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Abstract: In this study, we developed an approach to investigate multiple attribute group decision-making
(MAGDM) problems, in which the attribute values take the form of Pythagorean fuzzy numbers whose infor-
mation about attribute weights is incompletely known. First, the Pythagorean fuzzy Choquet integral geomet-
ric operator is utilized to aggregate the given decision information to obtain the overall preference value of
each alternative by experts. In order to obtain the weight vector of the criteria, an optimization model based
on the basic ideal of the traditional gray relational analysis method is established, and the calculation steps
for solving Pythagorean fuzzy MAGDM problems with incompletely known weight information are given. The
degree of gray relation between every alternative and positive-ideal solution and negative-ideal solution is
calculated. Then, a relative relational degree is defined to determine the ranking order of all alternatives by
calculating the degree of gray relation to both the positive-ideal solution and negative-ideal solution simul-
taneously. Finally, an illustrative example is given to verify the developed approach and to demonstrate its
practicality and effectiveness.

Keywords: Multiple attribute decision making, gray relational analysis (GRA), Pythagorean fuzzy numbers,
incomplete weight information.

1 Introduction

To address the issue of difficulties of acquiring sufficient and accurate data for real decision making due to
the imprecision and ambiguity of socio-economics, Zadeh introduced the concept of the fuzzy set [39], and
it has been used in a wide range of scientific fields. Vahdani et al. [32] proposed an integrated model based
on a compromised solution method to solve fuzzy belief multi-objective large-scale non-linear programming
problem with block angular structure. The authors developed a new method to transfer each belief decision-
making problem into some fuzzy problems. Mojtahedi et al. [24] developed a systematic decision process for
identifying and analyzing risks concurrently by applying multiple attribute group decision making (MAGDM)
in a fuzzy environment. Because selecting a transport project to invest is an important task, Mohagheghi et al.
[22] developed a sustainable transport investment selection method under an interval-valued fuzzy sets set-
ting to address uncertainty. To address the importance of criteria, the authors proposed relative preference
relation. Vahdani et al. [31] developed a compromise model to solve the multi-objective large-scale linear
programming problems with block angular structure involving fuzzy parameters. After the appearance of a
fuzzy set, a series of extensions both in theoretical and practical areas have been presented. Among these
extensions, intuitionistic fuzzy set (IFS) [1], initiated by Atanassov, seems to be the most reasonable and
acceptable. IFS is a powerful tool to deal with the imprecision and ambiguity of things more comprehensively.
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Since the establishment of IFS, it has been successfully applied in many areas of decision-making prob-
lems [2, 3, 17, 29, 33, 34]. Zhang et al. [44] developed a gray relational projection method for multi-attribute
decision making (MADM) based on intuitionistic trapezoidal fuzzy number. Liu and Qin [18] developed the
linguistic intuitionistic fuzzy Maclaurin symmetric mean operator, weighted linguistic intuitionistic fuzzy
Maclaurin symmetric mean operator, linguistic intuitionistic fuzzy dual Maclaurin symmetric mean oper-
ator, and weighted linguistic intuitionistic fuzzy dual Maclaurin symmetric mean operator. Ebrahimnejad
et al. [8] developed a multi-criteria decision-making (MCDM) model under an interval-valued intuitionistic
fuzzy environment to select the best outsourcing provider. Foroozesh et al. [9] proposed the VIKOR (vlsekri-
terijumska optimizacija i kompromisno resenje, in Serbian) method under a hesitant fuzzy set environment
by utilizing the weights of decision makers and the distance measure along with a new index for the ranking
process of compromise solution procedure. To decrease the loss for industrial selection problems, Gitinavard
et al. [12] developed a soft computing approach based on interval-valued hesitant fuzzy (IVHF) complex pro-
portional assessments and IVHF compromise solution methods with last aggregation. Mousavi et al. [25]
purposed a modified compromise ranking method (VIKOR), known as sorting the possible alternatives and
determining the compromise solution under IVHF sets for solving group decision-making problems in man-
ufacturing systems. However, in some practical decision-making process, the sum of the membership degree
and the non-membership degree to which an alternative satisfying a criterion provided by a decision maker
may be >1, but their square sum is 1. To overcome this situation, Yager [35, 36] initiated the concept of
Pythagorean fuzzy set (PFS) as a generalization of IFS and characterized by a membership degree and a
non-membership degree, which satisfies the condition that their square sumis 1. Zhang and Xu [43] estab-
lished an extension of TOPSIS to MADM with PFS information. The error to the proof-of-distance measure
in Zhang and Xu [43] has been pointed out by Yang et al. [38]. For MADM problems under a Pythagorean
fuzzy environment, Yager and Abbasov [37] developed a series of aggregation operators. Peng and Yang [26]
discussed their relationship among these aggregation operators and established the superiority and inferior-
ity ranking MAGDM method. Using Einstein operation, Garg [10] generalized Pythagorean fuzzy information
aggregation. Gou et al. [13] studied several Pythagorean fuzzy functions and investigated their fundamental
properties, such as continuity, derivability, and differentiability, in detail. Zhang [42] put forward a hier-
archical qualitative flexible (QUALIFLEX) multi-criteria approach with the closeness index-based ranking
methods for multi-criteria Pythagorean fuzzy decision analysis. Zeng et al. [41] explored a hybrid method for
Pythagorean fuzzy MCDM. Ren et al. [28] extended an acronym in Portuguese for Interactive Multi-criteria
Decision-Making approach to solve the MCDM problems with Pythagorean fuzzy information. Ma and Xu [21]
proposed symmetric Pythagorean fuzzy weighted geometric/averaging operators, and investigated the rela-
tionships among these operators and those existing ones. Peng and Yang [27] presented a new Pythagorean
fuzzy Choquet integral-based multi-attribute border approximation area comparison method for MCGDM.
Garg [11] developed the confidence Pythagorean fuzzy weighted averaging operator, confidence Pythagorean
fuzzy weighted ordered averaging operator, confidence Pythagorean fuzzy weighted geometric operator, and
confidence Pythagorean fuzzy weighted ordered geometric operator, along with their desired properties. Zeng
[40] proposed the Pythagorean fuzzy probabilistic ordered weighted average operator and applied it to the
MAGDM problem. Liu et al. [20] developed the Pythagorean uncertain linguistic Bonferroni mean operator,
as well as the Pythagorean uncertain linguistic partitioned Bonferroni mean operator and its weighted form
to solve the MADM problem. Lui et al. [20] proposed the Pythagorean fuzzy uncertain linguistic prioritized
weighted averaging aggregation operator and the Pythagorean fuzzy uncertain linguistic prioritized weighted
geometric aggregation operators. Mohagheghi et al. [23] developed a last aggregation group decision-making
process for weighting and evaluating PFS. The authors developed a method in computing the weight of
decision makers. The gray relational analysis (GRA) method was first proposed by Deng [5, 6], and was suc-
cessfully applied to solve MCDM problems. Khan et al. [15] developed the interval-valued Pythagorean fuzzy
TOPSIS based on the Choquet integral. Khan and Abdullah [14] proposed the interval-valued Pythagorean
fuzzy GRA method for MADM problems.

In dealing with MADM, there may be a situation where the decision maker may provide the degree of
membership and non-membership of a particular attribute in such a way that their sum is >1; then, it is
better to use Pythagorean fuzzy information. PFSs in comparison with IFSs provide more flexibility and
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power in expressing uncertainty. This enhancement in flexibility and power to express membership degree,
non-membership degree, and hesitancy is caused by improving the space in which those degrees can be
expressed. Sometimes, the attribute values take the form of Pythagorean fuzzy information and the informa-
tion about attribute weights is incompletely known because of time stress, lack of data or knowledge, and
the expert’s limited knowledge about the problem domain. The traditional GRA method [5, 6] and intuition-
istic fuzzy GRA method [33, 34] will fail in dealing with the above Pythagorean fuzzy MADM problems with
incomplete weight information. How to derive the attribute weights from both the given Pythagorean fuzzy
information and incompletely known attribute weight information based on the basic ideal of the traditional
GRA method is an interesting and important research topic. Therefore, it is essential to concentrate on this
problem. The purpose of this paper is to extend the concept of GRA to develop a methodology for solving
MADM problems under a Pythagorean fuzzy environment in which the information about attribute weights
is incompletely known and the attribute values take the form of Pythagorean fuzzy numbers (PFNs). To do
this, the remainder of the paper is structured as follows.

In Section 2, we briefly review some basic definitions and results about Choquet integral and PFSs. In
Section 3, we introduce the GRA method for Pythagorean fuzzy MADM problems with incomplete weight
information. In Section 4, we illustrate our proposed algorithmic method with an example. The conclusion
is in Section 5.

2 Preliminaries

In this section, fuzzy measure, the Choquet integral, and the definition of PFSs are reviewed. Some operations
and comparison laws of PFSs, which will be utilized in the latter analysis, are also presented.

2.1 Fuzzy Measure and Choquet Integral

In 1974, Sugeno [30] introduced the concept of fuzzy measure (non-additive measure), which only makes a
monotonicity instead of being an additivity property. For MADM problems, it does not need assumption that
criteria or preferences are independent of one another, and is used as a powerful tool for modeling interac-
tion phenomena in decision making. In the Choquet integral model [4, 7], where criteria can be dependent,
a fuzzy measure is used to define a weight on each combination of criteria, thus making it possible to model
the interaction existing among criteria. In this subsection, definitions of fuzzy measure, A-fuzzy measure,
discrete Choquet integral, and Pythagorean fuzzy Choquet integral operators are presented.

Definition 1 ([4]): LetX = fxq, x2, ..., xng be a universe of discourse and P(X) be the power set of X. A fuzzy
measure p on X is a set functionpu : P(X) ¥ [0, 1], satisfying the following conditions:

(M u(@) =0, uX) = 1.

(2 fA,B2P(X)and A B, thenu(A) u(B).

Even though it is necessary to add the axiom of continuity when X is infinite, it is enough to consider a finite
universal set in actual practice. u(fxi, x2, . .., xng) can be considered as the grade of subjective importance
of decision attribute set fx1, x2, ..., xng. Thus, with the separate weights of attributes, weights of any com-
bination of attributes can also be defined. Intuitively, we could say the following about any pair of criteria
sets A, B 2 P(X), A\ B = ¢: A and B are considered to be without interaction (or to be independent) if

u(A [ B) = u(A) + u(B), (1)

which is called an additive measure. A and B exhibit a positive synergetic interaction between them (or are
complementary) if

u(A [ B) > u(A) + u(B), )
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which is called a super-additive measure. A and B exhibit a negative synergetic interaction between them (or
are redundant or substitutive) if

u(A [ B) < u(A) + u(B), 3

which is called a sub-additive measure.
It is difficult to determine the fuzzy measure according to Definition 1; therefore, to confirm a fuzzy
measure in MAGDM problems, Sugeno [30] presented the following A-fuzzy measure:

u(A [ B) = u(A) + u(B) + Au(A)u(B), (4)

A2][ 1,00), A\ B = ¢. The parameter A determines interaction between the attributes. In Eq. (4), if A = 0,
the A-fuzzy measure reduces to simply an additive measure. For negative and positive A, the A-fuzzy measure
reduces to sub-additive and super-additive measures, respectively. Meanwhile, if all the elements in X are
independent, we have

X
pA) = u(fx9). )

i=1

If X is a finite set, then [}-,fx;g0 = X. The A-fuzzy measure u satisfies Eq. (6):
1

§ [1 FAu(x)] 1 ifAE0
O =p Do =_ g : ©)
g F(Xl) ifA=0
where x;\x; = ¢foralli,j =1, 2,...,nandi & j.It can be noted that y(x;) for a subset with a single element

x; is called a fuzzy density and can be denoted as p; = u(x;).
Especially for every subset A 2 P(X) we have

=
=

1
[l +Au(x)] 1 ifA&0

u(A) = @

A
X
y(x) ifA=0

Based on Eq. (2), the value of A can be uniquely determined from p(X) = 1, which is equivalent to solving

h'd
A+1= [1+ . ®)
i=1

It should be noted that A can be uniquely determined by u(X) = 1.

Definition 2 ([30]): Let f be a positive real-valued function on X and y be a fuzzy measure on X. The discrete
Choquet integral of f with respect to y is defined by

X
)= fowlulon) uAgi 1)l )
i=1
where o(i) indicates a permutation on X such that f;y foo) . fom)» Aew = F1,2,...,10, and
Ago) = ¢

It is seen that the discrete Choquet integral is a linear expression up to a reordering of the elements. Moreover,
it identifies with the weighted mean (discrete Lebesgue integral) as soon as the fuzzy measure is additive.
Moreover, in some conditions, the Choquet integral operator coincides with the ordered weighted average
operator.
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2.2 Pythagorean Fuzzy Sets and Their Operations

In this section, we give some basic definition and operations of PFSs.

Definition 3 ([35]): Let X be a fixed set, then a PFS can be defined as
P = f(x, ap(x), bp(x))jx 2 Xg, (10)

where the functions ap : X ¥ [0,1] and bp : X ¥ [0, 1] define the degree of membership and degree of
non-membership of the element x 2 X to P, respectively, and for all x 2 X it holds that

0 a’()+b*x) 1.

P
ForeachPFSPandx 2 X, mp(x) = 1 a?(x) b2(x)is said to be the Pythagorean fuzzy index of x to p.

Definition 4 ([43]): Let p = (a, b), p1 = (a1, b1), and p, = (a3, b) be the three PFNs and § > 0; then, the
following operational laws hold:

a
p1 p2 = a?+a3 aia3,biby . (11)
q
p1 p2 = aay, bij+b3 bibj . 12)
A
= a 1 1 p2° . (13)
g
_ 6 46
ép = 1 1 a2 ,b° . (14)

For PFN, Zhang and Xu [43] introduced the score function and accuracy function, and defined a method to
compare two PFNs as below.

Definition 5 ([43]): Let p; = (a;, b;) (i = 1, 2) be two PFNs, then S(p1) = a3  b? and S(p,) = a5 b3 be
the scores of p; and p,, respectively, and H(p1) = a? + b? and H(p,) = a3 + b3 be the accuracy degrees of
p1 and p,, respectively; then, the following holds:
(1) IfS(p1) < S(p2), then p1 < p,.
(2) If S(p1) = S(p2), then we have the following three conditions:

(@) IfH(p1) = H(p2), then p1 = p>.

(b) If H(p1) < H(p>), then p1 < p>.

(c) If H(p1) > H(p2), then p; > p,.

Zhang and Xu [43] presented a Pythagorean fuzzy distance measure for PFNs:

Definition 6 ([43]): Let p; = (a;, b;) (i = 1, 2) be two PFNs, then the distance between p; and p; is defined
as follows:

h i
1
dpi,p2)=5 ai a; + bl by +m m .., (15)
. -
wheremr; = 1 a2 blandm= 1 a3 bl

Definition 7 ([36]): Let Q be the set of all PFNs and p; = (a;, b;) (i =1, 2, ..., n) be a collection of PFNs,
and let PFWG: Q" ¥ Q, if
(0]

/.
Y 4 Y "
PFWGw(p1,p2,...,pn) =@  (a)", ®1 1 b7 A, (16)
i=1 i=1
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P
where w = (w1, wa, ...wn)T is the weighted vector of p; (i = 1, 2, ..., n) with w; 2 [0, 1] and ;':1 w; =1,
then PFWG is called the Pythagorean fuzzy weighted geometric operator.

Definition 8 ([36]): A Pythagorean fuzzy ordered weighted geometric operator of dimension n is 'a_>1napping
PFOWG: Q" ¥ Q that has an associated weighted vector w = (w1, wa, ..., wn)T withw; 2 [0, 1], ?:1 w; =
1, and is defined to aggregate a collection of PFNs p; = (a;, b;)(i = 1, 2, ..., n), according to the following
expression:

(@] ¥ 1
h'd Wi % h'd Wi
PFOWGW(pl, P2,... ,pn) = @ ao(,-) ], 1 1 bg(i) A, (17)
i=1 i=1
where p,q; is the i largest value of p;. If w = 1,1 . 1 " then the Pythagorean fuzzy ordered weighted

average operator is reduced to the Pythagorean fuzzy geometric operator.

Definition 9 ([27]): Letp; = (a;, b;) (i = 1, 2, ..., n) be a collection of PFNs and A be a fuzzy measure on X.
Based on fuzzy measure, an interval-valued Pythagorean fuzzy Choquet integral geometric (PFCIG) operator
of dimension n is a mapping Pythagorean fuzzy Choquet integral average, PFCIG : Q" ¥ Q, such that

(0] Y 1
N ) _ h'd MAoi) Ao
PECIG(p1, P, - - ., Pn) = @ Ao AMAoy) (Ao 1)), %1 1 b(zr(i) (Aot) A(Ao( 1))A, (18)
i=1 i=1
where fo(1), 0(2),...,0(n)g is a permutation of f1, 2, ..., 4g such that ps1) Pop) ... DPom and

Ag(k) = Xa(k)jj k fork 1, and AG(O) = ¢

3 GRA Method for MADM with Incomplete Weight Information
in the Pythagorean Fuzzy Setting

Let X =fX1,X5,...,Xmg be a discrete set of alternatives and A = fA1,A,,...,Ang be the set of

?:t)tributes, w = (w1, wa, ..., Wn)is the weighting vector of the attributes A; (j = 1, 2, ...n), where w; 2 [0, 1],
;':1 w; = 1. Suppose that the decision makers provide the attribute weight information may be presented

in the following forms [16], for i & j:

1. Aweakranking: fw;  w;g;

Astrict ranking: fw;  w;  v;(> 0)g;

A ranking with multiples: fw;  y;w;0,0 v; 1;

. Aninterval form: fA; w; A;+68;9,0 vy; yi+6; 1;

A ranking of differences: fw; w;  wy  wg,forj& k& L

noa W

For convenience, we denote by A the set of the known information about attribute weights provided by the
experts. h i
Let Rf = pg.‘) be a Pythagorean fuzzy decision matrix, provided by decision maker dj (k =
m n

1,2,...,1), as the following form:

A, Ay ... Ajp

(k k)

: x:pf P ... Pl

k (k) _ k k k
R'=pi) — =X8p%) pY ... p5)

k k k
Xm p$) PSS ... P
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where pg.‘) = ag.‘), bg.‘) is a PFN representing the performance rating of the alternative x; 2 X with respect
to the attribute A; 2 A provided by the decision makers dj.
To extend the GRA method in the process of group decision making, we first need to fuse all individual

decision matrices into a collective matrix by using the PFCIG operator.

Step 1: As for every alternative X; (i =1, 2, ..., m), each expert ¢, (k =1,2,...,r) is invited to express
their individual evaluation or preference according to each attribute 4; (j =1, 2,...,n) by a PFN pg.‘) =

a® bg.‘) i=1,2,....,m;j=1,2,...,n;k=1,2,...,r) expressed by the experts e;,. Then, we can

ij ;
obtain a decision-making matrix R¥ = pg.‘) as follows:
m n

Ay Ar ... An
2 3

k k k

. x, pf ¥ ... p{)

k_ k) — k k k
R" = pj; woa X2 py %Y ... p%
k k k

Xm D) Py -+ Pin

Step 2: Confirm the fuzzy density y; = u(4A;) of each expert. According to Eq. (4), parameter A; of expert can
be determined.

Step 3: By Definition 5, p{fj isreordered such that pg.{) pf]k 1 Utilize the Pythagorean fuzzy Choquet integral
average operator

(@) \d 1
Y Y AAw) A(A
PECIG pf]l)’psz), pg’) — @ bi]' A(A[k)) A(A(k 1)), %1 1 12] ( (kJ) ( (k 1))A’ (19)
k=1 k=1
h § i
to aggregate all the Pythagorean fuzzy decision matrices Rk = pl(.j) (k=1,2,...,r) into a col-
m n

i
lective Pythagorean fuzzy decision matrix R = pg.()

m
1,2,...,n),Aq = Tep, ..., en9, Ay 1) = ¢, and u(A) can be calculated by Eq. (3).

bii i=1,2,...,m;j=

ij?

, where p;; = q,
n

Step 4: Let H; be a collection of benefit criteria (i.e. the larger c;, the greater preference) and H, be a col-
lection of cost criteria (i.e. the smaller ¢;, the greater preference). The Pythagorean fuzzy positive-ideal solu-
tion (PFPIS), denoted p™ = pi,p5,...,pPn ,and the Pythagorean fuzzy negative-ideal solution (PFNIS),

denotedp = p,,p,,...,Pn ,aredefined as follows:
p+ = Aj, max;a;, min; by jj 2 Hy, min; a;;, max; b;; jj 2 H (20)
and
p = Aj, max;a;,min; by jj 2 Hi, min;a;, max; by jj2H, (21)

wherep* = a;", b andp = a;,b; (i=1,2,...,n).
Step 5: According to Pythagorean fuzzy distance, calculate the distance between the alternative X; and the
PFPIS p* and the distance between the alternative X; and the PFNIS p , respectively:
+ 17 5 2 2 2 2 2 i
di Di, P = E a;i ai]- -+ bi bl} + ﬂi]' s (22)
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and construct a Pythagorean fuzzy positive-ideal separation matrix D™ and Pythagorean fuzzy negative-ideal
separation matrix D  as follows:

2
d p11,p; d pi12,p5 ... d pin,Pn
d p»1,p7 dp2,p; ... dPaw,bn
(23)
d pmi,p; d Pm2,P; --. d Pmn,Pn
and
2 3
d p11,p; dpi2,p; ... dPin,Pn
d p1,p;, dp2,py; ... dPowm,Dn
(24)
d pmi,p; d Pm2,p; ... d Pmn,Pn

Procedure I

Step 6: Calculate the gray relational coefficient of each alternative from positive-ideal solution (PIS) and
negative-ideal solution (NIS) using the following equations, respectively. The gray relational coefficient of
each alternative from PIS is given as

. . + +
N ming ; pyMiNg j pn d bij, b; +pmax; j pmax; j p d Dij, b;
Gj = ) (25)

+ +
d Pij> b; +pmax; ; pmmax; j nd bij, D;

i=1,2,....m;j=1,2,...,n
Similarly, the gray relational coefficient of each alternative from NIS is given as

miny j mming j pd py,p; +pmax; ; pmaxy j nd py,p;
G = (26)

d pij,p; +pmax; ; mmaxy j nd py,p;

i=1,2,....,myj=1,2,...,n,where the identification coefficient is p = 0.5.

Step 7: Calculate the degree of gray relational coefficient of each alternative from the PIS and NIS using the
following equations, respectively:

+ x +

G = Wi(ij- @7)
=1
X

(i = W]'(ij' (28)
j=1

The basic principle of the GRA method is that the chosen alternative should have the largest degree of
gray relation from the PIS and the smallest degree of gray relation from the NIS. Obviously, for the weight
vector given, the smaller £; and the larger .{i'* , the better alternative A; is. However, the information about
attribute weights is incompletely known. Thus, in order to get §; and .{i+ , we must first calculate the weight
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information. Thus, we can establish the following multiple objective optimization models to calculate the
weight information:
8 X
%min(i = w,-(i]. i=1,2,....m
j=1

(M1) (29)

—+ 20 + .

max{; = wj(i)- i=1,2,....m
j=1

" subject to: w 2 H.

As each alternative is non-inferior, there exists no preference relation on all the alternatives. Then, we
may aggregate the above multiple objective optimization models with equal weights into the following single
objective optimization model:

T
(Mz)Bmm(l_izl =1 R (30)

-~ subject to: w 2 H.

By solving the model (M2), we get the optimal solution w = (w1, wa, ..., wy), which can be used as the
weight vector of attributes. Then, we can get (f(i =1,...,m)and {; (i=1,..., m)by Egs. (27) and (28),
respectively.

Step 8: Calculate the relative relational degree of each alternative from PIS using the following equation:

&
G=—2>2——,(i=1,...,m) (31)
LG
Step 9: Rank all the alternatives A; (i =1,2,...,m) and select the best one(s) in accordance with
¢i(i=1,2,...,m).Ifany alternative has the highest {; value, then it is the most important alternative.

Procedure II

Step 6: Calculate the gray relational coefficient of each alternative from PIS and NIS using the following
equation. The gray relational coefficient of each alternative from PIS is given as

,  ming ; pming j ,d pij,P,~+ +pmax; ; pmax; j pd pi;,p,~+
<‘U d + 4 d + ’ (3 )
bij, D; pmax; ; mmaxy j nd Pij, P;

i=1,2,...m;j=1,2,...,n.

Step 7: Case a: If the information about attribute weights is incompletely known, in order to get the <fi+ ,
we must first calculate the weight information. The gray relational coefficient between PIS and itself is

(1,1,...,1), so the comprehensive gray relational coefficient deviation sum is
X .
di(W) = 1 Cij Wj. (33)
j=1

Therefore, we can establish the following multiple objective optimization models to calculate the weight
information:

8 X
Zmin d;(w) = 1 (; w;
(M3)B j=1 (34)

~ subject to: w 2 H.
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As each alternative is non-inferior, there exists no preference relation on all the alternatives. Then, we
may aggregate the above multiple objective optimization models with equal weights into the following single
objective optimization model:

8 . X X -+
%mm di(w) = di(w) = 1 &G ow
(M) - = (35)
% >
=subject to: wj = 1.
j=1
By solving the model (M4), we get the optimal solution w = (w1, wa, ..., wn), which can be used as the

weight vector of attributes. Then, we can get (i+ (i=1,2,...,m)byEq. (27).

Case b: If the information about attribute weights is completely unknown, we can establish another multiple
objective programming model as follows:
8 ¢ h
%min d;(w) = 1 (; w;
j=1
M5 36
( )E -~ (36)
subject to: wj = 1.

i

j=1

Similarly, we may aggregate the above multiple objective optimization models with equal weights into
the following single objective optimization model:

8 X xxh
%min dw)=  diw) = 1 G ow
(M6) - - G7)
E x
=subject to: wj = 1.
j=1

To solve this model, we construct the Lagrange function:

> X h . b X
L(w, 0) = 1 (i]- wi +20( wj 1), (38)

i=1j=1 =1

where 0 is the Lagrange multiplier. The partial derivatives of L with respect to w; and 6 are computed as
follows:

oL _ x L2 _
a—wj_zl= 1 ¢ wj+20=0
xX L2
D) 1§ wp+o=o. (39)
i=1
0
m -+
i=1 1 (ij
(@) 1
oL x
= —=h@ . A =
30 2 w; 1 0
=1
X
> wi=1 (41)
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Putting Eq. (40) in Eq. (41), we get

2 2 3 13 1
X X 2
o= 9 4 1 ¢ S £ (42)
Combining Egs. (40) and (42), we get
"F’ P ,
=1 ;l=1 L C;
W]' = P > . (43)
=1 1 G

Then, we can get {;* (i = 1, ..., m) by Eq. (27).

Step 8: Rank all the alternatives X; (i =1,2,...,m) and select the best one(s) in accordance with
(l.+ (i=1,...,m).If any alternative has the highest (i+ value, then it is the most important alternative.

4 Illustrative Examples

In this section, we shall present a numerical example with Pythagorean fuzzy information in order to illustrate
the method developed in this paper.

Example 1: Suppose there is a panel with five possible emerging technology enterprises X; (i = 1, 2, 3,
4, 5) to select. There are three experts and four attributes are selected to evaluate the five possible emerging
technology enterprises:

1. A; is the technical advancement.

2. A, is the potential market risk.

3. Ajis the industrialization infrastructure, human resource, and financial conditions.

4. Ay is the employment creation and the development of science and technology.

The three experts’ own opinions regarding the results obtained with each emerging technology enterprise are
shown in Tables 1-3.
Assume that the information about attribute weights, given by experts, is partly known:
=f0.2 w; 0.25,0.15 w; 0.2,0.28 w3 0.32,0.35 w; 0.4g w; O, j=1,2,3,4,
;':1 w; = 1. Then, we utilize the developed approach to get the most desirable alternative(s).

Table 1: Pythagorean Fuzzy Decision Matrix R,

A A, As Ay

X p(0.5,0.8  p(0.8,0.4) p0.4,0.9  p(0.7,0.6)
X,  p0.7,0.6)  p(0.3,0.9  p(0.6,0.7)  p(0.6,0.8)
Xs  p(0.6,0.7)  p(0.8,0.5  p(0.2,0.9)  p(0.7,0.5)
X, p(0.9,03) p(0.6,0.8  p(0.80.5  p(0.3,0.9
Xs  p(0.6,0.8) p(0.8,0.3) p(0.3,0.9  p(0.6,0.7)

Table 2: Pythagorean Fuzzy Decision Matrix R®.

A A; As Ay

X1 p(0.5,0.7)  p(0.7,0.4)  p(0.3,0.9  p(0.7,0.8)
X,  p0.8,0.4) p(0.6,0.7)  p(0.5,0.7)  p(0.5,0.8)
Xs  p(0.3,0.9 p(0.8,0.6) p(0.6,0.7)  p(0.9,0.4)
X,  p0.6,0.5) p(0.3,0.9) p(0.8,0.6) p(0.5,0.7)
Xs  p(0.8,0.3) p(0.7,0.6)  p(0.4,0.8)  p(0.8,0.5)
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Table 3: Pythagorean Fuzzy Decision Matrix R®.

Al Az A3 A4

X1 p(0.8,0.6) p(0.4,0.7)  p(0.9,0.4)  p(0.5,0.7)
X2 p(0.3,0.9)  p(0.7,0.5)  p(0.6,0.5)  p(0.4,0.9)
Xs  p(0.7,0.5)  p(0.8,0.4) p(0.4,0.7)  p(0.8,0.6)
X,  p(0.8,0.5  p(0.6,0.7) p(0.7,0.6)  p(0.8,0.5)
Xs  p(0.6,0.5)  p(0.9,0.4) p(0.8,0.4)  p(0.3,0.9)

Step 2: We first determine the fuzzy density of each decision maker and its A parameter. Suppose that
u(A1) = 0.30, u(Ay) = 0.40, u(As) = 0.50. Then, A of expert can be determined as A = 0.45. By Eq. (6),
we have (A1, A) = 0.65, u(A1, A3) = 0.73, u(Az, As) = 0.81, and u(41, Az, A3) = 1.

Step 3: According to Definition 5, p() is reordered such that p(k) pf]k b, Then, utilize the PFCIG

operator

0]

Y
PFCIG(p1,p2,03) =@  ayy
k=1 k=1

<

1

AMAow) (Aot 1) %1 Y 1 b2(k) AAow) Ao 1))A
’ ol

i
to aggregate all the Pythagorean fuzzy decision matrices R = pg.‘) into a collective Pythagorean fuzzy
m n

decision matrix R = py; ., as below.

Step 4: Utilizing Eqgs. (20) and (21), we get the PIS and NIS, respectively, as

p* = 1h0.7668, 0.4530i,h0.8185, 0.4125i,h0.7635,0.6165i,h0.8176, 0.5144ig

p = Th0.5375,0.7254i,h0.4976,0.7996i,h0.4124, 0.7598i, h0.4884, 0.8439ig

Step 5: Utilize Egs. (23) and (24) to get the positive-ideal separation matrix and negative-ideal separation
matrix, respectively, as follows:

w

0.2601 0.2776 0.2747 0.2654

0.3210 0.0694 0.4129 0

2
0.3283 0.3472 0.2567 0.4476
0.4692 0 0.3390

0.1424 0 0.2961 0.3895

3
0.1112 0.3735 0.1614 0.1822

0.3999 0  0.44761.

2
0.0197 0.1520 0.1957 0
D
0.3210 0 0.4129 0.2248

0.1786 0.4692 0.1168 0.1334
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Step 6: Utilizing Eqgs. (25) and (26), we get the gray relational coefficient matrices in which each alternative
is calculated from PIS and NIS as follows:
2 3
0.4742 0.5634 0.4606 0.4692
; 0.4168 0.4032 0.4775 0.3439
{'; = R0.4223 0.7717 0.3623 1.00004.
1.0000 0.3697 1.0000 0.4090
0.6223 1.0000 0.4421 0.3759

h

20.6784 0.3858 0.2038 0.65143
h 0.9225 0.6068 0.5452 1.0000
(i]- = g1.0000 0.3697 1.0000 0.34394.

0.4223 1.0000 0.3623 0.5107

0.5678 0.3333 0.6676 0.6375

Step 7: Utilize the model (M2) to establish the following single-objective programming model: fmin &(w) =
0.6554wq1 + 0.4124w;,  0.0364ws  0.5455wy.
Solving this model, we get the weight vector of attributes:

w = (0.22,0.15,0.28, 0.35).
Then, we can get the degree of gray relational coefficient of each alternative from PIS and NIS:

& =0.482022, & =0.406241, & = 0.660105, & = 0.698605, & = 0.542259,

& =0.492172,&, =0.796626,& = 0.675820,¢&, =0.523095,& = 0.584964.

Step 8: Utilizing Eq. (29), we get the relative relational degree of each alternative from PIS as follows:

& =0.4948,& = 0.3377, & = 0.4941, & = 0.5718, and & = 0.4811.

Step 9: According to the relative relational degree, the ranking order of the five alternatives is X, > X3 >
X5 > X, > X>, and thus the most desirable alternative is Xj.

In the following example, we will use Procedure II to get the gray relation coefficient matrix and optimal
weight of the attributes.

Example 2: Suppose that a Hawaii company in Pakistan desire to hire a radiofrequency modeling engineer.
After the initial screening, four candidates (i.e. alternatives), X;, X, X3 and X4, remain for further
evaluation. In order to select the most suitable candidate, the decision maker takes into account the following
five attributes:

1. Emotional steadiness (41);
Oral communication skill (45,);
Personality (45);
Past experience (44);
Self-confidence (4s).

AR

Assume that the four decision makers d; (i = 1, 2, 3, 4) provide his/her preference information on candidates
with regard to attributes by using PFNs, as shown in Tables 4-7.

Then, we utilize the approach developed to get the most desirable alternative(s), which involves the
following two cases.
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Table 4: Pythagorean Fuzzy Decision by Decision Maker d;.

A A, A3 Ay As
X1 (0.8, 0.6) p(0.7,0.5) (0.6, 0.5) (0.9, 0.4) p(0.7, 0.6)
X> p(0.6,0.5) p(0.8, 0.4) p(0.7,0.6) p(0.6, 0.5) p(0.9, 0.4)
Xs p(0.9,0.3) (0.6, 0.5) (0.8, 0.4) p(0.7, 0.4) p(0.8,0.3)
Xa p(0.7, 0.4) p(0.9, 0.4) (0.6, 0.5) p(0.8, 0.5) p(0.7,0.5)

Table 5: Pythagorean Fuzzy Decision by Decision Maker d,.

A1 Az A3 Aa AS
X; p(0.7,0.6) p(0.6, 0.5) p(0.8, 0.6) p(0.7, 0.5) p(0.9, 0.4)
X2 p(0.8, 0.4) p(0.7, 0.4) p(0.6, 0.5) p(0.8, 0.3) p(0.6, 0.5)
X3 p(0.6, 0.5) p(0.9,0.3) p(0.7, 0.4) p(0.9, 0.4) p(0.7, 0.6)
X4 p(0.9, 0.4) p(0.8,0.5) p(0.9, 0.3) p(0.6, 0.5) p(0.8, 0.5)

Table 6: Pythagorean Fuzzy Decision by Decision Maker ds.

A1 Az A3 Aq AS
X1 p(0.6,0.5) p(0.8,0.5) p(0.7, 0.6) p(0.8,0.4) (0.6, 0.5)
Xz p(0.7,0.6) p(0.9, 0.3) p(0.8,0.3) p(0.7,0.6) p(0.8,0.4)
X3 p(0.8, 0.4) p(0.7,0.6) p(0.6, 0.5) p(0.8, 0.6) p(0.7, 0.4)
X4 p(0.9,0.3) p(0.6, 0.5) p(0.9, 0.4) p(0.9,0.3) p(0.9, 0.4)

Table 7: Pythagorean Fuzzy Decision by Decision Maker d;.

Ay A; Az Ay As
X1 p(0.9, 0.4) p(0.7, 0.6) (0.8, 0.5) (0.7, 0.4) (0.8, 0.6)
X p(0.8, 0.5) p(0.9, 0.4) (0.7, 0.4) p(0.8, 0.5) p(0.9,0.2)
X3 (0.7, 0.4) (0.8, 0.6) (0.8, 0.3) p(0.8, 0.4) p(0.7, 0.5)
Xa p(0.6,0.5) (0.8, 0.4) p(0.9,0.2) (0.7, 0.5) p(0.8, 0.4)

Case a: Assume that the information about attribute weight given by decision makers is partially known, i.e.

8 o
3015 w1 0.22,0.18 w; 0.24,020 w3 030,0.15 ws 0.20,3
A= x .
= 0.14 ws 0.19%w; 0,j=1,2,3,4,5, w;j=1 =

j=1

Then, we utilize the developed approach to get the most desirable alternative(s).

Step 2: We first determine the fuzzy density of each decision maker and its A parameter. Suppose that
u(A1) = 0.40, u(A;) = 0.30, u(As) = 0.20, and u(A4) = 0.50. Then A of expert can be determined as A =
0.65. By Eq. (6), we have
y(A1,A2) = 0.62, }I(Al,Ag) = 0.55, H(Al,A4) = 0.77, M(Az,A3) = 0.46, }1(A2,A4) = 0.70,
,Ll(A3,A4) = 0.63, },I(Al,Az,A3) = 0.74, ,Ll(Al,Az,A4) = 0.92, ,Ll(Al,A3,A4) = 0.87, ,M(Az,A3,A4) =
0.81, and ],l(A], Az, A3, A4) =1.

Step 3: According to Definition 5, pg.‘) is reordered such that pl(.}’.‘) pf]k D Then, utilize the PFCIG operator
(@] A 1
b d b d MAgi) A(Ag
PECIG(p1, p2, p3,ps) = @ Aok M) Ao 1’), %1 1 b2y (o) Ao 0) p

k=1 k=1
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i
to aggregate all the Pythagorean fuzzy decision matrices RM = pl(.]I.‘)
m
m n (see Table 8).

into a collective Pythagorean fuzzy
n

decision matrix R = pj;;

Step 4: Utilizing Eq. (20), we get the PIS and NIS, respectively, as

p* = fp(0.8128,0.5074), p(0.8469, 0.3827), p(0.8333, 0.3270),

p(0.8080, 0.4298), p(0.8438, 0.3393)g.

Step 5: Utilize Eq. (23) to get the positive-ideal separation matrix as follows:

0  0.2206 0.1791 0.0416 0.1816°

D+:hDTi: 01235 0 01978 0.0957 0 %
v 0.1736 0.1205 0.1072 0  0.1668
0.1770 0.0457 0  0.0813 0.0794

Step 6: Utilizing Eq. (25), we get the gray relational coefficient matrices in which each alternative is calculated
from PIS as follows:

21,0000 0.3333 0.3811 0.7261 0.3779°
h i _20.4718 1.0000 0.3580 0.5354 1.0000
% = B03885 0.4779 0.5071 1.0000 0.3981%

0.3839 0.7071 1.0000 0.5757 0.5814

Step 7: Utilize the model (M4) to establish the following single-objective programming model: fmin &(w) =
1.7558wy + 1.4817w;, + 1.7538ws + 1.1628w, + 1.6426wsg.
Solving this model, we get the weight vector of attributes:

w = (0.15,0.24,0.2,0.19,0.22).
Then, we can get the degree of gray relational coefficient of each alternative from PIS:

{; =0.5273,¢{, =0.7041,{;” = 0.5520,{; = 0.6646.

Step 8: According to the relative relational degree, the ranking order of the four alternatives is X, > X, >
X3 > X4, and thus the most desirable alternative is X5.

Case b: Step 7: If the information about the attribute weights is completely unknown, we utilize another
approach developed to get the most desirable alternative(s). Utilize Eq. (43) to get the weight vector of
attributes:

w =(0.1518,0.1952,0.1509, 0.3327, O.1695)T.

Table 8: Collective Pythagorean Fuzzy Decision Matrix.

A1 Az A3 A4 A5
X1 p(0.8128, 0.5074) p(0.7047, 0.5358) p(0.7464, 0.5348) p(0.7897, 0.4151) p(0.7865, 0.5447)
X3 p(0.7464,0.4873) p(0.8469, 0.3827) p(0.70470.4605) p(0.7464,0.4679) p(0.8438,0.3393)
X3 p(0.7740,0.3813) p(0.7734,0.5167) p(0.7663, 0.3655) p(0.8080, 0.4298) p(0.7384, 0.4389)
Xy p(0.7549, 0.4138) p(0.8195, 0.4262) p(0.8333, 0.2370) p(0.7560, 0.4695) p(0.7986, 0.4410)
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Then, we can get the degree of gray relational coefficient of each alternative from PIS:

{ =0.5800, " =0.6685,(; =0.6290, (" =0.6373.

Step 8: According to the relative relational degree, the ranking order of the four alternatives is X, > X, >
X3 > X1, and thus the most desirable alternative is X5.

4.1 Comparative Analysis

In order to verify the validity and effectiveness of the proposed approach, a comparative study is conducted
using the Pythagorean fuzzy TOPSIS [44] and GRA method for intuitionistic fuzzy sets [37], to the same
illustrative example.

4.1.1 Comparison Analysis with the Pythagorean Fuzzy TOPSIS

These two approaches are valid for solving MCDM problems. The GRA proposed by Deng [5, 6] is suggested
as a tool for implementing a multiple-criteria performance scheme, which is used to identify solutions from
a finite set of alternatives. GRA is an impact evaluation model that can measure the degree of similarity or
difference between two sequences based on the relation. TOPSIS method aims at choosing the alternative
with the shortest distance from the PIS and the farthest distance from the NIS.

According to Zhang et al. [44], the first step is to identify the Pythagorean fuzzy PIS and the Pythagorean
fuzzy NIS of the decision matrix (see Table 9), which are

p+ = (0.7668, 0.4530), (0.8185, 0.4125), (0.7635, 0.6165), (0.8176, 0.5144)g

p =1(0.5375,0.7254), (0.4976,0.7996), (0.4124, 0.7598), (0.4884, 0.8439)g

The next step is to calculate the distance between the alternatives X; and the Pythagorean fuzzy PIS and
Pythagorean fuzzy NIS, respectively, in each matrix by

+ X +
di Xi,p~ = w;d(pj,p~) (44)
j=1
¢
di Xi,p = w;d(pj,p ) (45)
j=1

In the last stag of Pythagorean fuzzy TOPSIS, calculate the relative relational degree of each alternative
from PIS using Eq. (29) as

&t
G=—1 _ (i=1,...,m). (46)
G +G
Table 9: Collective Pythagorean Fuzzy Decision Matrix R.
Ay A, As Ay

X1 p(0.6325, 0.6821) p(0.6264,0.5156) p(0.5552,0.7749) p(0.6392, 0.7280)
Xz p(0.5489, 0.7304) p(0.5681, 0.6981) p(0.5712, 0.6177) p(0.4884, 0.8439)
X3 p(0.5375, 0.7254) p(0.8000, 0.4894) p(0.4124,0.7598) p(0.8176,0.5144)
Xy p(0.7668, 0.4530) p(0.4976,0.7996) p(0.7635,0.6165) p(0.5740, 0.6981)
Xs p(0.6732, 0.5896) p(0.8185, 0.4125) p(0.5356,0.7162) p(0.5282, 0.7608)
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Then, for the same weight of the decision makers, we can get the overall relative closeness index {; of
each alternative. The bigger is &;, the better the alternatives and the most desirable alternative is (5, as given
below.

{1 = 0.5865,(; = 0.8115, {3 = 0.4758, {4 = 0.4164, {5 = 0.5700.

Thus, we know that the ranking results of the alternatives obtained by the Pythagorean fuzzy GRA
approach and the Pythagorean fuzzy TOPSIS approach are distinctly different, where the optimal choice
derived by the Pythagorean fuzzy GRA approach is X4, but the most desirable alternative obtained by the
Pythagorean fuzzy TOPSIS approach is X,. Essentially, these two approaches are discrepant at the consid-
eration of the decision makers’ behaviors. The Pythagorean fuzzy TOPSIS approach can only be used in the
situations where the decision makers are entirely rational. However, in practice, for the incomplete informa-
tion or some other factors, the decision makers usually cannot provide accurate preferences. In other words,
the decision makers are not rational to some degree. The Pythagorean fuzzy GRA approach can reasonably
depict the decision makers’ behaviors under risk, and thus it may deal with the above issue effectively.

4.1.2 Comparison Analysis with the Intuitionistic Fuzzy GRA Relation

IFNs and the PFNs can portray uncertain things from the membership degrees and the non-membership
degrees. They provide an effective tool to express the indeterminacy of the decision makers. On the one
hand, as mentioned before, the PFNs and IFNs can be transferred by the fuzzy intervals, which are more
scientific and practical for human beings to handle uncertain decision-making problems. On the other hand,
by judging things from the good, bad, and hesitant aspects, these two kinds of fuzzy numbers can reflect the
cognitions of the decision makers precisely. However, unlike the PFNs, the IFNs are not usable in some cases.
The IFNs must satisfy that the sum of the membership degree and the non-membership degree belongs to
[0, 1]. Thus, in our case analysis, there exist some numbers that IFNs cannot deal with. For example, in the
decision matrix, the first decision maker gives the membership degree and the non-membership degree of
the alternative X; with respect to attribute X; as 0.5 and 0.8, respectively. Then, the sum of 0.5 and 0.8 is >1.
However, this order is valid in PFNs for 0.52 + 0.82 = 0.89. In summary, the PFNs have stronger ability to
process information in MCDM.

To conclude from the above, the discussion has delivered the advantages of the proposed method. In eval-
uation with fuzzy set and IFS-based methods, using PFS has increased the space in which decision makers
can define their level of agreement, disagreement, and hesitation. One of the advantages of the developed
method is using multiple objective optimization models. This method offers the model with the ability to
address the decision preference in order to allocate attribute weights more reasonably. Moreover, it has pro-
vided a way to apply the objective information that shows membership, non-membership, and hesitation
degrees in PFS assessments.

5 Conclusion

The traditional GRA methods are generally suitable for dealing with MAGDM problems in which the infor-
mation takes the form of numerical values, yet they will fail in dealing with MAGDM problems in which the
information takes the form of Pythagorean fuzzy information. In this paper, we establish multiple objective
optimization models based on the basic ideal of the traditional GRA. To determine the attribute, we proposed
the optimization models based on the GRA. We proposed two procedures for MAGDM based on GRA under
a Pythagorean fuzzy environment. In the first procedure, we utilized the PFCIG operator to fuse all the indi-
vidual matrices. Then, based on the traditional GRA method, calculation steps for solving Pythagorean fuzzy
MAGDM problems with incomplete information are given. Following the calculating steps, we first calculated
the positive ideal separation matrix and the negative-ideal separation matrix. Then, the degree of gray rela-
tion between every alternative and PIS and NIS is calculated. A relative relational degree is then defined to
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determine the ranking order of all alternatives by calculating the degree of gray relation to both the PIS and
NIS simultaneously. In the second procedure, we first utilized the PFCIG operator to aggregate all the matri-
ces. In the calculation steps of the traditional GRA, we first calculated the positive ideal separation matrix.
Then, we calculated the degree of GRA relation between every alternative and PIS. Furthermore, to verify and
demonstrate the practicality and effectiveness of the proposed method, two illustrative examples are given.
Finally, we compare our proposed approach to the existing ones.
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