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Abstract: Trapezoidal cubic fuzzy numbers (TzCFNs) are an extraordinary cubic fuzzy set on a real number
set. TzCFNs are useful for dealing with well-known quantities in decision data and decision making problems
themselves. This paper is about multi-attribute group decision making problems in which the attribute val-
ues are stated with TzCFNs, which are solved by developing a new decision method based on power average
operators of TzCFNs. The new operation laws for TzCFNs are given. Hereby, the power average operator of real
numbers is extended to four kinds of power average operators of TzCFNs, involving the power average opera-
tor of TzCFNs, the weighted power average operator of TzCFNs, the power ordered weighted average operator
of TzCFNs, and the power hybrid average operator of TzCFNs. In the proposed group decision method, the
individual overall evaluation values of alternatives are generated by using the power average operator of
TzCFNs. Applying the hybrid average operator of TzCFNs, the specific general evaluation standards of alter-
natives are then combined into the collective ones, which are used to rank the alternatives. The example
analysis shows the practicality and effectiveness of the proposed method.

Keywords: Multi-attribute group decision making; trapezoidal cubic fuzzy number; Hausdorff metric; power
average operator.

1 Introduction

Fuzzy sets were presented by Zadeh [60] to describe fuzzy problems with the membership function. The
drawback of using the single membership value in the fuzzy set theory is that the evidence for x 2 X and
the evidence against x 2 X are in fact mixed together (here, X is the universe of discourse). Atanassov [2]
introduced the concept of intuitionistic fuzzy sets (IFSs) characterized by a membership function and a non-
membership function, which is more suitable for dealing with fuzziness and uncertainty than the fuzzy set.
The IFS is highly useful in depicting the uncertainty and vagueness of an object, and thus can be used as a
powerful tool to express data information under various different fuzzy environments, which has attracted
great attention. The IFS has received more and more attention since its appearance, because the information
about attribute values is usually uncertain or fuzzy due to the increasing complexity of the socio-economic
environment and the vagueness of inherent subjective nature of human thinking.

IFS has been commonly useful to multi-attribute decision making (MADM) and multi-attribute group
decision making (MAGDM) [6, 17, 20, 22, 34, 38, 39, 41, 46, 48, 50, 52, 55, 57, 61, 62]. These investigates con-
tainer be incompletely classified into four types: aggregation operators [3, 6, 17, 20, 22, 32, 34, 38, 39, 41, 46,
48, 50, 52, 56, 57, 61, 62], similarity (or distance) measures and entropy [15, 21, 45, 47, 49, 53], extension of
classic decision making methods [19, 37, 40, 42, 43, 51, 54], new decision making methods [31, 35, 56], and
judgment matrix [53].
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In the characteristic of aggregation operators, Li et al. [17, 18, 20] introduced the generalized ordered
weighted average operators with IFSs. Zhao et al. [62] established some new generalized aggregation oper-
ators, such as generalized intuitionistic fuzzy (IF) weighted averaging operator, generalized IF ordered
weighted averaging operator, generalized IF hybrid averaging operator, and practical to MADM with IF data.
Xu and Yager [52], Xu [48], and Wei [38] developed some geometric aggregation operators based on IFS, such
as the IF weighted geometric operator, the IF ordered weighted geometric operator, and the IF hybrid geo-
metric operator. Wei [39] proposed some induced geometric aggregation operators with IF information. Xu
and Wang [55] developed induced generalized aggregation operators for IFSs. Wei and Zhao [41] developed
some induced correlated aggregating operators with IF information. Su et al. [34] proposed the induced gen-
eralized IF ordered weighted average operator. Liu and Wang [22] proposed the IF point operators. Xu [50]
developed the IF power aggregation operators. Yang and Chen [58] defined the quasi-arithmetic IF ordered
weighted average operators. Zeng and Su [61] proposed the IF ordered weighted distance operator. Yu and Xu
[59] proposed the prioritized IF aggregation operators. These aggregation operators for IF numbers (IFNs) may
be observed as the extension of the ones for real numbers, which mainly involve the arithmetic aggregation
operators, geometric aggregation operators, power aggregation operators, generalized average operators, and
induced aggregation operators. Yager [57] defined the idea of a power median. We introduced some possible
formulations for the support function used in the power average.

For the resemblance (or distance) measures and entropy, Li [15] discussed some measures of dissimi-
larity in IF structures. Xu [49] defined the normalized Hamming distance between two IFNs and proposed
the IF MADM method. Xu [47], Xu and Yager [53], and Huang et al. [13] defined similarity measures of IFSs
and applied the similarity measures to the MADM or MAGDM under IF environment. These similarity (or dis-
tance) measures of IFSs can also be applied to pattern recognitions and approximate reasoning. Xia and Xu
[45] developed the entropy/cross entropy for IFSs. Li et al. [21] researched the relationship between similarity
measure and entropy of IFSs.

In addition of classic decision making methods, Li [16] and Li et al. [19] extended the classic LINMAP
method to the IF environments. Wu and Chen [43] proposed the ELECTRE multi-criteria analysis approach
based on IFSs. Xu and Hu [54] constructed the projection models for IF MADM. Dymova and Sevastjanov [6]
investigated the operations on IF values in the framework of the Dempster-Shafer theory. Wei et al. [42] and
Wei [40] proposed the gray relational analysis method for IF MADM. These decision making methods under
IF environments generalize the classic decision making methods, such as TOPSIS, ELECTRE, LINMAP, and
gray relational analysis. Wei [37] proposed the maximizing deviation method for IF MADM. Xu [51] provided
an error-analysis-based method for the priority of an intuitionistic preference relation in decision making. Xu
et al. [56] defined the interactive method for eliminating any dominated alternatives by updating the deci-
sion maker’s preferences gradually so as to find out the optimal one eventually. Wu et al. [44] proposed score
functions; a method is developed to construct Fuzzy preference relations from a given intuitionistic fuzzy pref-
erence relation and interval-valued intuitionistic fuzzy preference relation, respectively. Vahdani et al. [35]
proposed IF ELECTRE, which utilizes the truth-membership function and non-truth-membership function
to indicate the degrees of satisfiability and non-satisfiability of each alternative with respect to each crite-
rion and the relative importance of each criterion, respectively. Pei and Zeng [31] proposed a new approach in
which the degree of membership, the degree of non-membership, and the degree of hesitation are considered
with various importance in reflecting the true image of the respective alternative. Chen et al. [5] proposed an
approach that can be easily extended to deal with problems in an interval-valued IF environment. Chen [4]
defined an experimental analysis conducted to examine the relationship between the results yielded by dif-
ferent score functions, considering the average Spearman correlation coefficients and contradiction rates. Xu
and Yager [53] investigated some IF preference relations and their measures of similarity for the evaluation
of agreement within a group. These IF preference relations enrich the research contents of the IF decision
making theory.

Liu and Tang [23] defined the interval neutrosophic uncertain linguistic variables handling the uncer-
tainty of the decision makers’ cognition in multi-criteria group decision making problems. Liu et al. [28] pro-
posed the multi-valued neutrosophic weighted Bonferroni mean operator and the multi-valued neutrosophic
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weighted geometric Bonferroni mean operator, and some of their properties are also investigated. Liu and
Shi [24] proposed the single-valued neutrosophic uncertain linguistic set by combining the uncertain linguis-
tic numbers and the single-valued neutrosophic set. Further, the neutrosophic uncertain linguistic number
improved generalized weighted Heronian mean operator and the neutrosophic uncertain linguistic number
improved generalized geometric weighted Heronian mean operator were developed. Liu et al. [29] extended
the Bonferroni mean operator based on the Dombi operations to propose the IF Dombi Bonferroni mean oper-
ator, the IF weighted Dombi Bonferroni mean operator, the IF Dombi geometric Bonferroni mean operator,
and the IF weighted Dombi geometric Bonferroni mean operator for dealing with the aggregation of IFNs, and
proposed some MAGDM methods. Liu et al. [30] extended the partitioned Heronian mean operator to linguis-
tic IFNs based on new operational rules, and proposed the linguistic IF partitioned Heronian mean operator,
the linguistic IF weighted partitioned Heronian mean operator, the linguistic IF partitioned geometric Hero-
nian mean operator, and the linguistic IF weighted partitioned geometric Heronian mean operator. Liu and
Liu [26] combined the Bonferroni mean operator with g-rung orthopair fuzzy numbers to propose the g-rung
orthopair fuzzy Bonferroni mean operator, the g-rung orthopair fuzzy weighted Bonferroni mean operator,
the q-rung orthopair fuzzy geometric Bonferroni mean operator, and the q-rung orthopair fuzzy weighted geo-
metric Bonferroni mean operator, as well as developed MAGDM methods based on these operators. Liu and
Wang [27] proposed the g-rung orthopair fuzzy weighted averaging operator and the g-rung orthopair fuzzy
weighted geometric operator to deal with decision information, and some of their properties are well proved.
Liu and Chen [25] proposed a new MAGDM method with the I2LI based on the proposed I2LGA operator.

The cubic sets introduced by Jun et al. [14] are the generalizations of fuzzy sets and IFSs, in which there
are two representations: one is used for the degree of membership and other is used for the degree of non-
membership. The membership function is held in the form of interval, while non-membership is thought over
the normal fuzzy set.

Fahmi et al. [9] developed the Hamming distance for triangular cubic fuzzy number and weighted averag-
ing operator. Fahmi et al. [8] proposed the cubic TOPSIS method and gray relational analysis set. Fahmi et al.
[11] defined the triangular cubic fuzzy number and operational laws. The authors developed the triangular
cubic fuzzy hybrid aggregation (TCFHA) administrator to total all individual fuzzy choice structures provided
by the decision makers into the aggregate cubic fuzzy decision matrix. Fahmi et al. [1] defined the generalized
triangular cubic linguistic hesitant fuzzy weighted geometric operator, generalized triangular cubic linguis-
tic hesitant fuzzy ordered weighted average operator, generalized triangular cubic linguistic hesitant fuzzy
ordered weighted geometric operator, generalized triangular cubic linguistic hesitant fuzzy hybrid averaging
operator, and generalized triangular cubic linguistic hesitant fuzzy hybrid geometric operator. Fahmi et al. [7]
developed the trapezoidal linguistic cubic hesitant fuzzy TOPSIS method to solve the multi-criteria decision
making (MCDM) method based on trapezoidal linguistic cubic hesitant fuzzy TOPSIS method. Fahmi et al.
[12] defined aggregation operators for triangular cubic linguistic hesitant fuzzy sets, which include the cubic
linguistic fuzzy (geometric) operator, triangular cubic linguistic hesitant fuzzy weighted geometric operator,
triangular cubic linguistic hesitant fuzzy ordered weighted geometric operator, and triangular cubic linguistic
hesitant fuzzy hybrid geometric operator. Fahmi et al. [10] defined the trapezoidal cubic fuzzy weighted arith-
metic averaging operator and weighted geometric averaging operator. The expected values, score function,
and accuracy function of trapezoidal cubic fuzzy numbers (TzCFNs) are defined.

Due to the motivation and inspiration of the above discussion in this paper, we generalized the concept of
trapezoidal fuzzy sets, trapezoidal IFSs, interval-valued trapezoidal IFN, trapezoidal fuzzy power aggregation
method, interval-valued trapezoidal power aggregation operator, and interval-valued trapezoidal IF power
aggregation operator, and introduce the concept of trapezoidal cubic fuzzy sets. If we take only one element
in the membership degree of the TzCFN (i.e. instead of interval, we take a fuzzy number), we get trapezoidal
IFNs. Similarly, if we take membership degree as fuzzy number and non-membership degree equal to zero,
than we get trapezoidal fuzzy numbers.

The rest of this paper is organized as follows. In Section 2, we provide basic definitions of fuzzy set
and cubic set. Section 3 presents the distances and operation laws of TzCFNs. Four kinds of power average
operators of TzCFNs are exhibited in Section 4. Section 5 shows the MAGDM model and technique utilizing
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TzCFNs. In Section 6, a numerical example is used to verify the proposed method. In Section 7, we propose
the comparison method. The paper is concluded in Section 8.

2 Preliminaries

In this section, we present a few basic definitions of fuzzy set theory, IFS, and cubic set theory.

Definition 1 ([60]): Let H be a universe of discourse. The idea of fuzzy set was presented by Zadeh and
defined as follows: J = fh, F,(ﬁ)jii 2 Hg. A fuzzy set in a set h is defined [y : H ¥ I, which is a member-
ship function. F](ﬁ) denotes the degree of membership of the element h to the set H, where I = [0, 1]. The
collection of all fuzzy subsets of H is denoted by I Define a relation on I! as follows: (8T, n2 (T n .
8h 2 R(TH) ).

Definition 2 ([2]): An Atanassov IFS on H is a set A = [fajja; 2 Hy. The membership and non-
membership function, I’y and 7;, are, respectively given by the following: T;(h) : h ¥ [0,1],h2 H ¥ T;(h) 2
[0,1];n;(h): h ¥ [0,1],h 2 H ¥ ny(h) 2 [0,1]and0 Tj(h)+n;(h) 1forallh 2 H;m(h) =1 T;(h)
ny ().

Definition 3 ([14]): Let H be anon-empty set. By a cubic set in H we mean a structure F = fh, a(h), f(h) : h 2
Hgin which a is an interval-valued fuzzy set in H and B is a fuzzy set in H. A cubic set F = fh, a(h), B(ﬁ) th2
Hgis simply denoted by F = ha, Bi. The collection of all cubic sets in h is denoted by C¥. A cubic set F = ha, Bi
in which a(h) = 0 and B(fz) = 1 [resp. a(h) = 1 and ,B(ii) = 0] forall h 2 H is denoted by O (resp. 1). A cubic
set D = hA, &i in which A(h) = 0 and &(h) = O [resp. A(h) = 1 and &(h) = 1] for all h 2 H is denoted by 0
(resp. 1).

Definition 4 ([14]): Let H be a non-empty set. A cubic set F = (C, A) in H is said to be an internal cubic set if
c (h) A(h) Cc*(h)forallh 2 H.

Definition 5 ([14]): Let H be a non-empty set. A cubic set F = (C, A) in H is said to be an external cubic set if
A(h) 2 (C (h), c*(h) forall h 2 H.

3 Distances for TzCFNs

Definition 6: For any two subsets U and W of a Banach space Z, the Hausdorff metric is d(U, W) =
maxfsup, oy infyowju  wj, sup, o infyopju wjg.IfZ = R, U = [uy, uz]and W = [wq, w;] are intervals,
then the Hausdorff metric reduces to d(U, W) = maxfju; wij, jur  wajg.

D

lai, b1, c1, d1];
hiw, , wi'l, wii

[az, b2, ¢z, d>l;

and a, =
hiw, , w3 1, wai

Definition 7: Let a; = be two TzCFNs. The Hamming

distance and Euclidean distance between them are, respectively defined as

8 1 9
2_[ja1 aj+jb1 bj+jor cj+ijdi dj+=
dy(ai, ax) = 12 i €y
u(as, a) = _ nh . e o
S omax owy W, , Wy W, ,jwi W] z
and
1
1U[(01 a))+ (b1 ba))+(c1 c)+(di dy)+
de(ar, ar) = - & @

6 maxfl(w;  w,), (Wi  wy)l,wi  wag.



DE GRUYTER A. Fahmi et al.: Power Average Operators of Trapezoidal Cubic Fuzzy Numbers —— 1647

D
[0.5,0.6,0.7,0.8];
h[0.35,0.37],0.36i

[0.1,0.2,0.3,0.4];

" be two TzCFNs
h[0.20, 0.22], 0.21i

Example 1: Leta; = and a; =

%12 0.5 0.1j+j0.6 0.2j+j0.7 0.3j+j0.8 0.4j+§

maxf[jo.35 0.20j,j0.37 0.22j],j0.36 0.21jg

dy(aq, ax) =
§ —[04+04+04+04+maxf[0 15,0.15],0.159 =

« VAARRRY

1.75
——— = 0.1458
12 >

and

s o
1 [(0.5 0.1)+(0.6 0.2)+(0.7 0.3)+(0.8 0.4)+
6 maxf[(0.35 0.20),(0.37 0.22)],0.36 0.21g %

VY /AR 00

q
de(ar, a) = _ = % [0.4 + 0.4 + 0.4 + 0.4 + maxf{0.15, 0.15], 0.15g
pi %
1.75 _ 1.3228
= = = 0.2204. -
6 6

Theorem 1: Egs. (1) and (2) meet the non-negative symmetric and triangle inequality.

3.1 Operational Laws and Properties for TzCFNs

Definition 8: Ifa 0 and one of the four values a, b, ¢, and d is not always identical to zero, then the TzCFN

a=la,b,c,d;hlw ,w"], wiis known as a positive TzCFN, denoted by & > 0. The TzCFNs mentioned in

the following are all positive TzCFNs.

oy 4=t
12Wi ls 22 W ls

the operational laws for TzCFNs are defined as follows:

1) a1 +ar =[ay +a,b1 + by, c1+c2,dy +d>], h[Wl N w, , W_l'_ AW;], wy _ Wal.

(2) ai a; = [a1 az,bl bz,Cl C2,d1 dz],h[W1 _w, ,W_l'__W;_],WlAWZi.

(3) aja; = [(11(12, blbz, Cc1Co, dldz] h[W1 w,, W_l'_ N W;], w1 _ Wzi.

(4) /1611 [/101, Abl, AC1, Adl] h[AWl . AWI ] AWll

() a’ = [d}, b}, c}, d}; hiw, , wi'l, wii.

Definition 9: Let a; = be two TzCFNs and A 0. Then,

4 Power Average Operators of TzCFNs

Definition 10: For reg}l numbers fai, az,...,amg, the power average operator is defined as
PA(ai, az,...,am) = gzlﬁﬂgk;},where T(ar) = L, Sup(ay, a;) and Sup(a, b) is the support for a from
k=1 k ]

b, satisfying the following properties:

(1) Sup(a, b) 2 [0, 1];

(2) Sup(a, b) = Sup(b, a);

(3) Ifja bj<jx vyj,thenSup(a, b) > Sup(x,y).

4.1 Four Kinds of Power Average Operators of TzCFNs

Definition 11: Let faq, as, ..., amg be TzCFNs. The power average operator of TzCFNs is defined as

P
k=111 + T(a@p)]

TzCFPA(aq, as, ..., am) = )
P " T [+ T(ay)]

€)
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where T(ay) = P]-mzl Sup(ag, a;) and Sup(a, b) is the support for TzCFN a from TzCFN b, satisfying the

following properties:

(1) Sup(a, b) 2 [0, 1];

(2) Sup(a, b) = Sup(b, a);

(3) Ifd(a,b) < d(x,y), then Sup(a, b) > Sup(x, y), where d is Hamming or Euclidean distance defined in
Definition 7.

Thus, we see that the more similar and the closer two values, the more they support each other. T(a;) can
be considered as the support of a; by all the other TzCFNs. The power average operator of TZCFNs exhibits a
number of properties desirable for an aggregation operator.

Theorem 2: If Sup(ay, a;) = c(c 2 [0, 1], k & j), then the power average ope‘:_qtor of TzCFNs reduces to the

arithmetic average operator of TzCFNs as follows: TzCFPA (a1, dz, ..., am) =  j—; &,

Theorem 3 (Boundedness): The power average operator of TzCFNs satisfies minfaijk =1,2,..., mg
TzCFPA(ay, az, ...,am) maxfa;jk=1,2,...,mg.

Theorem 4 (Commutativity): Let a} (G=1,2,...,m) is any permutation of (ai,a,,...,am). Then

TzCFPA(a4, as, ..., am) = TzCFPA(a'l, a'z, e, )
Theorem 5 (Idempotency): Ifa; = a(j = 1, 2, ..., m), then TzCFPA (a1, ay, ..., am) = a.
Definition 12: The weighted power average operator of TzCFNs is defined as

P ,
a1 (1 + T (a))wiay]
T+ T(@))wr]

TzCFWPA(ay, aa, . .., dm) = (4)

, _ P, _ T. .
where T (a;) = =1 Sup(ag, a;) and Sup(a, b) and w = (w1, W2, ., Wm)" is the weight vector of TzCFNs
(a1, as,...,am), satisfyingthat0  w, 1(k=1,2,...,m)and T=1 wy = 1.

Theorem 6: If Sup(ay, a;) = c(c 2 [0, 1], k & j), then the weighted power average opef_qtor of TzCFNs reduces

to the weighted average operator of TzCFN, as follows: T2CFWPA (a1, az, ..., am) = =y Widx-
Definition 13: Let (a1, as, ..., am) be the TzCFNs. The power ordered weighted average operator of TzCFNs
is defined as
X
TzCFPOWA(ay, az,...,am) =  [wiayp), 5)
k=1
where
Ry Ry 1 X X
Wi = Q ﬁ Q TV s Rk = [V(ao(]))]’ TV = V(ag(j))’ V(ag'(])) =1+ T(aa'(j))y (6)

j=1 j=1

where Q:[0, 1] ¥ [0, 1] is a basic unit-interval monotonic function having the properties Q(0) = 0, Q(1) = 1
and Q(x) > Q(y), i._ﬁ.x >y. T(a;) denotes the support of the j-th largest TzCFN by all the other TzCFNs;
hence, T(a,g;) = ;n=1,16=}' Sup(ay(, ag) * Sup(agj), agp) indicates the support of I-th largest argument
for the j-th largest argument. (01, 02, ..., 0x) is a permutation of (1, 2,...,m), such that a,; 1) au
k=(1,2,...,m)and the ranking method of TzCFNs.

Theorem 7: If Q(x) = x, then the power ordered weighted average operator of TzCFNs reduces to the power
average operator of TzCFNS, i.e.

TzCFPOWA(a4, as, ..., am) = TzCFPA(a1, az, ..., am).

Theorem 8: IfSup(ay, a;) = c(c 2 [0, 1], k & j) and Q(x) = x, then the power ordered weighted average oper-
igor of TzCFNs reduces to the arithmetic average operator of TzCFNs as follows: Tz=CFPOWA (a1, as, ..., am) =
m

ag
k=1 m*
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Theorem 9: If Q(x) =1 for all x > 0, then TzCFPOWA(a., a, ..., am) =maxfa; |i=1,2,...,mg. If
Q(x) =0 for all x < 1, then TzCFPOWA (a1, a2, ..., am) = minfa;ji = 1, 2, ..., mg. Similarly, the power
ordered weighted average operator of TzCFNs includes properties such as idempotency, boundary, and com-
mutativity.

Definition 14: Let (a4, az, ..., an) be the TzCFNs, then the power hybrid average operator of TzCFNs is
defined as

x ,
TzCFPHA(ai, az,...,am) =  [wiagl, @
k=1
ere w = (w1, w7, ..., wn)" is the associated vector, satisfying that 0 w; 1 (k=1,2,...,m) and
,'(":1 wy = 1. We have a}( is the k-th largest of the weighted TzCFNs a;(i =1,2,...,m), a; = mw;a;, w =
(W1, Wa, ..., wn)T is the weight vector of a;(i = 1, 2, ..., m), satisfying that 0 w; 1and ;":1 w; = 1.

m is the balancing coefficient.

4.2 Determining Approach of T(aj) for Power Average Operators of TzCFNs

Before using these power average operators of TzCFNs, the key issue is to determine T(ay), i.e. the support of
ay by all the other TzCFNs. In the following, a determining approach of T(a;) for power average operators of
TzCFNs is investigated. For TzCFNs (aq, as, . . ., am), the consensus degree matrix is constructed as follows:

S= (Skj)m ms (8)

where §j; =1 d(ay, aj), d is Hamming or Euclidean distance defined as in Definition 7. The average
consensus degree of a; by all the other TzCFNs is defined as follows:
1 x
AS = —— ;.
KT Sij ©))
j=1,j&k

To compare easily, we normalize the average consensus degree to obtain the relative consensus degree
of a; by all the other TzCFNs, as follows:

_ o AS(ay)
RS(ay) = m (10)

As can be seen from Egs. (8)—(10), RS(a;) meets the conditions of support function in Definition 7. Hence,
RS(ay) can be viewed as ASy in Definitions 11-14.

5 MAGDM Model and Method Using TzCFNs

5.1 MAGDM Problem Using TzCFNs

A MAGDM problem is to find a best compromise solution from all feasible alternatives assessed on mul-

tiple attributes. Assume that there is a group consisting of k decision makers fP;, P;, ..., Pxg who have
to choose one of (or rank) m alternatives fA1, A,, ..., Ang based on n attributes fai, as, ..., an,g. Denote
an alternative set by A = fA1, Ay, ..., Ang and an attribute set by F = fai, as, ..., ang. Thi\:,weight vec-

tor of decision makersis A = (A1, Ay, ..., A))T, satisfying that0 A, 1(t=1,2,...,k) and le A = 1.
Suppose that the trapezoidal cubic fuzzy rating of an alternative A; on an attribute a; given by the decision

maker Ptisa TzCFN af; = [h{}(a)), h$}(a;), h)(ay), h§)(apl; hlwy; ©, wii O], widi, where [w;; ), wi ] denotes

the extent to which alternative A; belongs to trapezoidal fuzzy number [h(lti)(aj), h(z?(a,-), hg?(a,-), hgfl (aj)] on
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the attribute, w(t) denotes the extent to which alternative A; does not belong to the trapezoidal fuzzy num-

ber [h(t)(aj), h(t)(a]) h(t)(a]) h(t)(aj)] on the attribute g;, satisfying that 0 Wy ® 1,0 w;(t) 1 and

wo
0 wi;

follows: A® = (ag))m n (t=1,2,...,k), which are the trapezoidal cubic fuzzy decision matrices.

1. Hence, a MAGDM problem using TzCFNs can be concisely expressed in matrix format, as

5.2 MAGDM Method Based on Power Average Operators of TzCFNs

In general, attributes can be classified into two types: benefit attributes and cost attributes. In other words,
the attribute set F can be divided into two subsets: F; and F,, which are the subsets of benefit attributes and
cost attributes, respectively. As the n attributes may be measured in different ways, so the matrix

= (a)m (11)
needs to be normalized into
=(rm n, (12)
where
ri = (@), ¥ (ap), (@), rid(apls hlwy; @, w0, widi
In this paper, the normalization method is chosen as follows:

(t)(a]) (t)(a))

N

3
(t) (a]) r(t) (a]
[r(t)(a,-) r(t)(a]) r(t)(a,) r(t)(a,)] forj 2 Fy
(t)(a]) R (t)(a]

(t) (a]) (t) (a])

w

(t)(a]) (t)(a])
(t)+(a]) r(t)+(a})

s

(@), (), ap), riay) = forj 2 Fy

mm
ﬁ
\‘Q

NG
A1 41 (a@))

(a, m*(a,)

N

and

(t)(a]) r(t)(a])

ra)’ ')
["0(a), '9aj), rY(ay), ()] = forj 2 F,
ra) . ra)
N

(t)(a]) ’ (t)(a])

() —

where = maxfr(l?(aj)ji =1,2,...,mg, r§3+ = maxfr(l?(a]-)ji =1,2,...,mg, and g =

mmfr(t)(aj)ji =1,2,...,mg.

The normalization method mentioned above is done to preserve the property that the range of a nor-
malized trapezoidal fuzzy number [r(t)(a,) r(t)(aj) r(t) i (aj), r(t) :(a;)] belongs to the closed interval [0, 1]. Then,
the decision matrix A®) = (ag))m n can be transformed into the normalized trapezoidal cubic fuzzy decision

matrix R® = (rl(.?)m n
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Remark 1: The normalization equations for cost attributes given by Wang and Zhang [36] are as
follows:

max;th,(a;)g  h,,(a;)

r(a;) = ,
(@) max;fh,;(a;)g min;Th,;(a;)g
" #
r(@) = max;fh,;(a))g  h;(a;)
k5= max;fh;;(a;)g mln]fhh.(a])g ’
and
max;Thyi(a; hyi(a;
rki(aj) = J 41( ])g kl( ])

maxifh4i(aj)g min,-fhli(aj)g ’

It is easily seen that the above equations cannot ensure that the normalized fuzzy number
[r (t)(a,) r(t)(a]) r([)(a]) r(t)(a])] is still a TzCFN.

For the i-th line elements of matrix R®) = (rg))m n, by Eq. (8) the consensus degree matrix of alternative
A; given by P; is obtained as follows:

SO = n, (13)

where Sl(.[) = S(rfi), r(t))n n=1 d(rf,?, r(t))n n; d is Hamming or Euclidean distance defined as in
Definition 7.

By Eq. (9), the average consensus degree of attribute a; by all the other attributes of alternative 4; is
computed as

1

X
(t)
— s (14)

j&k

A\ =

By Eqg. (10), the relative consensus degree of attribute a; by all the other attributes of alternative 4; is
calculated as

A
RS(S“)) =P - (15)

Obviously, RS(SEf)) reflects the support degree of attribute a; by all the other attributes of alternative A;
given by decision maker p;. The bigger the value of RS(ng)), the higher the support degree of a; by all the
other attributes. As can be seen from Egs. (13) to (15), RS(SEf)) meets the conditions of support function in
Definition 11. Based on the above analysis, an algorithm and process of the MAGDM problems using TzCFNs
may be given as follows:

Step 1: Normalize the decision matrix AD = (ag))n n according to Egs. (11) and (12).

Step 2: Calculate the individual overall TzCFNs of all the alternatives. Substituting T(ay) of Definition 11 by
RS(SE([)), the individual overall TzCFN of alternative A; given by p; is derived as follows:

al = TzCFPA(rS,, rh, .tk (i=1,2,...,m; t=1,2,...,k). (16)
Step 3: Using the TzCFPHA operator to integrate af (t=1,2,...,k), the collective overall TzCFN of alterna-
tive A; is obtained as

i = TzCFPHA, 2 (rV, 12, .., 1), 17)
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where A = (A1, A2, ..., An)T is the decision makers’ weight vector and w = (w1, >, ..., w;)" is the associ-
ated vector.

Step 4: The ranking orders of alternatives are generated according to TzCFNs a;(i = 1, 2, ..., m) by the
ranking method.

Remark 2: If the weight vector of attributes is known, the algorithm and process of the MAGDM problems
using TzCFNs are the same as the above steps except for substituting TzZCFPA by TzZCFWPAW in Eq. (16), where
= (w1, W2, ..., wn)! is the weight vector of attributes, satisfying that 0 w;j 1(G=1,2,...,n)and
owp=1.
j=1 wj

Table 1: Decision Matrix Given by Expert p;.

a; a, as a,
= [0.2,0.3, = % [0.5,0.7, % [0.2,0.3, % [0.2,0.3,

A % 0.4,0.5], — 0.9,0.11], — 0.4,0.5], — 0.4,0.5], —
Eh[0.7,0.14],§ %h[0.24,0.29],§ %h[OJ, 0.14],% Eh[OJ,O.lO],%
é 0.10i ’9 é 0.25i é é 0.10i ’9 é 0.9i ’9
% [0.1,0.3, % [0.1, 0.5, %[0.20,0.33, % [0.1, 0.5,

A, 0.5,0.7], — 0.7,0.9], — 0.44,0.54], — 0.7,0.9], —
Eh[o.m, 0.14],% %h[0.30, 0.39],% %h[O.IZ, 0.16],% Eh[O.BO, 0.34],%
- 0.12i é - 0.34i 9’ - 0.13i ’9 é 0.31i 7
E [0.22,0.24, % [0.12,0.14, g [0.13,0.14, E [0.2,0.3, E

As 0.26,0.28], — 0.16,0.18], — 0.15,0.16], — 0.4,0.5], —
Eh[0.12,0.16],§ %h[0.9,0.20],§ %h[0.20,0.28],§ Eh[OJ,O.ll],%

0.14i ’9 0.13i é - 0.23i o 7 é 0.8i ’9

% [0.2,0.3, % [0.2,0.3, E E [0.7,0.8, E % [0.1, 0.5,

A 0.4,0.5], — 0.4,0.5], — 0.9,0.10],— 0.7,0.9], —
Eh[0.20,0.28],§ Eh[0.7,0.12],§ Eh[O.I,O.S],E Eh[0.30,0.37],§
- 0.22i i - 0.10i z - 0.3i 7 - 0.33i z

Table 2: Decision Matrix Given by Expert p,.
a; a, as a,
[=] [=] = [=] b= [=] b
E [0.1,0.3, %[0.12, 0.14,§ E [0.21,0.31, E % [0.11,0.13,

A 0.5,0.7], — 0.16,0.18], 0.41,0.51], — 0.14,0.15], —
Eh[0.10,0.12],§ Eh[0.9,0.11],§ Eh[0.71,0.91],§ Eh[O.Z0,0.ZZ],E

0.11i é é 0.10i ’9 é 0.81i 9’ é 0.21i é

% [0.1,0.3, % [0.1, 0.5, %[0.12, 0.14, % [0.1, 0.5,

A 0.5,0.7], — 0.7,0.9], — 0.16, 0.18], 0.7,0.9], —
Eh[0.10,0.12],§ Eh[0.30,0.32],§ Eh[0.9,0.11],§ Eh[0.30,0.32],§
é 0.11i é é 0.31i 9’ é 0.10i ’9 é 0.31i é
% [0.22,0.24, E %[0.12, 0.14,% % [0.13,0.14, E % [0.11,0.13,

As 0.26,0.28], — 0.16, 0.18], 0.15,0.16], — 0.14,0.15], —
Eh[0.12,0.14],§ %h[0.9,0.11],§ Eh[O.Z0,0.ZZ],E %h[0.20,0.22],§
é 0.13i 9’ é 0.10i ’9 é 0.21i 9’ é 0.21i 9’
§[0.12,0.14, % [0.1,0.3, § [0.14,0.15, % [0.21,0.25,

A 0.16,0.18], 0.5,0.7], — 0.16,0.17], — 0.27,0.29], —
Eh[0.9,0.11],§ Eh[O.I0,0.IZ],g %h[0.12,0.14],§ Eh[0.40,0.42]§
b 0.10i 7 - 0.11i 7 - 0.13i ” - , 0.41i ”
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6 Numerical Example

6.1 An Enterprise Selection Problem and the Analysis Process
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In order to improve the market-competing ability, a motorcycle company wants to select the best enterprise
to form the cooperative alliance from four potential enterprises A;, A,, A3, and A4. The attributes considered
in the selection are as follows: the producing ability a;, the level of technology innovation a,, the ability of
capital currency as, and the ability of research a,. An expert group is formed that consists of three experts

(or decision makers) fp1, p2, p3g, whose weight vector is k = (0.25, 0.25, 0.25, 0.25)7.

Step 1: Using Eq. (11), the decision matrix AD = (ag))n » is normalized to RY = (rg))n n. The results are
listed in Tables 4-6.

Table 3: Decision Matrix Given by Expert ps.

a as as ag
38 8 8 9 8
% [0.1,0.3, % [0.2,0.4, % [0.11, 0.13, § % [0.1,0.5,
A 0.5,0.7], — 0.6,0.8], — 0.14,0.15], — 0.7,0.9], —
=h[0.10, 0.12], 2 2h[0.10,0.12], 2h[0.20, 0.22],3 2h[0.30,0.32],3
0.11i ~ - 0.11i z - 0.21i 7 - 0.31i ~
% [0.22,0.24, % [0.2,0.3, %[0.12, 0.14, % [0.1,0.5,
A, 0.26,0.28], — 0.4,0.5], — 0.16,0.18], 0.7,0.9], —
30[0.12,0.14],3 2h[0.28, 0.30],3 2h[0.9, 0.11],3 2h[0.30, 0.32],3
0.13i - 0.29i 9’ - 0.10i z 0.31i -
% [0.22,0.24, § E [0.22,0.24, § % [0.13,0.14, § % [0.1, 0.5,
A5 0.26,0.28], — 0.26,0.28], — 0.15,0.16], — 0.7,0.9], —
20[0.12,0.14],3 2h[0.12, 0.14],3 2h[0.20, 0.22],3 2h[0.30, 0.32],3
0.13i ” - 0.13i z - 0.21i - - 0.31i ~
%[0.12,0.14,% % [0.3,0.5, % [0.11,0.13, § % [0.21,0.25, §
A, 0.16,0.18], 0.7,0.9], — 0.14,0.15], — 0.27,0.29], —
=0[0.9, 0.11], 2 =h[0.45, 0.47], =h[0.20, 0.22],Z =h[0.40, 0.42],2
B 0.10i ’ B 0.46i z B 0.21i i 0.41i 7

Table 4: Normalized Decision Matrix Given by Expert p;.

a

az

as

ay

Ay

A,

As

A

o 9
% [0.1428,0.2142, =

0.2857,0.3571], ~
2N[0.7446, 0.1489],3
~ 010361
% [0.0625,0.1875, =

0.3125,0.4375], —
2N[0.2777, 0.3888],3

0.3333i
% [0.22,0.24,
0.26,0.28],
=h[0.2857, 0.3809],2
0.3333i -

5 0.1428,0.2142, 3

0.2857,0.3571], —
2h[0.2857, 0.4000],
T0.0314i T

o 9
5 0:2262,0.3167,
0.4072,0.0497], =
2h[0.3076, 0.3717),%
0.3205i
5 0.0454,0.2272,
0.3181,0.4090], —
2h[0.2912, 0.3786], 2
0.3300i

g 02,0233,
0.2666,0.3],
2h[0.7317, 0.1626], 3
0.1056i
5 (0.1428,0.2142, =
0.2857,0.3571], —
2h[0.7608, 0.1304],%
© o008 7

o 9
5 0.1428,03571, =
0.2857,0.2143], ~
3[0.7446, 0.1489],3
~ 0.1063i
g [0.1324,0.2185, =
0.2913,0.3576], —
3h[0.2926, 0.3902],3
0.3170i i
5 [0.2241,0.2413,
0.2586, 0.2758], —
3[0.2816, 0.3943],3
032391 )’
g [0.28,032,
0.36,0.04], ~
=N[0.1111, 0.5555], 3
T 03333

o =)
% [0.1428, 0.2142, =
0.2666,0.3571], —
=h([0.4117, 0.0588],=
0.5294i z
5[0.0454,0.0909%
0.3181, 0.4090], —
=h[0.3157, 0.3578],=
0.3263i z
% [0.1428, 0.2142, =
0.2857,0.3571], —
=h[0.4347,0.0683],=
0.4968i 9’
5[0.0454, 0.2272,2
0.3181, 0.4090],
= h[0.30,0.37], =
B 0.33i z




1654 —— A.Fahmi et al.: Power Average Operators of Trapezoidal Cubic Fuzzy Numbers

DE GRUYTER

Step 2: Utilizing the Hamming distance and Eq. (16), the elements in the i-th line of the normalized matrix
RY = (rg))n n can be integrated into the individual overall TzCFNs of the alternative 4; (i = 1,2, 3, 4; t =
1,2, 3, 4), as follows:

Step 3: By Eq. (6), the associated weighted vector with the CFPHA operator is obtained as x =
(0.25,0.25,0.25, 0.25)". Combining the weight vector of experts k = (0.36,0.25,0.39)" and Eq. (17), the
collective overall TzCFNs of the alternatives are, respectively derived as follows:

Table 5: Normalized Decision Matrix Given by Expert p,.

a

az

as

ay

Ay

A,

Az

Ay

LS9 }>)

% [0.0625, 0.1875,
0.3125, 0.4375], —
Eh[0.3030, 0.3636],%
0.3333i z

% [0.0625, 0.1875,
0.3125, 0.4375], —
Eh[0.3030, 0.3636],%

0.3333i °
% [0.22,0.24, E
0.26,0.28], —
Eh[0.3076, 0.3589],5
0.3333i ”

% [0.2,0.2333,
0.2666,0.3], —
Eh[o.sms, 0.0990],5
0.0900i -

S
% [0.2,0.2333,
0.2666,0.3], —
gh[o.sms, 0.09901,5
0.0900i ”
% [0.0454,0.2272,
0.3181, 0.4090], —
5h[o.3225,0.34401,§
0.3333i z
% [0.2,0.2333,
0.2666,0.3], —
gh[o.sms, 0.09901,5
0.0900i ”
% [0.0625, 0.1875,
0.3125,0.4375], —
5}1[0.3033,0.3636],5
0.3333i z

o 9

% [0.1458, 0.2152,
0.2847,0.3541], —
Eh[0.2921, 0.3744],5
0.3333i ”

% [0.2,0.2333,

0.2666,0.3], —
Eh[o.sms, 0.0990],5
0.0900i >

% [0.2241, 0.2413,
0.2586, 0.2758], —
Eh[0.3174, 0.3492],5
0.3333i z

% [0.2258, 0.2419,
0.2580, 0.2741], =
Eh[0.3076, 0.3589],5
0.3333i z

o 9
% [0.2075, 0.2452,
0.2641,0.2830], —
Eh[0.3l74, 0.3492],5
0.3333i >
% [0.0454,0.2272,
0.3181, 0.4090], —
Eh[o.nzs, o.344o1,§
0.3333i
% [0.2075, 0.2452, E
0.2641,0.2830], —
Eh[0.3l74, 0.3492],5
0.3333i >
%[0.2058, 0.2450,
0.2647,0.2843], =
5&1[0.3252, o.4117],§
0.3333i i

@ L}

Table 6: Normalized Decision Matrix Given by Expert ps.

a

as

ay

A1

Az

As

Ay

S 9

% [0.0625, 0.1875,
0.3125,0.4375], =

Eh[0.3030,0.3636],§

0.3333i
% [0.22,0.24,
0.26,0.28], —
Eh[0.3076,0.3589],§
0.3333i z
% [0.22,0.24,
0.26,0.28], ~—
Eh[0.3076,0.3589],§
0.3333i i
% [0.2,0.2333,
0.2666,0.3], —

Eh[0.8108,0.0990],§
0.0900i 7

az

8

% [0.2, 0.4,
0.6,0.8], -

Eh[0.3030,0.3636],§
0.3333i z

% [0.1428, 0.2142,
0.2857,0.3571], —
Eh[0.3218,0.3448],§

0.3333i
% [0.22,0.24,
0.26,0.28], —
Eh[0.3076,0.3589],§
0.3333i z

% [0.125,0.2083,
0.2916, 0.375], —
Eh[0.3260,0.3405],§
0.3333i i

o 9
% [0.2053, 0.2452,
0.2641,0.2830], —
Eh[o.3174,0.3492],§
0.3333i z
% [0.2,0.2333,
0.2666,0.3], —
Eh[o.81os,o.o990],§
0.0900i 7
% [0.2241,0.2413,
0.2586, 0.2758], —
Eh[o.3174,0.3492],§
0.3333i i
% [0.2053, 0.2452,
0.2641,0.2830], —
Eh[o.3174,0.3492],§
0.3333i 7

o 9

% [0.0454, 0.2272,
0.3181, 0.4090], —
Eh[o.3225,o.3440],§
0.3333i z

% [0.0454, 0.2272,
0.3181, 0.4090], —
Eh[o.3225,o.3440],§
0.3333i i

% [0.0454, 0.2272,
0.3181, 0.4090], —
Eh[o.3225,o.3440],§
0.3333i 7

% [0.2058, 0.2450,
0.2647,0.2843], —
Eh[o.3252,o.3414],§
0.3333i 7
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Table 7: Hamming Distance for Trapezoidal Cubic Fuzzy Number.

a az as ay
* 0.3024, *t * 1.2026, * * 0.3083, + * 0.6962, t+
A 0.1489 0.3771 1.1007 ' 11412
K 0.1036,, L 0.365 I 1.045 K 0.4386,
0.2693, *+ 0.8216, *+ 1.6808, + 0.3157, +
A, 0.3811 ' 0.8142 ’ 0.3902 ' 0.3578 ’
L 0.8188, L 0.8243,, L 0.3170,, L 0.3263,,
0.5319, + 0.7869, *+ 0.2816, *+ 0.6732, +
As 0.6205 ’ 0.5785 0.3943 ’ 1.1317
L 0.5762,, L 0.5411,, L 0.6439,, L 0.4712,
0.9867, + 0.2882, + 0.9702, * 0.5177, +
A, 0.1206 1.0466 0.6693 ' 0.6385
0.1096 1.0044 0.8198 0.5695

Table 8: Collective Overall Trapezoidal Cubic Fuzzy Number.

a a as ag
A1 h0.1008i h0.4008i h0.3669i h0.3804i
A, h0.2693i h0.2748i h0.5602i h0.1192i
As h0.1269i h0.2623i h0.2146i h0.3772i
Ay h0.1333i h0.3488i h0.3234i h0.2128i

Step 4: Adopting the approach of the rank a;, the expectation and expectant scores of all alternatives are
obtained as follows: E(a;) = 0.2742, E(a;) = 0.4625, E(as) = 0.8268, E(as) = 0.7123.

45

e Ela 08268 g rn 07123

G E(a  0.4625
€ E(a 02742

E(a) E(az) E(as) E(as)

Final ranking

7 Comparison Analyses

To verify the rationality and efficiency of the proposed approach, a comparative study is steered using the
methods of IF power average aggregation operator [51], trapezoidal fuzzy number [33], and triangular cubic
fuzzy number [11], which are special cases of power average operators of TzCFNs, to the similar expressive
example.
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7.1 A Comparison Analysis with the Existing MCDM Method Intuitionistic Fuzzy
Power Average Aggregation Operator

The IF power average aggregation operator can be considered as a special case of TzCFNs when there is
only element in membership and non-membership degree [50]. For comparison, the TzCFNs can be trans-
formed to IF power average aggregation operator by calculating the average value of the membership and
non-membership degrees. After transformation, the IF power average aggregation operator is shown in
Table 9.

Step 1: The decision matrix AW = (ag.))n n is normalized to R® = (rl(.]’.))n n [50]. The results are listed in
Table 9.

Step 2: Utilizing the aggregation operator, the elements in the i-th line of the aggregation matrix RO =
(rg))n n can be integrated into the individual overall IFNs of the alternative A; (i =1, 2,3,4; t = 1,2, 3, 4),
as follows: w = (0.2, 0.2, 0.3, 0.3).

Step 3: Find the score value E(a;) = 0.2021, E(a;) = 0.0403, E(as) = 0.0818, E(as) = 0.0544.
Step 4: Find the final ranking E(a;) > E(as) > E(as) > E(ay).

Obviously, the ranking being derived from the method proposed by Xu [50] is different from the result
of the proposed method. TzCFNs are more flexible than the IF power average aggregation operator because
they consider the situations where decision makers would like to use several possible values to express the
membership and non-membership degrees.

7.2 A Comparison Analysis with the Existing MCDM Method Trapezoidal Fuzzy
Number

Trapezoidal fuzzy number can be considered a special case of TzCFNs when decision makers only consider
membership degrees in evaluation [33]. For comparison, the TzCFNs can be transformed to trapezoidal fuzzy
number by remaining only the membership degrees and non-membership degrees. After transformation, the
trapezoidal fuzzy number information is given in Table 11.

Step 1: Utilizing the aggregation operator, the elements in the i-th line of the normalized matrix RY = (I’g))n n
can be integrated into the individual overall TzFNs of the alternative A;(i = 1, 2, 3; t = 1, 2, 3), as follows:

Step 2: Find the score value E(a;) = 0.4486, E(a;) = 0.6810, E(as) = 0.3167, E(as) = 0.4221.
Step 3: Find the final ranking E(a,) > E(a;) > E(as) > E(as).

The ranking of all alternatives Z, > Z; > Z, > Z3 and Z, is the best selection. Obviously, the ranking
being derived from the method proposed by Shaw and Roy [33] is different from the result of the proposed

Table 9: Intuitionistic Fuzzy Power Average Aggregation Operator.

Cy C Cs Cy
By [0.7,0.14] [0.24,0.29] [0.7,0.14] [0.7,0.10]
B, [0.10, 0.14] [0.30, 0.39] [0.12,0.16] [0.30, 0.34]
B3 [0.12,0.16] [0.9,0.20] [0.20, 0.28] [0.7,0.11]
By [0.20, 0.28] [0.7,0.12] [0.1,0.5] [0.30, 0.37]

Table 10: Aggregating Matrix on Intuitionistic Fuzzy Power Averaging.

By [0.5650, 0.1609]
B, [0.1829, 0.2636]
B3 [0.3554, 0.1918]
By [0.2357, 0.3445]
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Table 11: Trapezoidal Fuzzy Decision Matrix.

G C C3 Cy
# # # #
B 0.1,0.3, 0.12,0.14, 0.21,0.31, 0.11, 0.13,
1
0.5, 0. 0.16, 0. 0.41,0.51 0.14, 0.
.. 0.5 7# " %? .. 0.4 5 # ..0.14 1?
B 0.1,0.3, 0.1, 0.5, 0.12,0.14, 0.1, 0.5,
2
.0.5,0.7 .0.7,0.9 ,0.16,0.18 .0.7,0.9
B 0.22,0.24, 0.12,0.14, 0.13, 0.14, 0.11, 0.13,
3
0.26,0.2 0.16, 0. 0.15,0.16 0.14,0.1
" 8# " 1? " > # ~0.14 > #
B 0.12, 0.14, 0.1,0.3, 0.14,0.15, 0.21,0.25,
4
0.16,0.18 0.5,0.7 0.16,0.17 0.27,0.29

Table 12: Trapezoidal Fuzzy Weighted Averaging Operator.

B1 [0.1333, 0.2024, 0.2560, 0.3056]
B, [0.1056, 0.3081, 0.4203, 0.5281]
Bs [0.1351,0.1525, 0.1661, 0.1797]
B, [0.1433,0.1980, 0.2351, 0.2678]

method. TzCFNs are more flexible than trapezoidal fuzzy numbers because they consider the situations where
decision makers would like to use several possible values to express the membership degrees.

7.3 A Comparison Analysis with the Existing MCDM Triangular Cubic Fuzzy Number

Triangular cubic fuzzy number can be considered as a special case of TzCFNs when there are only three
membership and non-membership degrees [11]. For comparison, the triangular cubic fuzzy number can be
transformed to triangular cubic fuzzy numbers by calculating the average value of the membership and
non-membership degrees. After transformation, the triangular cubic fuzzy number information is given in
Table 13.

Step 1: Use the TCFHA operator to aggregate all three decision matrices into a single collective decision matrix
with triangular cubic fuzzy ratings. Consider w = (0.2, 0.3, 0.2, 0.3).

Step 2: To find the ranking order of the alternatives, use the score function E(a;) = 0.0409, E(a,) = 0.0628,
E(as) = 0.0203, E(a,) = 0.1145.

Step 3: Find the ranking E(a;) > E(a,) > E(a;) > E(as).

Table 13: Triangular Cubic Fuzzy Decision Matrix.

a as as a,
8 S 8 S 8 S 8 S
= [0.2,0.3, = = [0.5,0.7, = = [0.2,0.3, = =[0.2,0.3, =
A1 ?0.4],h[0.7,_> ?0.9],h[0.24_,> ?0.4],h[0.7,_> ?0.4],h[0.7_,>
80.14],0.10|9 80.29],0.25|9 80.14],0.10| o 80.10],0.9| o)
= [0.14,0.3, = = [0.1,0.5, = =[0.20,0.33, = = [0.1,0.5, =
Az ?0.5],h[0.10_,> ?0.7],h[0.30_,> ?0.44],h[0.1%,> ?0.7],h[0.30_,>
80.14],0.12| o 80.39],0.34|9 8 0.16], 0.13i ey 80‘34]’0'31§
=[0.22,0.24, = =[0.12,0.14,= = [0.13,0.14, = =[0.2,0.3, =
As ?0.26],h[0.12_,> ?0.16],h[0.9.,> ?0.15],h[0.20_,> ?0.4],h[0.7-,>
8 0.16], 0.14|9 80.20],0.13!9 8 0.28],0.28 80.11],0.8! o
= [0.2,0.3, = = [0.2,0.3, = =[0.7,0.8, = = [0.1,0.5, =
Ay >0.4],h[0.20,> >0.4],h[0.7,> >0.9],h[0.1,> >0.7],h[0.30,>
~0.28],0.22i ” ~0.12],0.10i * - 0.5],0.3i ~” ~0.37],0.33i *
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Table 14: Aggregating Matrix on Triangular Cubic Fuzzy Number.

By [0.22, 0.32, 0.42], h[0.5403, 0.1392], 0.2954ig
B, f[0.12, 0.555, 0.702], h[0.2472, 0.3096], 0.1461ig
Bs 1[0.134, 0.164, 0.194], h[0.5376, 0.1551], 0.3198ig
By [0.28, 0.57, 0.72], h[0.4326, 0.3833], 0.1591ig

Table 15: Comparison Analysis with Existing Method.

An enterprise selection problem and the analysis process E(as) > E(as) = E(a;) = E(a1)
Intuitionistic fuzzy power average aggregation operator [50] E(a1) = E(as) > E(as) = E(a2)
Trapezoidal fuzzy number [33] E(ay) > E(a1) > E(as) > E(as)
Triangular cubic fuzzy number [11] E(as) > E(ay) > E(a1) > E(as)

The ranking of all alternatives Z, > Z, > Z; > Z3 and Z, is the best selection. Obviously, the rank-
ing being derived from the method proposed by Fahmi et al. [11] is different from the result of the pro-
posed method. The main reason is that the triangular cubic fuzzy number only considers the interval-valued
triangular fuzzy number and triangular fuzzy number, which may result in the information not being equal.

The advantages of our proposal can be summarized on the basis of the above comparison analyses.
TzCFNs are very suitable for illustrating uncertain or fuzzy information in MCDM problems because the mem-
bership and non-membership degrees can be two sets of several possible values, which cannot be achieved
by the IF power average aggregation operator, trapezoidal fuzzy number, and triangular cubic fuzzy number.
On the basis of basic operations, aggregation operators and comparison method of TzCFNs can also be used
to process the IF power average aggregation operator, trapezoidal fuzzy number, and triangular cubic fuzzy
number after slight adjustments, because TzCFNs can be considered as the generalized form of the IF power
average aggregation operator, trapezoidal fuzzy number, and triangular cubic fuzzy number. The defined
operations of TzCFNs give us more accuracy than the existing operators.

A comparison analysis with existing methods is shown in Table 15.

8 Conclusions

This paper considers the MAGDM problem, in which the attribute values are in the form of TzCFNs, and a
new MAGDM method is offered. Based on the Hausdorff metric, two kinds of distances between TzCFNs are
defined: relating Hamming distance and Euclidean distance. The new operation laws for TzCFNs are speci-
fied. Hereby, four kinds of power average operators of TzCFNs are defined and their desirable properties are
studied. Applying the power average operator and the power hybrid average operator of TzCFNs, the collec-
tive overall TzCFNs of alternatives are derived. Then, the ranking order of alternatives is generated according
to the collective overall TzCFNs of alternatives. Finally, an illustrative example is given to verify the devel-
oped approach and to demonstrate its practicality and effectiveness. Because the power average operators
of TzCFNs can sufficiently take into account the information about the relationships among the arguments
being aggregated and can reduce the influence of outlier arguments on the decision result by assigning lower
weights to those outliers, they can make the decision result more reflective of the total collection of argu-
ments. The proposed decision method in this paper is more objective and reasonable. Meanwhile, the power
average operators of TzCFNs greatly enrich the research content of cubic fuzzy MAGDM and provide a new
tool of information fusion for solving decision problems under cubic fuzzy environments. The developed
method is very suitable for decision making problems in many areas, especially in situations where the prob-
lems involve multiple different attributes with different dimensions and some unfair assessment data. It is
expected to be applicable to supplier management, water environment assessment, threat evaluation and
missile weapon system selection, warship combat plan evaluation, etc. For future research, we will develop
some new geometric aggregation operators for TzCFNs, including the power geometric operator of TzCFNs,
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weighted power geometric operator of TzCFNs, and power ordered weighted geometric operator of TzCFNs,
whose weighting vectors depend upon the input arguments and allow values being aggregated to support.
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