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Abstract: The quantification of the fuzzy fault tree analysis (FFTA) is based on fuzzy arithmetic operations. It
is well known that theweakest t-norm (Tw)-based fuzzy arithmetic operations have some advantages. The Tw-
based fuzzy arithmetic operations provide fuzzy results with less fuzziness and preserve the shape of fuzzy
numbers. The purpose of this study is to develop a Tw-based fuzzy fault tree analysis (TBFFTA) to assess sys-
tem reliability when only qualitative data such as expert opinions or decisions are available and described in
linguistic terms. The developed TBFFTA applies Tw-based fuzzy arithmetic operations to evaluate the lower
bound, best estimate, and upper bound top event probability of a system fault tree, where occurrence pos-
sibilities of basic events are characterized by triangular fuzzy membership functions. To demonstrate the
applicability and feasibility of TBFFTA, a case study has been performed. The computed results have been
compared with results analyzed by existing fuzzy approach. The comparative study concludes that TBFFTA
reduces fuzzy spreads (uncertainty interval) and provides more exact fuzzy results.

Keywords: Fuzzy failure possibility, fault tree analysis, weakest t-norm, fuzzy number.

1 Introduction
Reliability and safety issues are two key aspects of complex engineering systems. Many researchers have
developed various methods to analyze system reliability. Fault tree analysis (FTA) is one of those developed
methods andwidely used techniques to analyze the risks related to system safety and reliability. FTA refers to
the analysis of the system logic model provided by the fault tree. In FTA, the occurrence probability of the top
event depends upon the occurrence probabilities of basic events [44]. FTA can be either qualitative or quan-
titative or both. Qualitative analysis does not require the assignment of probability values to basic events
defined on the system logic. An important aspect of qualitative analysis is to determine the minimal cut sets
(MCSs) for the top event usingBoolean logic. AnMCS is the smallest set of primary failures thatmay cause sys-
tem failure. After obtainingMCSs, quantitative FTA can be performed to estimate the top event probability by
using the likelihood occurrence possibilities of basic events and Boolean algebras [44]. In quantitative sense,
system reliability is a complement value of top event occurrence probability. To evaluate system reliability,
the exact failure data of system components are essential. Sometimes, it is not possible to extract the exact
failure data of components for every engineering system and rough data can be utilized for system reliability
analysis, which could lead to uncertainty [1]. In the probability evaluation of a basic event, there may arise
two types of uncertainties, i.e. alleatory and epistemic uncertainties [1, 8, 14]. Alleatory uncertainty is derived
due to data randomness, and these uncertainties can be represented by probability distributions. Epistemic
uncertainty is derived due to lack of knowledge, imprecise or incomplete information. To incorporate epis-
temic uncertainty, fuzzy approach has been successfully employed [5, 9, 15, 19, 21, 22, 48]. In literature,
conventional FTA has been effectively integrated with the fuzzy set theory. A number of researchers have
developed fuzzy fault tree analysis (FFTA) [13, 42] and its extensions [23, 24] for analyzing system reliability
under an uncertain environment.
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In FFTA, when probability distributions of the basic events are unknown, the reliability characteristics
of basic events have been evaluated using qualitative data such as expert opinions or judgements described
in natural languages/linguistic terms [7, 29]. These linguistic terms are quantified by using the membership
functions of fuzzy numbers and represent those expert judgments mathematically [3, 27]. The reliability of
various engineering systems has also been analyzed using FFTA. Tanaka et al. [42] used the fuzzy set theory
in FTA to evaluate the top event fuzzy probability, where fuzzy probabilities of basic events were represented
as trapezoidal fuzzy numbers. Yuhua and Datao [49] presented FFTA to estimate the failure probability of oil
and gas transmission pipelines. FFTA has also been applied to assess the failures of a building construction
[31] and a bridge construction [32]. Ferdous et al. [6] proposed a computer-aided FFTAmethod. Tyagi et al. [43]
applied FFTA in reliability analysis of an electric power transformer. Recently, the failure probability of fire
and explosion in crude oil tankshas been evaluatedusingFFTA [45]. Rajakarunakaran et al. [38] applied FFTA
for risk evaluation of an LPG refuelling station. FFTA has been applied to analyze the reliabilities of safety
instrumented systems [40], a shipping accident [2], a chlor-alkali industry [39], a spreadmooring system [29],
and nuclear power plant safety systems [33, 34] and also to evaluate risk in petrochemical industries [25, 41].
Recently, Purba et al. [36, 37] proposed a fuzzy probability based fault tree analysis (FPFTA) approach to prop-
agate and to quantify the overall epistemic uncertainties by using a simple fuzzy multiplication rule and a
fuzzy complement rule, where likelihood occurrences probabilities of basic events are represented by trian-
gular fuzzy numbers (TFNs). In FPFTA, the obtained occurrence possibilities of a top event are approximated
TFNs.

The objective of this study is to quantify epistemic uncertainty in FFTA and to obtain exact results with
less uncertainty. It is well known that the Tw-based fuzzy arithmetic operations preserve the shape of fuzzy
numbers, effectively reduce uncertainty, and provide more exact results [10–12, 18, 20, 26]. Therefore, in this
paper, a TBFFTA approach is developed to propagate and quantify epistemic uncertainties in a more exact
way. To demonstrate the applicability and feasibility of the proposed TBFFTA, a case study has been per-
formed and obtained results are then compared to the results generated by the existing approaches. The
rest of the paper is organized as follows. In Section 2, the concepts and definitions implemented in the pro-
posed TBFFTA are described. Section 3 describes the quantification processes of the proposed methodology
in details. An illustrative case study with result discussions and comparison is given in Section 4 to show the
effectiveness and applicability of the proposed approach. Finally, conclusions and further studies are given
in Section 5.

2 Some Basic Concepts of Fuzzy Set Theory
This section provides some basic definitions including fuzzy sets, TFN, linguistic term, and fuzzy possibility.
It also presents Tw-based fuzzy arithmetic operations on TFNs.

2.1 Definitions

2.1.1 Fuzzy Sets

Let X be the universal set. Then a fuzzy set Ã defined on X is expressed as a set of ordered pairs Ã ={︀⟨︀
x, µÃ(x)

⟩︀
: x ∈ X

}︀
, where µÃ : X → [0, 1] is a membership function. The value µÃ(x) represents the

degree to which x belongs to Ã.
A fuzzy set Ã defined on R (real line) is called a fuzzy number [4] if it possesses at least the following

conditions:
(i) Ã must be a normal fuzzy set, i.e. there exists x0 ∈ R such that µÃ(x0) = 1.
(ii) Ã must be a convex fuzzy set, i.e. for every x1, x2 ∈ R and λ ∈ [0, 1],

µÃ
(︀
λx1 + (1 − λx2)

)︀
≥ min

(︀
µÃ(x1), µÃ(x2)

)︀
.

(iii) The support S(Ã) of Ã must be bounded, where S(Ã) =
{︀
x ∈ X : µÃ(x) > 0

}︀
.
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A fuzzy number Ã with the following membership function µÃ is called LR-type fuzzy number [4, 17].

µÃ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
L

(︁m − x
α

)︁
, m − α ≤ x ≤ m,

R
(︂
x − m
β

)︂
, m ≤ x ≤ m + β,

0, otherwise

where m ∈ R is the mean value and α, β > 0 are the left and right spreads of Ã, respectively. The func-
tions L and R are non-increasing and continuous and defined from [0, 1] to [0, 1], satisfying L(0) = R(0) = 1,
L(1) = R(1) = 0. An LR-type fuzzy number Ã is denoted by Ã = (m, α, β)LR.

An LR-type fuzzy number is called TFN if L(x) = R(x) = max(0, 1 − x). It is denoted by Ã = (m, α, β),
and its membership function µÃ is defined in (1).

µÃ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x − (m − α)
α , m − α < x ≤ m,

(m + β) − x
β , m < x ≤ m + β,

0, otherwise

(1)

If both left and right spreads are equal, i.e. α = β, then TFN is called a symmetric TFN and is denoted by
(m, α).

2.1.2 Triangular Norm

A triangular norm (t-norm) T is a binary function defined on [0, 1], i.e. T : [0, 1]2 → [0, 1], such that it
is associative, commutative, non-decreasing, and T(x, 1) = x for each x ∈ [0, 1]. Mathematically, the most
important triangular norms [4] are as follows:

Algebraic product : TP(x, y) = xy

Standard intersection : TM(x, y) = min(x, y)

Bounded difference : TL(x, y) = max(0, x + y − 1)

Weakest t-norm (Tw) : TW (x, y) =

⎧⎪⎪⎨⎪⎪⎩
x, if y = 1,

y, if x = 1,

0, otherwise.

(2)

Thepresent research applies Tw due to its shape-preserving and fuzziness-reducing characteristicswithin
uncertain environment [10–12, 18, 20, 26].

2.1.3 Linguistic Terms and Fuzzy Failure Possibilities

The safety and reliability of a system can be evaluated by using the quantitative historical failure data of its
components. If quantitative failure data are improper or become inadequate, then only qualitative data such
as expert opinions, which are described in linguistic terms, can be used to assess safety and reliability of
the system. Seven qualitative linguistic terms have been defined based on the collected component failure
data from nuclear power plant operating experiences [33, 34, 36]. These seven linguistic terms are shown in
Table 3. Fuzzy numbers are used to represent linguistic terms quantitatively. Any shape of membership func-
tion of the fuzzy number could be applied to represent the fuzzy failure possibilities for system reliability
analysis but should be modeled based on the nature of the problem at hand. Meanwhile, trapezoidal and
triangular fuzzy numbers have been confirmed to be a sound practical alternative to reflect uncertainties and
fuzziness of human justifications [7].
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2.2 The Tw-based Arithmetic Operations on Triangular Fuzzy Numbers

The Tw-based fuzzy arithmetic operations have some obvious advantages: the calculation is drastically
simplified and obtained results are more exact with less uncertainty. The Tw-based addition and multi-
plication preserve the shape of fuzzy numbers, in particular, they preserve the triangular fuzzy numbers
[10–12, 18, 20, 26].

Let Ã = (a, αA , βA) and B̃ = (b, αB , βB) be any two TFNs. The five main Tw-based fuzzy arithmetic
operations on TFNs Ã and B̃ are summarized as follows:

Addition : Ã ⊕ B̃ = (a, αA , βA) ⊕ (b, αB , βB) =
(︀
a + b, max (αA , αB), max (βA , βB)

)︀
(3)

Subtraction : Ã ⊖ B̃ = (a, αA , βA) ⊖ (b, αB , βB) =
(︀
a − b, max (αA , βB), max (βA , αB)

)︀
(4)

Multiplication : Ã ⊗ B̃ = (a, αA , βA) ⊗ (b, αB , βB)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︀
ab, max (αAb, αBa), max (βAb, βBa)

)︀
, if a, b > 0(︀

ab, max (−βAb,−βBa), max (−αAb,−αBa)
)︀
, if a, b < 0(︀

ab, max (αAb,−βBa), max (βAb,−αBa)
)︀
, if a < 0, b > 0(︀

ab, max (−βAb, αBa), max (−αAb, βBa)
)︀
, if a > 0, b < 0

(0,−βAb,−αAb), if a = 0, b < 0

(0, 0, 0) if a = 0, b = 0

(5)

Scalar multiplication : λÃ = (λa, λαA , λβA) where λ ∈ R, λ > 0 (6)

Compliment : 1 ⊖ Ã = (1 − a, βA , αA) (7)

3 The Proposed TBFFTA
The main idea behind TBFFTA is to use the fuzzy representation of the available occurrence possibilities of
basic events to quantify the lower bound, best estimate, and upper bound top event failure probability.

3.1 Process of Defining Lower Bound, Best Estimate, and Upper Bound Fuzzy
Possibilities for Basic Events

The qualitative failure data of basic events are available as linguistic terms. These linguistic terms can be
quantified by using the membership functions of fuzzy numbers. After that, the fuzzy possibilities of basic
events can be obtained in the prescribed format. There are different methods available to obtain fuzzy pos-
sibilities such as expert knowledge elicitation or 3σσ expression [28]. In this paper, the triangular form of
a fuzzy number is used to represent the occurrence possibilities of the basic events. Also expert knowledge
elicitation method is used to obtain the fuzzy possibilities of basic events.

3.1.1 Evaluation of Expert Opinions and Fuzzification

The objective of this subsection is to obtain a set of qualitative data representing the occurrence possibil-
ities of basic events. For this, a set of m experts {E1, E2, ...Em} is provided to make their decisions about
the occurrence possibilities of n basic events {b1, b2, . . . , bn} from the fault tree. First, the experts will sub-
jectively evaluate the failure possibility of the components and then make decisions about different basic
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events based on their expertise, working experience, and knowledge about the system. As experts are human
beings, different expertsmay have different opinions about the components/system. In a real-world scenario,
the opinion of an expert with higher experience and expertise should be given higher priority. To facilitate
this, a weighting factor can be used to define the relative quality of the expert opinions. For complex systems,
it is not possible for the experts to provide the exact numerical values for the failure possibility of components;
instead, they provide their opinions as linguistic terms. For instance, “failure possibility of a component” can
be considered as a linguistic variable consisting of linguistic terms like very low, low, reasonable low, moder-
ate, reasonable high, high, very high. Once an expert gives his/her opinion about the occurrence possibility of
an event as linguistic term, then this opinion can be mapped to corresponding quantitative data in the form
of a membership function of fuzzy number.

3.1.2 Aggregation of Experts Opinions to Obtain Best Estimate, Lower Bound, and Upper Bound Fuzzy
Possibilities of Basic Events

As different experts may have different opinions about the same basic event as per his/her experience and
ability in the relevant field, keeping in mind the end goal to achieve agreement among experts’ conflicted
views, the fuzzy numbers assigned by different experts should be aggregated to a single one. In this subsec-
tion, a consistency aggregationmethod [16, 45, 46] has been used for aggregation to evaluate a best estimate,
a lower bound, and an upper bound fuzzy possibility for each basic event.

Best estimate fuzzy possibility evaluations of basic events:
The best estimate fuzzy possibilities of all basic events can be evaluated in the following steps:

Step 1. Similarity measures
The similarity s(Ai , Aj) between the opinionsAi andAj of expertsEi andEj, respectively, canbe calculated

as:

s(Ai , Aj) =

{︃
EVi/EVj , EVi ≤ EVj

EVj/EVi , EVj ≤ EVi
, (8)

where s(Ai , Aj) ∈ [0, 1] is the similarity measure function, Ai and Aj are two standard fuzzy numbers, and
EV i and EV j represent the expectancy evaluation for Ai and Aj. The EV of a TFN Ã = (a, αA , βA) is defined
as follows.

EV(Ã) = a +
βA − αA

4 (9)

If there are m experts, then a matrix known as similarity matrix (SM) can be obtained in the following
form:

SM =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 s12 s13 · · · s1m

s21 1 s23 · · · s2m
...

...
...

. . .
...

sm1 sm2 sm3 sm4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (10)

where sij = s(Ai , Aj). if i = j then sij = 1.

Step 2. Average agreement degree
The average agreement degree AAD(Ei) for each of the experts is obtained as follows:

AAD(Ei) =
1

m − 1

m∑︁
j=1
j ̸=i

sij , i = 1, 2, . . . ,m (11)
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Step 3. Relative agreement degree
The relative agreement degree RAD(Ei) for all experts is obtained as follows:

RAD(Ei) =
AAD(Ei)∑︀m
i=1 AAD(Ei)

, i = 1, 2, . . . ,m (12)

Step 4. Weighting factor calculation
Based on professional positions, years of working experience, and educational qualifications, weighting

scores for all experts are defined in Table 4. As a result, when we select m experts, each of them may have
a different weighting score. For example, if we choose a professor with a PhD degree and 20 years of work
experience, then his/her weighting score would be 15 (5 + 5 + 5 = 15). So the weighting factor for each of
the experts is calculated as follows:

WF(Ei) =
WS(Ei)∑︀m
i=1 WS(Ei)

, i = 1, 2, . . . ,m, (13)

whereWS(Ei) is the weighting score of expert Ei andWF(Ei)is the weighting factor of expert Ei.

Step 5. Aggregation weight calculation
The aggregation weight (wi) of each expert Ei is the combination of the RAD(Ei) and the weighting factor

WF(Ei) of expert Ei.

wi = r.WF(Ei) + (1 − r).RAD(Ei), (14)

where r (0 ≤ r ≤ 1) is a relaxation factor that represents the importance ofWF(Ei) over RAD(Ei). If r is zero,
then no importance is paid onWF(Ei); on the other hand, if r is 1, then no importance is paid to RAD(Ei).

Step 6. Aggregation of experts’ opinions

p̃Mj =
m∑︁
i=1

wi ⊗ p̃ij , j = 1, 2, . . . , n, (15)

where p̃Mj is the aggregated best estimate fuzzy possibility of basic event bj , j = 1, 2, . . . , n and p̃ij is the
fuzzy possibility of basic event bj assigned by expert Ei.

Lower bound fuzzy possibility evaluations of basic events:
The lower bound fuzzy possibility p̃Lj of basic event bjis evaluated as follows:

p̃Lj = min
{︀
p̃1j , p̃2j , . . . , p̃mj

}︀
= min

{︀
p̃ij

}︀m
i=1, (16)

where p̃ij is the fuzzy possibility of basic event bjassigned by expert Ei.
Upper bound fuzzy failure possibility evaluations of basic events:
The upper bound fuzzy possibility p̃Uj of basic event bjis evaluated as follows:

p̃Uj = max
{︀
p̃1j , p̃2j , . . . , p̃mj

}︀
= max

{︀
p̃ij

}︀m
i=1, (17)

where p̃ij is the fuzzy possibility of basic event bjassigned by expert Ei.
Finally, the output of this subsection is a matrix of fuzzy possibilities of all basic events bj, j =

1, 2, . . . , n, which is denoted and defined in (18).⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p̃L1 p̃M1 p̃U1

p̃L2 p̃M2 p̃U2
...

...
...

p̃Ln p̃Mn p̃Un

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)
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3.2 Evaluation of Best Estimate, Lower Bound, and Upper Bound Fuzzy Possibilities
of Top Event by Using Tw-based Fuzzy Arithmetic Operations

After obtaining the fuzzy possibilities of all basic events, these values can be used to evaluate the top event
fuzzy possibilities. The Tw-based fuzzy arithmetic operations are used to evaluate the fuzzy possibilities of
the MCSs and the same for top event fuzzy possibilities.

A set of MCSs of a system fault can be defined as S = {Ci : i = 1, 2, . . . ,m}, where Ci is the ith MCS of
order k and defined as Ci = b1. b2 . .. bk.

Let the fuzzy possibility p̃Zj of event bj : j = 1, 2, . . . , n be represented by TFN
(︁
aZj , αZj , βZj

)︁
, then the

fuzzy possibility p̃ZCi of the MCS Ci is estimated using the following expressions:

p̃ZCi = ANDfuzzy

(︁
p̃Z1 , p̃Z2 , . . . , p̃Zk

)︁
= p̃Z1 ⊗ p̃Z2 ⊗ . . . ⊗ p̃Zk

=

⎛⎜⎜⎝ k∏︁
j=1

aZj , max
1≤i≤k

⎛⎜⎜⎝αZi
k∏︁

j=1
j ̸=i

aZj

⎞⎟⎟⎠, max
1≤i≤k

⎛⎜⎜⎝βZi
k∏︁

j=1
j ̸=i

aZj

⎞⎟⎟⎠
⎞⎟⎟⎠ (19)

p̃ZCi = ORFuzzy
(︁
p̃Z1 , p̃Z2 , . . . , p̃Zk

)︁
= 1Θ

(︁
1Θ p̃Z1

)︁
⊗

(︁
1Θ p̃Z2

)︁
⊗ . . . ⊗

(︁
1Θ p̃Zk

)︁

=

⎛⎜⎜⎝1 −
k∏︁

j=1

(︁
1 − aZj

)︁
, max

1≤i≤k

⎛⎜⎜⎝αZi
k∏︁

j=1
j ̸=i

(︁
1 − aZj

)︁⎞⎟⎟⎠, max
1≤i≤k

⎛⎜⎜⎝βZi
k∏︁

j=1
j ̸=i

(︁
1 − aZj

)︁⎞⎟⎟⎠
⎞⎟⎟⎠, (20)

where superscript Z is a general identifier for superscript M, L, and U representing the best estimate, lower
bound, and upper bound values respectively.

The generated matrix of fuzzy possibilities of all MCSs can be defined as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p̃LC1 p̃MC1 p̃UC1
p̃LC2 p̃MC2 p̃UC2
...

...
...

p̃LCm p̃MCm p̃UCm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

Hence, the fuzzy possibility p̃ZT of the top event can be calculated using the following equation:

p̃ZT = 1Θ
(︁
1Θ p̃ZC1

)︁
⊗

(︁
1Θ p̃ZC2

)︁
⊗ . . . ⊗

(︁
1Θ p̃ZCm

)︁
(22)

The set of fuzzy possibilities representing the lower bound, best estimate, and upper bound likelihood
occurrences of the top event are as follows:

pT =
{︁
p̃LT , p̃MT , p̃UT

}︁
(23)

3.3 Defuzzify Top Event Fuzzy Possibilities

Theprocess of converting fuzzy numbers into a single scalar quantity is called defuzzification. Purba et al. [35]
proposed an area defuzzification technique (ADT) for nuclear power plant probabilistic safety assessment,
which involves experts’ qualitative judgments. The ADT for TFN (m, αÃ , βÃ) can be defined as follows:

ADT(Ã) =
1
18

(︀
6m − 4αÃ + βÃ

)︀
(24)
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In this subsection, the top event fuzzy possibilities are defuzzified into a score using the ADT defined in
(24). The lower bound p̃LT , best estimate p̃MT , and upper bound p̃UT fuzzy probabilities given in (23) are con-
verted to a lower bound score ScL, a best estimate score ScM, and an upper bound score ScU , respectively, as
denoted in (25) using ADT.

Sc =
{︁
ScL , ScM , ScU

}︁
(25)

3.4 Convert Crisp Possibility Score Into Top Event Probability

This section generates a set of top event probabilities from the set of scores given in (28). Each member of the
set in (26) is generated by inserting its corresponding score into a logarithmic function defined in (27) [30].

P =
{︁
PL , PM , PU

}︁
(26)

where PZ =

⎧⎪⎪⎨⎪⎪⎩
1

10

(︂[︁
1−ScZ
ScZ

]︁ 1
3 ×2.301

)︂ , ScZ ̸= 0

0, ScZ = 0

(27)

Superscript Z is a general identifier for superscript M, L, and U representing the best estimate, lower
bound, and upper bound values respectively. From (26), it can be interpreted that the uncertainty range of
the top event probability is between the lower bound probability and the upper bound probability. Mean-
while, the best estimate probability represents themost relevant reliability value of the system fault tree being
evaluated.

4 Case Study
To show how the proposed weakest t-norm-based FPFTA can be used to quantify epistemic uncertainties in
FTA, we use the case study of Group 1 of the U.S. Combustion Engineering Reactor Protection System (CERPS)
[47]. The failure probability of Group 1 of theU.S. CERPS is evaluated using the proposed FPFTA, and obtained
results are investigated to validate and confirm its feasibility.

4.1 System FTA

The U.S. CERPS is a complex control system comprising several components to produce a safe shutdown of
the nuclear reactor during some sudden happening. The CERPS components can be roughly divided into four
segments, i.e. four channels, six trip matrices, trip breakers/relays/contactors, and a group of control rods.
Each channel includes bi-stables and instrumentation to measure plant parameters. Out of six trip matri-
ces, one is sufficient to trip the reactor trip switchgear. The trip breakers/contactors remove the power to
the control element assembly drive mechanisms to allow gravity to insert the control rod assembly into the
reactor core and control rods de-energized on successful CERPS actuation. The U.S. CERPS immediately ter-
minates nuclear reaction by inserting control rod clusters into the reactor core to eliminate heat generation.
The integrity of the fuel and the reactor coolant pressure boundary ismaintainedwith the help of other safety
systems. In this study, it is not possible to show the fault tree of U.S. CERPS due to its complexity; it was stud-
ied in Ref. [47]. The simplified diagram of the U.S. CERPS Group 1 is shown in Figure 1. The basic events of U.S.
CERPS fault tree are furnished in Table 1. The likelihood occurrences of those basic eventswill be evaluated by
means of experts based totally on their qualitative failure possibilities. In Table 1, basic events with the same
component types are identified by one identifier. For example, the trip units CE1-CBI-FF-PA, CE1-CBI-FF-PB,
CE1-CBI-FF-PC, and CE1-CBI-FF-PD are implemented in four different channels A, B, C, and D, respectively.
All these four basic events are given identifier b1. This simplification is also carried out to basic events b2, b3,
b4, b5, b6, b7, b8, b9, b16, b17, b21, b22, and b24. The MCSs were also been developed to quantify the CERPS
fault tree and shown in Table 2.
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Figure 1: Simplified Diagram of the U.S. CERPS Group 1 [47].

4.2 Quantitative Evaluation of U.S. CERPS Group 1 Using Proposed TBFFTA

In this subsection, to illustrate the proposed TBFFTA to evaluate system reliability, TFNs were used to rep-
resent the occurrence possibilities of basic events. The fault tree of U.S. CERPS has 26 basic events, which
are shown in Table 1. The fuzzy possibilities of these basic events {b1, b2, b3, . . . , b26} are required to
be generated by using expert’s linguistic opinions. For this evaluation, a group of six credible experts
{E1, E2, E3, E4, E5, E6} has been selected. In order to obtain the experts’ opinions about the occurrence pos-
sibilities of the basic events as linguistic terms, seven levels of qualitative linguistic terms, i.e. very low (VL),
low (L), reasonable low (RL), moderate (M), reasonable high (RH), high (H), and very high (VH), are defined
and tabulated in Table 3. The weighting scores and weighting factors of the chosen experts are calculated
by using Table 4 and tabulated in Table 5. The opinions of different experts are listed as linguistic terms in
Table 6. The TFNs corresponding to linguistic terms are obtained using the methodology shown in Ref. [38]
and tabulated in Table 7.

As different experts are chosen from different backgrounds and experiences, they may have widely vary-
ing opinions from one basic event to another. These variations are accounted by the weighting process so
there is no need to discount particular values. It is therefore necessary to aggregate the results to obtain an
agreement among the conflicted views of the experts. Using the methodology shown in Section 3.1.2, the
experts’ opinions are aggregated to obtain a single consensus about the occurrence possibilities of basic
events. These aggregated results are shown in Table 8.

As the fuzzy possibilities of the basic events are obtained in the triangular fuzzy form, therefore, the
MCSs can be quantified in triangular fuzzy form using the fuzzy possibility values from Table 8 and the fuzzy
operators defined in Section 3.2. The results of quantification of the MCSs have been tabulated in Table 9.
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Table 1: Basic Events of the U.S. CERPS Fault Tree [47].

Id. Name Description

b1 CE1-CBI-FF-PA,B,C,D Channel trip unit (bi-stable) fails to trip at its pressure set point
b2 CE1-CBI-FF-TA,B,C,D Channel trip unit (bi-stable) fails to trip at its temperature set point
b3 CE1-CPA-FF-TA,B,C,D Channel analog core protection calculator fails to send a signal to the trip unit
b4 CE1-CPR-FF-PA,B,C,D Channel reactor vessel pressure sensor/transmitter fails to detect a high pressure and

sends a signal to the trip unit
b5 CE1-CTP-FF-C(H)TA,B,C,D Channel reactor vessel temperature/transmitter (cold or hot leg) fails to detect a low

level and sends a signal to the trip unit
b6 CE1-MSW-FF-MT1,2 Manual scram switch fails to operate upon demand
b7 CE1-RYL-FF-LA,B,C,D–1,2,3,4 Channel logic relay fails to de-energize upon demand
b8 CE1-CBI-CF-P(T)2OF3TM Common cause failure specific 2 of 3 bi-stables associated with either a pressure (P) or

temperature (T) signal (T&M)
b9 CE1-CBI-CF-P(T)3OF4 Common cause failure specific 3 of 4 bi-stables associated with either a pressure (P) or

temperature (T) signal
b10 CE1-CBI-CF-4OF6TM Common cause failure specific 4 of 6 bi-stables (T&M)
b11 CE1-CBI-CF-6OF8 Common cause failure specific 6 of 8 bi-stables
b12 CE1-CPA-CF-T2OF3TM Common cause failure 2 of 3 analog core protection calculators (T&M)
b13 CE1-CPA-CF-T3OF4 Common cause failure 3 of 4 analog core protection calculators
b14 CE1-CPR-CF-P2OF3TM Common cause failure 2 of 3 pressure sensor/transmitters (T&M)
b15 CE1-CPR-CF-P3OF4 Common cause failure 3 of 4 pressure sensor/transmitters
b16 CE1-CTP-CF-C(H)T2OF3TM Common cause failure 2 of 3 temperature sensor/transmitters (T&M)
b17 CE1-CTP-CF-C(H)T3OF4 Common cause failure 3 of 4 temperature sensor/transmitters
b18 CE1-ROD-CF-RODS Common cause failure 20% or more CRD/rods fail to insert
b19 CE1-RYL-CF-LM6OF12TM Common cause failure specific 6 of 12 logic relays (T&M)
b20 CE1-RYL-CF-LM12OF24 Common cause failure specific 12 of 24 logic relays
b21 CE1-RYL-CF-1,2,3,4LM3OF3TM Common cause failure 3 of 3 logic relays (T&M)
b22 CE1-RYL-CF-1,2,3,4LM6OF6 Common cause failure 6 of 6 logic relays
b23 CE1-RYT-CF-TR2OF4 Common cause failure 2 of 4 trip relays
b24 CE1-RYT-FF-ICM1,2,3,4 Trip system trip relay fails to de-energize upon demand
b25 /CE1-RPS-TM-CHA Channel A through D bypassed because of testing or maintenance
b26 CE1-RPS-TM-CHA Complement of /CE1-RPS-TM-CHA

Using equation (22) and the fuzzy possibilities of the MCSs from Table 9, the lower bound, best estimate,
and upper bound fuzzy possibilities of the top event (U.S. CERPS fault) are computed, which are also TFNs.
The set of computed top event fuzzy possibilities representing the lower bound, the best estimate, and the
upper bound fuzzy possibilities of the U.S. CERPS fault tree is given by (28).

pT = {(0.12604, 0.16100, 0.19595), (0.45402, 0.48220, 0.51038), (0.78792, 0.80160, 0.81528)} (28)

The obtained lower bound, best estimate, and upper bound top event fuzzy possibilities can be mapped
to a crisp score by applying the ADT defined in (24). A best estimate score, a lower bound score, and an upper
bound score calculated by ADT are given, respectively, as follows:

ScL =
1
18(4 × 0.12604 + 0.16100 + 0.19595) = 0.04784

ScM =
1
18(4 × 0.45402 + 0.48220 + 0.51038) = 0.15604

ScU =
1
18(4 × 0.78792 + 0.80160 + 0.81528) = 0.26492

Therefore, the set of these three scores of the U.S. CERPS fault tree is given by (29).

Sc = {0.04784, 0.15604, 0.26492} (29)
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Table 2: The MCSs of the CERPS Group 1 Fault Tree [47].

MCS Id MCSs

mcs1 CE1-RYT-CF-TR2OF4
mcs2 CE1-ROD-CF-RODS
mcs3 CE1-CBI-CF-6OF8 * /CE1-RPS-TM-CHA
mcs4 /CE1-RPS-TM-CHA * CE1-RYL-CF-LM12OF24
mcs5 CE1-CBI-CF-4OF6TM * CE1-RPS-TM-CHA
mcs6 CE1-RYT-FF-ICM1 * CE1-RYT-FF-ICM2
mcs7 CE1-RYT-FF-ICM3 * CE1-RYT-FF-ICM4
mcs8 CE1-RPS-TM-CHA * CE1-RYL-CF-LM6OF12TM
mcs9 CE1-CBI-CF-P3OF4 * CE1-CPA-CF-T3OF4 * /CE1-RPS-TM-CHA
mcs10 CE1-CPA-CF-T3OF4 * CE1-CPR-CF-P3OF4 * /CE1-RPS-TM-CHA
mcs11 CE1-CBI-CF-P3OF4 * CE1-CTP-CF-CT3OF4 * /CE1-RPS-TM-CHA
mcs12 CE1-CBI-CF-P3OF4 * CE1-CTP-CF-HT3OF4 * /CE1-RPS-TM-CHA
mcs13 CE1-CBI-CF-P3OF4 * CE1-CBI-CF-T3OF4 * /CE1-RPS-TM-CHA
mcs14 CE1-CPA-CF-T2OF3TM * CE1-CPR-CF-P2OF3TM * CE1-RPS-TM-CHA
mcs15 /CE1-RPS-TM-CHA * CE1-RYL-CF-1LM6OF6 * CE1-RYT-FF-ICM2
mcs16 /CE1-RPS-TM-CHA * CE1-RYL-CF-2LM6OF6 * CE1-RYT-FF-ICM1
mcs17 /CE1-RPS-TM-CHA * CE1-RYL-CF-3LM6OF6 * CE1-RYT-FF-ICM4
mcs18 /CE1-RPS-TM-CHA * CE1-RYL-CF-4LM6OF6 * CE1-RYT-FF-ICM3
mcs19 CE1-CPR-CF-P3OF4 * CE1-CTP-CF-CT3OF4 * /CE1-RPS-TM-CHA
mcs20 CE1-CPR-CF-P3OF4 * CE1-CTP-CF-HT3OF4 * /CE1-RPS-TM-CHA
mcs21 CE1-CBI-CF-T3OF4 * CE1-CPR-CF-P3OF4 * /CE1-RPS-TM-CHA
mcs22 CE1-CPA-FF-TB * CE1-CPA-FF-TC * CE1-CPR-CF-P2OF3TM * CE1-RPS-TM-CHA
mcs23 CE1-CPA-FF-TB * CE1-CPA-FF-TD * CE1-CPR-CF-P2OF3TM * CE1-RPS-TM-CHA
mcs24 CE1-CPA-FF-TC * CE1-CPA-FF-TD * CE1-CPR-CF-P2OF3TM * CE1-RPS-TM-CHA

Table 3: The Failure Possibilities/Linguistic terms and Their Likelihood Values [36, 37].

A set of seven failure possibilities Likelihood occurrences

Very low (VL) <1.0E−08
Low (L) 1.0E−08 – 1.0E−07
Reasonable low (RL) 1.0E−07 – 1.0E−06
Moderate (M) 1.0E−06 – 1.0E−05
Reasonable high (RH) 1.0E−05 – 1.0E−04
High (H) 1.0E−04 – 1.0E−03
Very high (VH) 1.0E−03

Table 4:Weighting scores for different experts [38].

Constitution Classification Score

Professional position Professor, GM/DGM, chief engineer, director 5
Assistant professor, manager, factory inspector 4
Engineer, supervisors 3
Foreman, technician, graduate apprentice 2
Operator 1

Professional experience (years) ≥20 5
15 to 19 4
10 to 14 3
5 to 9 2
<5 1

Educational or technical qualification PhD or M. Tech. 5
MSc or B. Tech. 4
Diploma or BSc 3
ITI 2
Secondary school 1
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Table 5:Weighting Factors for Six Experts.

Expert Professional position Experience (years) Educational qualification Weighting score Weighting factor

E1 Professor ≥20 PhD 15 0.241935
E2 Assistant Professor 10 to 14 PhD 12 0.193548
E3 Engineer 5 to 9 M.Tech 10 0.161290
E4 Manager 15 to 19 M.Sc 12 0.193548
E5 Operator <5 Diploma 5 0.080645
E6 Technician 5 to 9 B.Tech 8 0.129032

Table 6: Expert Opinions on the Basic Events of the CERPS Group 1 Fault Tree [36, 37].

Basic events E1 E2 E3 E4 E5 E6

b1 RL M RL M RL M
b2 RL RL RL L L L
b3 VL L RL L RL VL
b4 M M L RL RL M
b5 M M RL RL M M
b6 M RL M M L L
b7 RL M M RL M RL
b8 RL RL RL L RL M
b9 VL RL L RL L L
b10 L L L VL VL L
b11 L VL L VL L L
b12 L RL L RL L L
b13 M M M M RL L
b14 L RL VL L L VL
b15 L VL L L L VL
b16 RL L M L M RL
b17 L L RL L RL M
b18 VL L VL VL VL L
b19 L VL L VL L VL
b20 L VL L VL VL L
b21 L VL L VL L L
b22 L L VL L L L
b23 L VL L VL L VL
b24 RL L RL L L RL
b25 M RH M RL M RH

Table 7: Linguistic terms with Conversion Scales [36, 37].

Linguistic variables Triangular fuzzy numbers LR-form of triangular fuzzy numbers (m, αA)

Very low (VL) (0.00, 0.04, 0.08) (0.04, 0.04)
Low (L) (0.07, 0.13, 0.19) (0.13, 0.06)
Reasonable low (RL) (0.17, 0.27, 0.37) (0.27, 0.1)
Moderate (M) (0.35, 0.50, 0.65) (0.5, 0.15)
Reasonable high (RH) (0.63, 0.73, 0.83) (0.73, 0.1)
High (H) (0.81, 0.87, 0.93) (0.87, 0.06)
Very high (VH) (0.92, 0.96, 1.00) (0.96, 0.04)

The calculated scores are substituted into (27) to get the lower bound probability, the best estimate
probability, and the upper bound probability of the top event, respectively, which are listed in (30).

P = {5.81E−07, 9.14E−05, 5.84E−04} (30)
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Table 8: The Best Estimate, Lower Bound, and Upper Bound Fuzzy Possibilities of Basic Events by Aggregation of Expert
Opinions.

Basic event Aggregated fuzzy failure possibilities (m, αA) of basic events

Lower bound Best estimate Upper bound

b1 (0.27, 0.1) (0.38685, 0.12540) (0.5, 0.15)
b2 (0.13, 0.06) (0.20677, 0.08194) (0.27, 0.1)
b3 (0.04, 0.04) (0.14093, 0.06499) (0.27, 0.1)
b4 (0.13, 0.06) (0.38098, 0.12289) (0.5, 0.15)
b5 (0.27, 0.1) (0.42709, 0.13415) (0.5, 0.15)
b6 (0.13, 0.06) (0.36933, 0.11926) (0.5, 0.15)
b7 (0.27, 0.1) (0.37758, 0.12339) (0.5, 0.15)
b8 (0.13, 0.06) (0.27735, 0.10017) (0.5, 0.15)
b9 (0.04, 0.04) (0.16521, 0.07097) (0.27, 0.1)
b10 (0.04, 0.04) (0.10705, 0.05490) (0.13, 0.06)
b11 (0.04, 0.04) (0.10197, 0.05377) (0.13, 0.06)
b12 (0.13, 0.06) (0.17597, 0.07313) (0.27, 0.1)
b13 (0.13, 0.06) (0.43663, 0.13523) (0.5, 0.15)
b14 (0.04, 0.04) (0.12623, 0.06053) (0.27, 0.1)
b15 (0.04, 0.04) (0.10487, 0.05442) (0.13, 0.06)
b16 (0.13, 0.06) (0.28613, 0.10019) (0.5, 0.15)
b17 (0.13, 0.06) (0.21435, 0.08225) (0.5, 0.15)
b18 (0.04, 0.04) (0.06513, 0.04558) (0.13, 0.06)
b19 (0.04, 0.04) (0.08427, 0.04984) (0.13, 0.06)
b20 (0.04, 0.04) (0.08645, 0.05032) (0.13, 0.06)
b21 (0.04, 0.04) (0.10197, 0.05377) (0.13, 0.06)
b22 (0.04, 0.04) (0.11974, 0.05772) (0.13, 0.06)
b23 (0.04, 0.04) (0.08427, 0.04984) (0.13, 0.06)
b24 (0.13, 0.06) (0.20226, 0.08065) (0.27, 0.1)
b25 (0.27, 0.1) (0.53950, 0.12610) (0.73, 0.1)
b26 (0.27, 0.1) (0.46050, 0.12610) (0.73, 0.1)

Table 9: The Best Estimate, Lower Bound, and Upper Bound Fuzzy Possibilities of the MCSs of the CERPS Group 1 Fault Tree.

MCSs The fuzzy possibilities (m, αA) of the MCSs

Lower bound Best estimate Upper bound

mcs1 (0.04, 0.04) (0.08427, 0.04984) (0.13, 0.06)
mcs2 (0.04, 0.04) (0.06513, 0.04558) (0.13, 0.06)
mcs3 (0.0108, 0.0108) (0.05501, 0.02901) (0.0949, 0.0438)
mcs4 (0.0108, 0.0108) (0.04664, 0.02715) (0.0949, 0.0438)
mcs5 (0.0108, 0.0108) (0.04930, 0.02528) (0.0949, 0.0438)
mcs6 (0.0169, 0.0078) (0.04091, 0.01631) (0.0729, 0.027)
mcs7 (0.0169, 0.0078) (0.04091, 0.01631) (0.0729, 0.027)
mcs8 (0.0108, 0.0108) (0.03881, 0.02295) (0.0949, 0.0438)
mcs9 (0.0014, 0.0014) (0.03892, 0.01672) (0.09855, 0.0365)
mcs10 (0.0014, 0.0014) (0.02470, 0.01282) (0.04745, 0.0219)
mcs11 (0.0014, 0.0014) (0.01910, 0.00821) (0.09855, 0.0365)
mcs12 (0.0014, 0.0014) (0.01910, 0.00821) (0.09855, 0.0365)
mcs13 (0.00043, 0.00043) (0.01472, 0.00633) (0.05322, 0.01971)
mcs14 (0.0014, 0.001404) (0.01663, 0.00798) (0.09855, 0.0365)
mcs15 (0.0014, 0.001404) (0.01307, 0.00630) (0.02562, 0.01183)
mcs16 (0.0014, 0.001404) (0.01307, 0.00630) (0.02562, 0.01183)
mcs17 (0.0014, 0.001404) (0.01307, 0.00630) (0.02562, 0.01183)
mcs18 (0.0014, 0.001404) (0.01307, 0.00630) (0.02562, 0.01183)
mcs19 (0.0014, 0.001404) (0.01213, 0.00629) (0.04745, 0.02190)
mcs20 (0.0014, 0.001404) (0.01213, 0.00629) (0.04745, 0.02190)
mcs21 (0.00043, 0.00043) (0.00935, 0.00485) (0.02562, 0.01183)
mcs22 (0.00002, 0.00002) (0.00115, 0.00055) (0.01437, 0.00532)
mcs23 (0.00002, 0.00002) (0.00115, 0.00055) (0.01437, 0.00532)
mcs24 (0.00002, 0.00002) (0.00115, 0.00055) (0.01437, 0.00532)
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Figure 2: The Lower Bound Fuzzy Possibility of the Top Event.
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Figure 3: The Best Estimate Fuzzy Possibility of the Top Event.

The set of top probabilities means that the failure probability of the U.S. CERPS lies between 5.81E−07
and 5.84E−04. Also, in this set, the best estimate probability that describes themost likely failure probability
of the U.S. CERPS is 9.14E−05.

4.3 Discussions and comparison

– The proposed approach preserves the shape of fuzzy numbers, i.e. gives exact solutions for fuzzy possibili-
ties of the top event.
Purba et al. [36] used simple fuzzy arithmetic operations on TFNs in FPFTA and got approximate solu-
tions for fuzzy failure possibilities as approximated TFNs. To get the exact solution, this study applies
Tw-based fuzzy arithmetic operations and evaluates the lower bound, the best estimate, and the upper
bound of top event fuzzy possibility as TFNs. The proposed TBFFTA preserves the shape of TFN for top
event fuzzy possibilities. The results are plotted in Figures 2–4. Shape-preserving property provides a
good possibility of controlling the growth of uncertainty during calculations.
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Figure 4: The Upper Bound Fuzzy Possibility of the Top Event.

Table 10: The Best Estimate, Lower Bound, and Upper Bound Fuzzy Possibilities of Top Event CERPS Group 1 Fault Computed by
Different Approaches.

Approaches Fuzzy possibilities of top event (m − αA, m, m + βA)

Lower bound Best estimate Upper bound

Purba et al. method [36] (0.0098, 0.1770, 0.3811) (0.1760, 0.4710, 0.7427) (0.4562, 0.7910, 0.9560)
Proposed method (0.12604, 0.16100, 0.19595) (0.45402 , 0.48220, 0.51038) (0.78792, 0.80160, 0.81528)

– The proposed approach gives results with reduced range of prediction of top event fuzzy failure possibilities.
The proposed TBFFTA gives reduced range of prediction of the lower bound, the best estimate, and
the upper bound of top event fuzzy possibility in comparison to existing FPFTA, i.e. fuzzy spreads
(uncertainty interval) are reduced [36, 37]. The results are tabulated in Table 10 andplotted in Figures 2–4.

5 Conclusion
In this research, a new TBFFTA has been proposed to quantify the epistemic uncertainty that occurred in
basic event reliability evaluations. The main advantage of the proposed approach is that using the proposed
TBFFTA, uncertainty range decreases, i.e. fuzzy spreads are reduced and the obtained results are more exact,
while using the existing FPFTA, the results are approximately due to the approximate product of TFNs. The
failure probability of the U.S. CERPS Group 1 has been evaluated to demonstrate the performance of the pro-
posed TBFFTA. The results confirm that the proposed approach can be feasible andmore effective to quantify
epistemic uncertainties in FTAwhenbasic events do not have probability distributions and described in fuzzy
probabilities.

In the future, this researchwork still needs to extend by looking at how the systemunreliability estimated
by the proposed approach be affected by the different choices of membership functions, weighting scores,
expert opinions, etc.
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