 77.60%, 78.40% using KNN and 77.20% using RF. Table 8 presents the classification
accuracy using the feature selection methods y2, entropy, IG, and MI and proposed feature selection method
using SVM, KNN, and RF classifier on varying feature subsets. From the observations, it is noted that the RF
classifier achieves maximum accuracy of 81.60% for 678 features compared to the other two classifiers.

In the second set of experiments (60:40 split), the proposed feature selection method using RF classi-
fier exhibits the same classification accuracy of 83.50% for 220 and 678 features. However, in Table 8 the
classification accuracy of RF classifier on the proposed feature selection method increases by 9.5%, 5.17%,
3.5%, and 2.84% for 220 features compared to )(2, entropy, IG, and MI, respectively. On the other hand, for the
classification accuracy of the proposed feature selection method using RF classifier for 678 features, there is
an increase of 9%, 4.84%, 6.5%, and 5.5% as compared to y2, entropy, IG, and MI, respectively. Hence, RF
classifier performs better for the second set of experimentation.

In the third set of experiments (70:30 split), the classification accuracy obtained for original features
using SVM is 81.45%, 85.00% using KNN, and 83.50% using RF. From Table 8, we can observe that the pro-
posed feature selection method achieves a maximum classification accuracy of 86.09% and 86.75% for 1154
features using SVM and KNN classifiers, respectively. The proposed feature selection method achieves better
classification accuracy of 90% for 220 features using RF classifier compared to the other classifiers.

4.2.2 Dataset 2 (Ravikiran Janardhana dataset)

Initially, short texts were preprocessed using various preprocessing techniques and represented using the
unigram model. The total number of features obtained after preprocessing are 10,349 distinct features. We
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applied the proposed feature selection method by selecting the threshold values of 3500, 4000, 4500, 5000,
and 5500 related to each class based on empirical evaluation. The total number of features obtained was
7200, 7922, 8649, 9359, and 10,084 features, respectively, for each of the respective threshold values. Further,
by increasing the threshold values, we achieved the original features i.e. 10,349 features. Hence, we restricted
the threshold value to 5500. Similarly, by decreasing the threshold value, we achieved very few feature sets
which would not yield good results. Hence, we restricted the threshold value between 3500 and 5500. The
obtained feature sets were evaluated using chi-square ( )(2), entropy, IG, and MI feature selection methods.
The experimental results are tabulated in Table 9.

In the first set of experiments (50:50 split), the classification accuracy obtained for the original features
using SVM is 74.30%, 62.90% using KNN, and 78.70% using RF. Table 9 presents the classification accuracy
using SVM, KNN, and RF classifiers, respectively. From Table 9, it can be observed that the proposed feature
selection method achieves 68.33% classification accuracy for 7200 features using KNN classifiers. On the
other hand, RF classifier achieves maximum accuracy of 79.46% for 10,084 features with increase of 5.6%,
0.98%, 1.09%, 0.31% for chi-square ( XZ), entropy, IG, and MI feature selection methods, respectively. From
the observations, it is noted that the RF classifier achieves better results when compared to the other two
classifiers.

In the second set of experiments (60:40 split), the classification accuracy obtained for the original fea-
tures using SVM is 74.70%, 65.00% using KNN, and 84.36% using RF. From Table 9, it is evident that the IG
feature selection method achieves a maximum accuracy for 7200 features. However, from Table 9 we can
observe that the proposed feature selection method achieves 84.69% for 10,084 features with an increase of
6.89% for XZ, 0.47% for entropy, 0.19% for IG, and 0.14% for MI features selection method using RF classifier.

In the third set of experiments (70:30 split), Table 9 depicts that the IG feature selection method gives
better result for 7200 features using SVM and RF classifier. However, the proposed feature selection method
achieves a classification accuracy of 70.51% for 9359 features using KNN classifier with increase in 5.11%,
0.21%, 2.85%, and 2.92% for x?, entropy, IG, and MI features selection methods, respectively. The proposed
feature selection method performs competently similarly in terms of classification accuracy to IG and MI
feature selection methods in most of the feature subsets using RF classifier.

4.3 Discussion

It is evident from Table 8 that the proposed feature selection method performs better than the chi-square y?,
entropy, IG, and MI feature selection methods using SVM, KNN, and RF classifiers on the Stanford Twitter
Sentiment dataset. From Table 8, we can infer that, in terms of classification accuracy, RF performed bet-
ter compared to the other classifiers. On the other hand, the proposed feature selection method was also
experimented on in the Ravikiran Janardhana dataset. The proposed feature selection method considers the
frequency of the features distributed within the class rather than the frequency distribution between the
classes. The y? score was calculated based on the term independent from the class. Thus, the proposed feature
selection method performs better than the chi-square feature selection, on both datasets. Entropy measures
the uncertainty of a distribution, which expresses the average amount of information contained in a text. In
the proposed feature selection method, features corresponding to classes are considered to select the most
relevant feature. Thus, the proposed feature selection method performs better using entropy feature selection
method on both datasets.

On the other hand, the IG and MI scores are calculated based on the probabilities of terms or features
occurrences in the classes. In IG, the scores are computed based on conditional probability of a class for
a given term and entropy. IG considers presence or absence of the term or feature in a given input text.
Dataset 1 consists of fewer numbers of presence or absence of features compared to Dataset 2. However, the
proposed method purely depends on the frequency of the features distributed within the classes. Therefore,
the proposed feature selection method on Dataset 2 performs reasonably good compared to IG in most of
the feature subsets than Dataset 1. Similarly, MI is strongly influenced by the marginal probabilities of the
features where it measures the dependencies between random terms or features. It can be observed from
Table 9 that Dataset 2 consists of higher number of features than Dataset 1. The proposed method depends on
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the frequency of features to select discriminative features rather than probabilities of two random features.
Therefore, the proposed feature selection method performs competitively better compared to MI in most of
the feature subsets on Dataset 2. The overall results show that the proposed feature selection method out-
performs other feature selection methods in terms of classification accuracy on Dataset 1. On the other hand,
the proposed feature selection method on Dataset 2 significantly outperforms chi-square and entropy feature
selection methods. In case of IG and MI feature selection methods, competitive result can be found in most
of the feature subsets in terms of classification accuracy.

5 Conclusion and Future Work

Sentiment analysis on short text is a recent and active area of research. In short text, there are many chal-
lenges that need to be addressed i.e. use of formal language, misspellings, and shortened form of words,
which leads to high dimensionality and sparsity. To deal with these challenges, in this paper, we proposed a
novel, simple, and yet effective feature selection method based on frequently distributed features related to
each class. The experimental results of the proposed feature selection method are compared with chi-square
( XZ), entropy, IG, and MI feature selection methods using SVM, KNN, and RF classifiers, on two publically
available datasets. The experimental result shows that the proposed feature selection method outperforms
other feature selection methods in terms of classification accuracy on Dataset 1. On the other hand, the pro-
posed feature selection method performs competently similarly in terms of classification accuracy to IG and
MI feature selection methods in most of the feature subsets on Dataset 2.

In future, we would like to amalgamate (a) the statistical methods for calculating threshold values and (b)
the n-gram representation (bigrams and trigrams) on the proposed feature selection using different classifiers
which could further enhance the classification performance.
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