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Abstract: One of the major objectives of any classification technique is to categorise the incoming input values
based on their various attributes. Many techniques have been described in the literature, one of them being
the probabilistic neural network (PNN). There were many comparisons made between the various published
techniques depending on their precision. In this study, the researchers investigated the search capability of
the grey wolf optimiser (GWO) algorithm for determining the optimised values of the PNN weights. To the
best of our knowledge, we report for the first time on a GWO algorithm along with the PNN for solving the
classification of time series problem. PNN was used for obtaining the primary solution, and thereby the PNN
weights were adjusted using the GWO for solving the time series data and further decreasing the error rate. In
this study, the main goal was to investigate the application of the GWO algorithm along with the PNN classifier
for improving the classification precision and enhancing the balance between exploitation and exploration
in the GWO search algorithm. The hybrid GWO-PNN algorithm was used in this study, and the results obtained
were compared with the published literature. The experimental results for six benchmark time series datasets
showed that this hybrid GWO-PNN outperformed the PNN algorithm for the studied datasets. It has been seen
that hybrid classification techniques are more precise and reliable for solving classification problems. A com-
parison with other algorithms in the published literature showed that the hybrid GWO-PNN could decrease
the error rate and could also generate a better result for five of the datasets studied.

Keywords: Classification problems, probabilistic neural networks, grey wolf optimiser, time series
classification.

1 Introduction

One of the most important data mining tasks involves classification. In any classification problem, the input
dataset is called the training set, which is used for building the model of a class label. This model is used
for generating the output for cases when the preferred result is unknown. Neural network (NN) is a popular
method for solving classification problems. Different NN models have been developed and published, like
the probabilistic NN (PNN), radial basis function network, feed-forward network, multilayer perceptron, and
modular networks [10]. The NN models differ from one other based on their architecture, behaviour, and
learning approaches. Because of these differences, some of the models are more reliable than others and
were used for solving many different problems like the time series classification problem. This is a form of a
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supervised learning process wherein the input is mapped to the final output using historical data. The main
objective of the techniques is determining some noteworthy patterns that are present in these data [3, 7].

Recently, metaheuristic algorithms have been hybridised with different kinds of classifiers, and this has
resulted in better performance when compared to standard classification approaches [2, 57]. Single-based
and population-based metaheuristics have been used for training NNs. Single-solution-based approaches,
such as tabu search [54], simulated annealing [13], and the population-based approach, have been found to
be more effective when combined with NNs [2]. The combination of an NN and an evolutionary algorithm
results in superior intelligent systems, as compared to relying only on either an NN or an evolutionary algo-
rithm [1]. For instance, particle swarm optimisation, on its own and hybridised with a local search operator,
has been employed to train an NN [44, 62]. Other swarm intelligence approaches such as ant colony opti-
misation have also been used to train NNs [12, 51]. Furthermore, Chen et al. [15] have proposed a novel
hybrid algorithm based on the artificial fish swarm algorithm. Moreover, genetic algorithms [41] and differ-
ential evaluation [50] have been effectively employed to enhance bacterial chemo-taxis optimisation [59],
while an electromagnetism-like mechanism-based algorithm [56] and the harmony search algorithm have
been used to solve various classification problems [31-33, 36], as well as the firefly algorithm (FA) [6, 8],
biogeography-based optimisation [7, 9, 26], and other approaches [3-6].

Various works have investigated many classifier algorithms, and it was seen that a single classifier
was unable to satisfy all the requirements of a dataset. However, every technique has a distinct applica-
ble area and is favourable to a particular domain based on its characteristics. After understanding the
positive and negative benefits of the classification approaches, it becomes important to investigate the
probability of assimilating two or more techniques for addressing the classification problems, wherein the
advantages of one method would overcome the drawbacks of the second method. Based on this perspec-
tive, the effectiveness of the metaheuristic algorithms must be studied for its application in hybridisation
[16, 37, 47, 49, 55, 60, 61].

In this study, the researchers studied and applied the grey wolf optimisation (GWO) algorithm [23, 29]
for improving the PNN performance for solving the classification problem. Some preliminary solutions were
randomly generated, which used the PNN, and the improvement was suggested using the GWO, which opti-
mised the weights of the PNN. To explain further, the potential of using the search ability of the GWO in order
to increase the performance of the PNN was analysed. Further, it was analysed how this can be achieved by
exploiting and exploring the search space more effectively and by regulating the random steps. Finally, it
was assessed how the GWO can avoid premature convergence and immobility of the population, so that the
PNN classification technique can find the optimal solution. This was carried out by monitoring the step of
randomness and studying the search space for determining the optimal PNN weights.

The paper is organised as follows. In Section 2, the background information and the published literature
about GWO are presented. In Section 3, the proposed hybrid method is described. In Section 4, the experi-
mental results are discussed, and its computational complexity is discussed in Section 5. In Section 6, the
final conclusions of the paper are presented.

2 GWO Algorithm: Background Information and Published
Literature

The GWO algorithm was first developed by Mirjalili and Lewis [40], who described a swarm-based meta-
heuristic algorithm. The GWO algorithm mimics the hunting technique and the social leadership displayed
by the grey wolves in nature. The researchers used mathematical modelling for explaining the major stages
of the hunting process by the wolves, and used it for solving the optimisation problems. While explaining
the mathematical model for the social hierarchy of grey wolves, the GWO algorithm population was divided
into four groups, i.e. alpha (a), beta (), delta (§), and omega (w). The three parameter fittest wolves were
considered to be a, 8, and &, and they guided the other remaining wolves (w) towards the favourable areas
within a search space. While optimising, the wolves surrounded their prey, and the mathematical equations
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describing this type of behaviour are as follows:

Y '
D =jc. . Xpt) X(B)j, 4]

X(t+1) = Xp(t) A-D, 2

where A and T represent the coefficient vectors, Xp describes the position vector of the prey, and X describes
the position vector of the grey wolf. 4 and T vectors are computed as follows:

1 |
A =2ar a, 3)

T=2-1, (4)

where the @ constituents are linearly decreased to O from 2 using some iterations and rq, r, are the random
vectors used in [0, 1].

Using the above equations, the grey wolf present in an (X, Y) position could update its own position
based on the position of the prey (X, Y"). Different spots surrounding the best agent could be reached with
respect to the current position after adjusting the A and T vector values. For instance, (X" ,X,Y")isachieved
by establishing that 2 = (1, 0) and T = (1, 1). It must be noted that the random vectors r; and r, enable the
grey wolves to get access to any position present between these two points. Hence, with the help of the above
equations, the wolf could update its present position within the space that surrounds the prey randomly [21].

The GWO algorithm assumes that a, 8, and 6 are the likely positions of the prey. During the optimisation
process, the initial three best solutions are assumed to be a, 8, and 6, respectively. Thereafter, the other
wolves, which were considered to be w, could reposition themselves based on the positions of the a, 8, and
6 wolves. The mathematical model that represents the readjustment of the w wolves’ position is described
below [39]:

Da = jT1-Xa Xj, (5)
DB = jt2-XB Xj, (6)
D§ = jT3-X6 Xj, @)

where Xa represents the a position, Xf3 represents the 8 position, and X§ describes the § position. T1, T2,
T3 are the random vectors, while X indicates the position used in this solution.

As shown in Egs. (5), (6), and (7), the step size of the w wolf towards the a, 8, and 6§ wolves can be defined,
respectively. Once this distance is defined, the final positions of the wolves, based on the current solution,
are estimated as follows:

X1 = Xa 2A1-(Da), 8
X2 = XB A2(DP), )
X3 = X643 - (D§), (10)
X(t+1) = w, 1)

where Xa, X3, and X6 show the positions of the a, 8, and § wolves, respectively. A1, A2, A3 are the random
vectors, while t indicates the number of iterations used in the study [27].

As shown in Egs. (8), (9), (10), and (11), the final position of the w wolves is determined. It can be seen
that the two vectors A and T are adaptive and random, which helps in exploring and exploiting in the GWO
algorithm [48].

As seen in Figure 1, the occurring exploration was <1 or > 1. Furthermore, even vector C promoted
exploration, when it was >1. On the contrary, exploitation was more emphasised when j4j <land C <1
(Figure 1). It must be noted that A decreases linearly during the process of optimisation for emphasising
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Figure 1: Exploitation and Exploration in GWO.

exploitation, with an increase in the iteration counter. However, vector C is randomly generated throughout
the optimisation process for emphasising the exploration/exploitation taking place at any step, which is a
very useful mechanism that helps in resolving the local optima entrapment, which is <lor > 1.

Mirjalili and Lewis [40] proposed the GWO as the population-based approach for solving the optimisation
problems. In one study, the researchers [42] proposed a better GWO version, whereas Song et al. [52] suggested
a GWO-based technique for solving the economic dispatch problems. Studies were carried out using GWO. In
one study, Chaman-Motlagh [14] suggested using an optimisation approach using the superdefect photonic
crystal filter based on the GWO. Furthermore, El-Fergany and Hasanien [18] also proposed the single- and
multi-objective optimal power flow (OPF) technique, which uses GWO, whereas El-Gaafary et al. [19] applied
the multi-input and multi-output mechanism. In their study, Emary et al. [20] applied the feature subset
selection process based on the GWO intelligent search, and noted that the GWO application improved the
performance. Also, Gupta and Saxena [24] proposed a robust generation control strategy in their study. Many
optimising strategies were developed by Gupta et al. [25]. The GWO toolkit must be investigated thoroughly for
improving the outcome in real life, and addressing and optimising engineering problems. Moreovet, Jayapriya
and Arock [28] aligned many molecular sequences with the help of the parallel GWO process. In their study,
Kamboj et al. [30] explained that a robust balance between exploration-exploitation helped in evading high
local optima. Their results suggested that this GWO could be used for addressing many problems related to the
economic load dispatch. El-Gaafary et al. [19] suggested using the GWO technique for improving the voltage
profile and decreasing the system losses. In one study, Gupta and Saxena [24] suggested the use of the GWO
technique for projecting the parameters of the proportional integral controller for an automatic generation
control. The GWO technique was also used by Kamboj et al. [30] for solving the capacitated vehicle routeing
issue problem, whereas Mahdad and Srairi [38] applied it for a blackout risk deterrence in smart grids that
was centred on the flexible optimal strategy. Mirjalili [39] used the GWO technique for training multilayer per-
ceptrons, and it was used by Mustaffa et al. [43] for training least-squares support vector machines in order
to forecast prices.

Pan et al. [45] suggested that the communication strategy must be used in parallel to the GWO. Dzung
et al. [17] applied this method for a selective harmonic elimination of the cascaded multilevel inverters. In
their study, Emary et al. [21] suggested determining the end-optimised regions of a complicated search space
using the GWO technique. In one study [18], the researchers applied the GWO and the differential evolution
algorithms for solving the OPF problems. Komaki and Kayvanfar [34] suggested using the GWO algorithm
while investigating the two-stage assembly in a problem related to the job shop schedule. Here, the release
times for the different jobs along with their sequences were optimised, so that a minimal time was wasted after
the last processed job was completed. Recently, Jayakumar et al. [27] suggested using the GWO algorithm for
solving the collective heat and the power dispatch issues noted in a cogeneration mechanism.

The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature.
Four types of grey wolves are simulated: a, 8, §, and w, which are employed for simulating the leadership
hierarchy. This social hierarchy is similar to the water cycle algorithm (WCA) hierarchy with Ns; = 3, where
a could be seen as the sea,  and § as the rivers, and w as the streams. Although the hierarchy is similar, the
way in which the GWO algorithm updates the positions of the individuals is different. GWO positions update
depending on the hunting phases: searching for prey, encircling prey, and attacking prey. Those hunting
phases are the way in which the GWO deals with exploration and exploitation. As mentioned before, the WCA
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uses the evaporation process, which is very different to the hunting phases [22]. In this section, we calculate
the computational complexity of the GWO as follows: Complexity = Loop O(n) fitness O(f) = O(nf).

3 Proposed Method: Hybridised GWO

In 1990, Specht proposed that PNNs must be used for classifying the patterns based on learning from
examples [53]. Most researchers working on PNNs base the algorithm on ‘The Bayes Strategy for Pattern
Classification’. Different rules determine the pattern statistics from the training samples to obtain knowledge
about the underlying function. The strength of a PNN lies in the function that is used inside the neuron. A
PNN consists of one input layer and two hidden layers. The first hidden layer (pattern layer) contains the pat-
tern units. The second hidden layer consists of one summation unit and one output layer, as shown Figure 2.
The PNN approach differs from that of a back-propagation NN. The biggest advantage of the PNN is that the
probabilistic approach works with a one-step-only learning method. The learning used by back-propagation
NNs can be described as one of trial and error. This is not the case for the PNN; it learns not by trial and error
but by experience.

A PNN has a very simple structure and very stable procedures. It performs very well with only a few
training samples. Moreover, the quality increases as the number of training samples increase, as shown
below.

The PNN model used in this study (Figure 1) contains four neuronal layers, i.e. input layer, pattern layer,
summation layer, and output layer. The first layer, i.e. input layer, contains several neurons wherein every
neuron represents a different attribute within the test or the training dataset (from x1 to xn). The number of
the inputs is seen to be similar to the number of the attributes present in the dataset. Thereafter, the values
generated from this input dataset are multiplied by appropriate weights w(ij), determined using the PNN

]‘ old W(/'I')—f GWO algorithm L 5 new w(i)

xi- x+ wli)

Summation
layer

Output= |
Class of
Max(g1, g2)
Output layer

Pattern layer

Input layer

Figure 2: Mechanism of GWO Algorithm with PNN.
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Figure 3: Representation of the Initial Weights.

algorithm as described in Figure 2, and were then transmitted to the next layer, i.e. pattern. These are then
converted using a transfer function to the summation and the output layers, as shown earlier [53]. The last
layer is the output layer, which typically consists of one class, as only one output is requested. While carrying
out the training process, the main objective is determining the most precise weights that were assigned to a
connector line. Herein, the output gets repeatedly computed and the resultant output is then compared to a
preferred output, which is generated using the test or the training datasets.

Asdescribed in Figure 3, the process begins from the initial weights that are generated randomly using the
PNN classification model. The input data values are then multiplied using appropriate weights w(ij), which
have been determined with the help of the PNN algorithm.

Here, the researchers have primarily focused on exploration and exploitation [58], as a balance between
these components is very important for any metaheuristic algorithm to be successful [11, 58]. The GWO algo-
rithm was selected for obtaining optimised parameter settings for the PNN training and for achieving a good
accuracy.

4 Experimental Results

This study makes several contributions to the field by solving classification problems with fast convergence
speed and good accuracy. This was done as follows: initially, by using the hybrid technique of PNN and GWO,
better results were achieved as it used the GWO algorithm for optimising the PNN weights for obtaining good
classification accuracy. The main objective of the GWO is controlling a random step within the algorithm for
balancing between exploration and exploitation and determining a near-optimised solution quickly.

Here, the proposed novel algorithm was tested using six benchmark from University of California (UCR)
time series datasets (Table 1) using the MATLAB R2010a program (The MathWorks, Natick, MA, USA).
Furthermore, simulations were also carried out using the Intel™ Xeon" system with a E5-1630 v3@3.70 GHz
CPU that could carry out 20 independent test runs for each data set studied.

The outcome (solution quality) of these experiments obtained with the help of the hybrid algorithm was
compared to other methods described earlier, which have dealt with similar problems. The six benchmark
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Table 1: Characteristics of Datasets.

No. Name No. of classes Size of training set Size of testing set Time series length
1 Gun-Point 2 50 150 150
2 Wafer 2 1000 6174 152
3 Lightning 2 2 60 61 637
4 ECG p 100 100 96
5 Yoga 2 300 3000 426
6 Coffee 2 28 28 286

UCR classification datasets used in this study ranged from a size of 96—637 examples and contained different
numbers of attributes [46].

The classification quality can be measured using the accuracy as estimated using Eq. (12). Accuracy can
be referred to as true positive (TP), true negative (TN), false positive (FP), and false negative (FN) [37], which
is further described in Table 2.

TP+ TN
TP+ TN + FP + FN’

Accuracy = (12)

where TP refers to a true positive rate, indicating a fraction of positive cases that are likely to be positive;
FP refers to a false positive rate, indicating a fraction of negative cases that are likely to be positive; TN refers
to a true negative rate, indicating a fraction of negative cases that are likely to be negative; and FN refers to a
false negative rate, indicating a fraction of positive cases that are likely to be negative.

Along with the accuracy, in this study, three additional performance measures were considered, i.e. error
rate, sensitivity, and specificity. Equations describing the error rate [Eq. (13)], sensitivity [Eq. (14)], and
specificity [Eq. (15)] are as follows:

TP+ TN
Error Rate = 1 TP+ IN+TEP+EN (13)
... _ TP
Sensitivity = TP+ EN" (14)
... TN
Specificity = TN + FP" (15)

Table 3 shows the various parameters and settings for the GWO-PNN algorithm that have been deter-
mined after preliminary experimentation.

For determining the effectiveness of the proposed algorithm, this was compared to an already published
FA-artificial NN (FA-ANN) [6] algorithm with respect to its accuracy, error rate, sensitivity, and specificity.

Table 2: Confusion Matrix for a Classifier.

Predicted class

Yes No
Actual class Yes True positive (TP) False negative (FN)
No False positive (FP) True negative (TN)
Table 3: Parameter Settings.
Parameter Value
Population size (no. of grey wolves) 50
Number of iterations 100

a (alpha), B (beta), 0 (delta) Random value from 0 to 1
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As shown in Table 6, the hybrid GWO-PNN hybrid algorithm displayed better results in comparison to the FA-
ANN. Furthermore, the results showed that the error rate was parallel, and the GWO showed low error rates
when compared to other techniques.

Sensitivity refers to the proportion of the TPs that can be appropriately determined using the time series
dataset. In the case of the ECG dataset, GWO showed 98% sensitivity, which was better than the value
obtained by other algorithms for all the datasets. Specificity refers to the fraction of the TNs that could
be determined appropriately. GWO showed 100% specificity for two datasets studied (i.e. Gun-Point and
Lightning 2).

Based on the results obtained in Table 4, it can be concluded that GWO showed better performance as
compared to FA, due to its ability to preserve the best solution obtained, which further helped the algorithm
retain the best position. Furthermore, the hybrid GWO-PNN algorithm was better than the other technique of
FA-ANN, with respect to error rate, classification accuracy, sensitivity, and specificity.

The hybrid GWO-PNN algorithm was also compared to some sophisticated algorithms like the FA-ANN
using the same dataset for their error rate, and the results are described in Table 5. The best results have been
shown in bold letters. The results show that the hybrid GWO-PNN approach (GWO-PNN) performed better
than the other algorithms studied for five of the six datasets studied (i.e. Gun-Point, ECG, Wafer, Lightning 2,
and Yoga). Furthermore, GWO-PNN classified the Wafer dataset and showed an error rate of 0.001%.

The best performance with a minimal error rate displayed by the GWO-PNN algorithm was due to the fact
that the algorithm contained adaptive parameters for effectively balancing exploration and exploitation.

In this study, the GWO-PNN performance was further investigated to determine if there was a statistical
difference between GWO-PNN and FA by conducting a t-test with a significant interval of 95% (a = 0.05) for
the classification accuracy, sensitivity, and specificity. Table 6 shows the p-values obtained.

Table 4: Classification Accuracy, Sensitivity, Specificity, and Error Rate (%) of GWO-PNN.

Dataset TP FP ™ FN  PNNaccuracy GWO-PNN accuracy  Sensitivity  Specificity  Error rate
Gun-Point 76 0 71 3 88.67 98.00 0.96 1 0.026
Wafer 5494 5 664 1 99.55 99.00 1.00 0.99 0.001
Lightning 2 33 0 22 6 75.41 90.00 0.85 1 0.10
ECG200 63 1 35 1 88.00 98.00 0.98 0.97 0.02
Yoga 1224 169 1432 175 83.17 88.00 0.87 0.89 0.11
Coffee 11 2 10 5 75.00 75.00 0.68 0.83 0.25

Table 5: A Comparison of the Results by GWO-PNN and Other State-of-the-Art Methodologies for Error Rate.

No. Dataset 1 - NN Euclidean 1 — NN best warping 1 -NNDTW no FA-ANN GWO-PNN
name distance window DTW warping window
1 Gun-Point 0.087 0.087 0.093 0.080 0.02
2 Wafer 0.005 0.005 0.020 0.004 0.01
3 Lightning 2 0.246 0.131 0.131 0.197 0.10
4 ECG 0.120 0.120 0.230 0.080 0.02
5 Yoga 0.170 0.155 0.164 0.161 0.11
6 Coffee 0.250 0.179 0.179 0.107 0.25

Table 6: p-Values of t-Test for GWO vs. FA for Accuracy, Sensitivity, and Specificity.

Dataset Accuracy Sensitivity Specificity
Gun-Point 0.000 0.000 0.000
Wafer 0.000 0.000 0.000
Lightning 2 0.000 0.000 0.000
ECG200 0.000 0.000 0.000
Yoga 0.000 0.000 0.000

Coffee 0.000 0.000 0.000
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Figure 4: Convergence Characteristics of GWO and FA.

In Table 6, the p-values were 0.0, which showed that there was a significant difference between the two
performances. Hence, it could be concluded that the hybrid GWO-PNN approach could compete with the other
published approaches. In particular, the GWO-PNN algorithm showed much better performance as compared
to the other techniques, which were equivalent to the best results published in the literature earlier. This is
mainly because the hybrid GWO algorithm has improved exploration and exploitation capabilities.

Along with comparing the classification accuracies, the researchers also studied the convergence
attributes displayed by the two algorithms. This was done by simulations, and its results are described in
Figure 4.

5 Conclusion

The main objective of this study was to develop a hybrid algorithm based on GWO and PNN for solving
the problems related to the classification of the time series. This was carried out by using the GWO for
generating a much better error rate after optimising the weights for the PNN. When tested against six bench-
mark UCR time series datasets, the hybrid algorithm displayed better performance than the PNN algorithm.
Furthermore, the hybrid algorithm also showed better classification accuracy as compared to some of the
state-of-the-art methodologies, by displaying better results for five of the six datasets. As a future study, the
authors plan to make a hybrid with other search algorithms that possess high exploration, so that a balance



DE GRUYTER H. Al Nsour et al.: GWO Algorithm for Time Series Classification Problems =— 855

between exploitation and exploration during optimisation can be achieved and population diversity can be
maintained.
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