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Abstract: The patient admission scheduling (PAS) problem is an optimization problem in which we assign
patients automatically to beds for a specific period of time while preserving their medical requirements and
their preferences. In this paper, we present a novel solution to the PAS problem using the harmony search
(HS) algorithm. We tailor the HS to solve the PAS problem by distributing patients to beds randomly in the
harmony memory (HM) while respecting all hard constraints. The proposed algorithm uses five neighbor-
hood strategies in the pitch adjustment stage. This technique helps in increasing the variations of the gener-
ated solutions by exploring more solutions in the search space. The PAS standard benchmark datasets are
used in the evaluation. Initially, a sensitivity analysis of the HS algorithm is studied to show the effect of its
control parameters on the HS performance. The proposed method is also compared with nine methods: non-
linear great deluge (NLGD), simulated annealing with hyper-heuristic (HH-SA), improved with equal hyper-
heuristic (HH-IE), simulated annealing (SA), tabu search (TS), simple random simulated annealing with
dynamic heuristic (DHS-SA), simple random improvement with dynamic heuristic (DHS-OI), simple random
great deluge with dynamic heuristic (DHS-GD), and biogeography-based optimization (BBO). The proposed
HS algorithm is able to produce comparably competitive results when compared with these methods. This
proves that the proposed HS is a very efficient alternative to the PAS problem, which can be efficiently used
to solve many scheduling problems of a large-scale data.

Keywords: Harmony search algorithm, optimization, patient admission problem, metaheuristic, patient
scheduling problem.

1 Introduction

The patient admission scheduling (PAS) problem is a combinatorial optimization problem, which belongs
to the NP-complete category in almost all its variations [18]. NP means that a problem can be solved using
non-deterministic computer in a polynomial time. An NP-complete problem means that we can reduce all the
problem instances into another form in a polynomial time. On the other hand, NP-hard problem X represents
a problem for which there is an NP-complete problem Y for which we can reduce X into Y in a polynomial time
using a non-deterministic computer [12].
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This problem is tackled by assigning a set of beds to hospital rooms, while taking into account a set of
constraints like the medical equipment in the room and the medical expertise of the staff in the patient’s
room. These constraints are classified into hard and soft constraints. The satisfaction of the hard constraints
is mandatory for the PAS solution to be feasible, while the violations of the soft constraints should be mini-
mized as much as possible. In general, the PAS solution quality is measured by summing the soft constraint
cost violation.

During the recent years, the metaheuristic methods are considered successful techniques that have
been used to find satisfactory solutions for the PAS problem within a reasonable time. These metaheuristic
methods are classified into: first, population-based techniques such as genetic algorithm [7, 20] and biogeog-
raphy-based optimization (BBO) [14]. Second, local search-based techniques like great deluge [15], simulated
annealing (SA) [6], and adaptive large neighborhood search procedure [16].

The harmony search (HS) algorithm is a population-based metaheuristic method proposed by Geem et al.
[13], which mimics the behavior of music improvisation process. It has been an efficient technique in solving
various optimization problems such as nurse rostering problem [3], examination timetabling [1], economic
load dispatch [2], and others reported in Refs. [8-11, 17].

In this paper, the HS algorithm is investigated for the PAS problem. We study the effect of each HS
algorithm operator on the quality of the obtained solution. The PAS standard benchmark datasets are
used in the evaluation. Initially, a sensitivity analysis of the HS algorithm is studied to show the effect
of its control parameters on the HS performance. Six instances of the PAS problem dataset are used to
evaluate the algorithm. The comparison with nine algorithms from the literature shows that the proposed
algorithm is able to yield competitive results against state-of-the-art comparative methods using the same
datasets.

The remainder of this paper is organized as follows: Section 2 presents the formulation of the PAS
problem. The application of the HS algorithm for the PAS problem is described in Section 3. The experimental
results and analysis of the findings are presented in Section 4. The last section provides the conclusion and
possible future directions.

2 Patient Admission Scheduling (PAS) Problem

2.1 PAS Definition

The PAS problem formulation that we will use involves different inputs to the problem such as patients,
rooms, departments, and time slots [4]. The description for each input of the PAS problem is presented as
follows: patient attributes as the patient is a person with some treatment demands, gender, room preference,
age, and class. The patient must spend a period in the hospital, and s/he should be assigned to a bed in a
room for a fixed admission and discharge dates within the planned treatment; a time slot, which represents a
day of the patient stay; a planned patient stay, which is the set of all the days the patient will stay in the hos-
pital; room attributes as each room has different features, for example, medical equipment, room capacity,
and the department in which the room is located; department as each department has multiple specialisms
at different levels of expertise; speciality as each patient needs one or more specialists for her/his treatment;
room gender policy expressed by letters as follows: D means that the room can have male or female patients,
but they must be of the same gender in any specific day, F means that the room can be occupied by females
only, M means that the room can be occupied by males only, and N means that the room can contain patients
of both genders; age policy as some departments specify how old the patient can be in minimum or maximum
to be accepted in the department (e.g. department of pediatrics).

In the PAS problem, the main objective function is to respect all the hard constraints and to minimize the
violations of the soft constraints while maintaining all the medical or personal preferences for the patient.
The hard constraints (HC) are summarized as follows: only one patient is assigned to the bed at any time slot
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Table 1: Weights of Violating the Soft Constraints.

Constraint Weight
SC1 5.0
SC2 5.0
SC3 1.0
SC4 2.0
SC5 10.0
SCé6 11.0
SC7 0.8

(HC1), the dates for admission and release are pre-defined (HC2), the patient visit period is continuous (HC3),
and the capacity of the room cannot be exceeded (HC4).

The soft constraints (SC) are summarized as follows: the room gender policy needs to be attained (SC1),
the patient needed and preferred room properties should be satisfied (SC2). Missing one or more features
should be penalized, and the needed feature has a higher penalty than the preferred feature. The department
should have the needed speciality to treat the patient (SC3), the room needs to have the required speciality
to treat the patient (SC4), the age of the patient should correspond to the maximum or minimum age of the
department (SC5), the total number of transfers between the rooms has to be decreased (SC6), and the patient
room preference has to be satisfied (SC7).

In order to simplify the computation of the objective function, we adapt the preprocessing steps given by
Ref. [6]. We merge the penalties of violating the SC2, SC3, SC4, SC7, and partially SC1 soft constraints in the
patient-room penalty matrix (PRC). This penalty is computed only once for all patient-to-room assignments
when reading the input file. The room gender policy SC1 is included partially in the PRC. If the room gender
is of type F or M, then, the penalty is added to the matrix PRC, and if it is N, then, there is no penalty. Gender
policy D is the only case that cannot be merged with the matrix PRC, as it relies on other patient assignments.
Table 1 presents the weights of violating the soft constraints.

2.2 PAS Formulation

In order to compute the objective function, we identify the mathematical model of the PAS problem. First, we
define the symbols, which define different sets in the problem; then, we represent the decision variables used
to develop the mathematical model as follows: P represents the set of patients, B represents the set of beds, R
represents the set of rooms, T represents the set of days or time slots, ¢, represents the capacity of roomr, P,
represents the set of female patients, and P, represents the set of male patients.
We use the following decision variables to formulate the mathematical model of the PAS problem:
- X i have the value 1 if the room r on the timeslot t is selected for the patient p and the value 0
otherwise.
- 8 have the value 1 if the patient p is a male and 0 if the patient is a female.
- f,;inthe room r at the timeslot ¢, the number of the female patients is equal to 2(1 - gp)-XW’t.

peP

— m,:in the room r at the timeslot ¢, the number of the male patients is equal to ng X
peP
- PS,: is the set of patient stays, which is defined as {te T|t>= ts,p/\(t< ts,p+dp)}, where t,, is the patient

p admission day, and d, is the patient’s visiting period.
— Transferring a patient from one room to another is defined using:

porit porit+l }

o |1 ifltePs, \t+1ePs, \IreRIX, £ X
pt 0 otherwise.
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2.2.1 Hard and Soft Constraints Mathematical Formulation

— Inorder to select a room for the patient’s visit period, the following equation is used:

RXIJ:’»[ =1, VpeP, teT. )

— In order to ensure that the capacity of each room cannot be exceeded, the following equation is used:

>X, . <Sc,VreR, teT. @

peP

— The total penalties for violating the room gender soft constraint SC1 is calculated using the following
equation:

Foo = Z min(fr,t’ mr,z)'WRG' 3)

reR,teT

Note that W, represents the weight of the room gender policy constraint.

— The total penalties of transferring the patient from one room to another one (soft constraint SC6) can be
defined using the following equation:

Fo= 23 T, W. (4)

r peP,reR teT

Note that W, represents the weight of the transfer constraint.
—  The total room penalty of soft constraints (SC2, SC3, SC4, SC7, and partially SC1) is achieved using the
following equation, assuming that C, is the penalty of assigning patient p to room r:
FPRC = z Xp,r,t ’ Cp,r ° (5)

peP,reR tePS P

2.2.2 Objective Function

The objective function represents the generated solution quality. It is computed as the sum of the soft con-
straint violation cost when solving the PAS problem as follows:

PRC

F=F +FRG+FTr. (6)

3 Harmony Search Algorithm for PAS Problem

HS algorithm was developed by Geem et al. [13]. It starts with a population of random decision variables,
which are used to generate a feasible solution. The HS algorithm is driven by three operators to generate
a new solution: considering a solution from the memory, considering a randomly generated solution, and
adjusting the solution using a predefined pitch. Memory consideration operator is used by the algorithm to
share in generating a new solution by means of combining the features of the existing solutions in the popu-
lation (or the so-called HM). The diversity of the new solution is accomplished by visiting new regions in the
problem search space using the random consideration operator. Furthermore, the pitch adjustment operator
is used to enhance the new solution locally by applying a number of a predefined neighborhood strategy. If
the new solution quality is superior to the population worst solution, then, the HS algorithm replaces the new
solution with the worst one. This process keeps going until the stop criterion is met.
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The pseudo-code of the HS algorithm for solving the PAS problem is shown in Algorithm 1.

In the HS, the random consideration will be used to assign a new value for X’ The pseudo-code for filling
R, is shown in Algorithm 2.

During the random consideration stage, we select a viable value to xlf from its appropriate range X,
with the probability of 1-harmony memory consideration rate (HMCR). The elements of X, can be any value
within the search space of the problem. A new value for X is assigned using memory consideration and
using random consideration operators as follows:

, [R, w.pHMCR
i = @)

X}., w.p.(1-HMCR)

In the pitch adjustment stage, a neighborhood strategy to change X is selected. The purpose is to adjust the
selected variables into a new allocation with a small perturbation of the current solution with the probability
of pitch adjustment rate (PAR), where PAR [0, 1].

Algorithm 1: Harmony Search Algorithm for PAS Problem.

1: STEP 1: Initialize the parameters of PAS and HSA
1. Setthe PAS parameters drawn from the data set
2. Setthe HSA parameters (HMCR, PAR, NI, HMS)
3. Define the solution representation and define the objective function

2: STEP 2: Initialize the harmony memory HM
1. Construct solutions of the harmony memory by distributing patients to beds randomly while respecting all hard
constraints, and store them in ascending order, HM=x', x?, ..., XS
2. Identify the worst solution in HM, xorst= xS

3: STEP 3: Improvise a new harmony x’
1. X=g,
2. for (Vie[l, Patients]) do
3 If (U(0,1) <HMCR) then {Memory consideration}
4 begin
5, j=U[1, 2, ..., HMS]
6. x;€R;, where R/,={x/f|i=1, 2..., HMS}
7 If (R,=¢) then
8 xlfeXI., {random consideration}
9

. If (U(0,1) < PAR) then {pitch adjustment}
10. pitch adjustment for x;

11. end if

12. end if

13. end

14. else

15. xeX, {random consideration}
16. endif

17. end for

4: STEP 4: Update the harmony memory HM
1. If (fixX) < fixwers) then
2 Replaces x*ost by the new solution x’
3.  Reordering the solutions in HM in ascending order
4. endlIf

5: STEP 5: Check the stop criterion
1.  while the max num of improvisations Nl is not reached do
2. Repeat STEP 3 and STEP 4
3.  end while
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Algorithm 2: Filling R, from the solutions stored in the HM.

WRN™»N K W

10:

[ S =SS
v W N

16:
17:
18:
19:
20:
21:

for (V je[1, Patients]) do
u=Int(U(0,1) * HMS)
If bed (x/?) is available for all PS; related to x” then

bed(x‘f)=bed(x7)
update x’ flags to indicate that bed is not available
else
flagfound=false
i=1
While i <HMSA!flagfound do
If bed(xl’:) is available for all PS; related to x then
bed(x’) =bed(xl’f)
update x’ flags to indicate that bed is not available
flagfound=true
end if
i=i+1
end while
If j > HMS then > This will be satisfied when the HMS is reached where the patient will not find the feasible assignment
R/.=¢
end If
end If
end for

Yes, w.p.PAR

itch Adjust t(x))=
pitch Adjustment(x/) {No, w.p.(1_PAR) (8)

For the PAS problem, if the decision is Yes for the pitch adjustment of the allocation X}, then, we apply

one of the followings five equations to get a neighboring value:

N1, 0<rnd<(PAR/5);
N2, (PAR/5)<rnd<(2*PAR/5);
X;={N3, (2*PAR/5)<md<(3*PAR/5); ©)

N4, (3*PAR/5)<rnd<(4*PAR/5);
N5, (4*PAR/5)<rnd <PAR.

where rnd is a randomly generated number between (0,1). The five-pitch adjustment techniques obtain a
neighboring value as follows:

1.

N1: the patient of xlf allocation is transferred into another randomly selected bed (from the HM) with a
probability of [0, PAR/5].

N2: for the patient P1 with x}f allocation, we select another random patient P2 and then swap the rooms of
their entire stay period with the probability [PAR/5, (2*PAR/5)]. At least a 1-day overlap must happen for
the period of visit of the two patients.

N3: the patient with X; allocation is transferred into another randomly selected bed. This neighborhood
strategy attempts to assure that all patient soft constraints are satisfied. We cancel the new selected bed
if it cannot satisfy at least one of the soft constraints, and the patient is transferred into another bed
with the room that matches the patient preferences and medical needs with a probability of [(2*PAR/5),
(3*PAR/5)].

N4: for the patient P1 with x}f allocation, we select another random patient P2. Assign P1 to the P2’s bed,
and assign P2 into a randomly selected bed, which matches minimally one of the P2’s soft constraints
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with the probability of [(3*PAR/5), (4*PAR/5)]. The visiting period has to overlap minimally in 1 day for
the two patients.

5. N5: for the patient P1 with X allocation, if the patient move requires a relocation, then, we select a
new room, a relocation day, and the entry and release date. Such move is applied with a probability of
[(4*PAR/5), PAR].

Note that in some pitch adjustment techniques such as N2, N3, and N4, the feasibility of the new harmony
solution should be maintained during the improvisation process. Notably, in some pitch adjustment tech-
niques, the bed availability will not be recognized, and thus, the feasibility cannot be maintained. As a con-
sequence, the pitch adjustment operator will neglect the chosen technique and start over again to choose
another one.

4 Experiments and Results

In this section, the performance of the proposed HS algorithm to solve the PAS problem is evaluated. The
proposed HS algorithm is evaluated using six standard datasets with different complexity and characteris-
tics as discussed in Section 4.1. A sensitivity analysis of the HS algorithm is studied to show the effect of its
control parameters (i.e. HMCR, PAR, and harmony memory size [HMS]) on the HS performance as discussed
in Section 4.2. The comparative evaluation of the proposed method and nine well-regarded methods using
the same datasets is described in Section 4.3.

Note that the proposed HS algorithm is programmed using Java, under Windows 7, on an Intel Machine
with Core(TM) i3-2350 M CPU with 2.3 GHZ, and 4GB RAM. The time complexity of the proposed algorithm is
not considered in this section due to the fact that this kind of problem is not a real time, and it does not run
frequently. Therefore, the time complexity is not a major factor to evaluate such a new method.

4.1 Dataset Used

The dataset used for the experiments has six problem instances freely available from Demeester (https://
people.cs.kuleuven.be/wim.vancroonenburg/pas/). Their features are summarized in Table 2. The instances
vary in terms of size and complexity. The number of patients P represents the actual number that is included
in the problem after omitting the patients with O day of stay or that have the entry day that is after the end of
the planned visiting period. We include the total number of patients in the parentheses. Although there are
more than six datasets, these instances are selected because their structure is more homogeneous. Also, there
are a number of comparative methods that use the same datasets to evaluate their proposed methods. These
comparators are summarized in Section 4.3.

The default values for the weights defined by Bilgin et al. [4] are as follows: w,,=5, w ;=w, =1, W, =5,
Wy =2, Wp,,=0.8, w,, =10, w, =11.

Table 2: Characteristics of the Benchmark Instances.

Instance Beds (B) Rooms (R) Number of elective Total Departments Planning horizon

patients patients (P) (MaxD)
TestDatal 286 98 652 693 4 14
TestData2 465 151 755 778 6 14
TestData3 395 131 708 757 5 14
TestData4 471 155 746 782 6 14
TestData5 325 102 587 631 4 14
TestData6 313 104 685 726 4 14
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In this work, we use the Java based validator program available from the PAS problem dataset website to
calculate the cost function in order to compare our results with the state-of-the-art algorithms.

4.2 Sensitivity Analysis of the Proposed HS Algorithm

In this section, the ad hoc sensitivity analysis of the HS algorithm on its three parameters (HMCR, PAR,
and HMS) is intensively studied to show their effect on the algorithm performance. Nine convergence cases
are established and summarized in Table 3. The first three convergence cases are set to study the effect of
HMCR on the performance of the HS algorithm. The second three convergence cases are set to study the
effect of PAR on the performance of the HS algorithm, while the last three convergence cases are set to
study the effect of HMS on the performance of the HS algorithm. At each stage, the configuration of the
best case yielded the best results and is retained and used in the consecutive experimented cases. The fol-
lowing three subsections describe each convergence case’s stage. Note that for sensitivity analysis study,
NI=100,000.

4.2.1 The Effect of HMCR on the HS Algorithm Performance

This section presents the study of the effect of using different variations of HMCR on the algorithm conver-
gence behavior and performance. The averages and standard deviations (stds) of the results obtained when
applying the HS algorithm on the dataset of six instances is summarized in Table 4. These results are gener-
ated with fixed values of HMS =10 and PAR=0.005. The values for HMCR used are 0.90, 0.95, and 0.99. The
best results (lowest is best) on all the datasets is obtained when HMCR =0.99 (case 3). The selection of such
value increases the probability of using the HM, which decreases the exploration of the algorithm. Such
action allows the algorithm to dig down deep to achieve the satisfactory results.

4.2.2 The Effect of PAR on the HS Algorithm Performance

The convergence and performance of the HS algorithm is studied in this section using different values of
PAR. The results are statistically presented in terms of averages and stds when the HS algorithm is applied
on the six instances of the dataset. The produced results are when HMCR =0.99 and HMS =10. The follow-
ing are the variety of values used to set PAR 0.005, 0.05, and 0.10. Table 5 shows that the best results are
obtained when PAR=0.10 (case 6). This value increases the diversity of the solutions and, thus, increases
the exploitation of the HS algorithm. Such behavior of the algorithm can make it not easily stuck in the local
minima.

Table 3: The Nine Convergence Scenarios Designed to Evaluate the Sensitivity of HS Algorithm to its Parameters.

Experiment cases HMCR PAR HMS
Case 1 0.90 0.005 10
Case 2 0.95

Case 3 0.99

Case 4 0.99 0.005 10
Case 5 0.05

Case 6 0.10

Case7 0.99 0.10 5
Case 8 10

Case 9 30
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Table 4: Results of Studying HMCR Parameter.
Dataset Casel Case 2 Case 3
TestDatal Best 2481.4 2859.4 825.8
Avg 2593.68 2917.20 854.18
Std 70.74 55.74 28.90
TestData2 Best 4543.6 5134.2 1470
Avg 4684.22 5283.24 1511.32
Std 116.98 89.86 29.67
TestData3 Best 3143.2 3530.4 1032.6
Avg 3267.50 3668.82 1063.46
Std 75.84 67.89 23.60
TestData4 Best 4547.2 5006.2 1564.8
Avg 4656.60 5099.58 1598.56
Std 124.76 81.17 32.45
TestData5 Best 1719 2133.6 693.2
Avg 1796.26 2199.96 712.18
Std 66.00 35.62 14.33
TestData6 Best 3158.6 3508.4 972.4
Avg 3266.56 3647.30 1036.48
Std 73.68 60.29 33.57
Best results are in bold.
Table 5: Results of Studying PAR Parameter.
Dataset Case 4 Case 5 Case 6
TestDatal Best 825.8 791.4 764
Avg 854.18 824.52 804.40
Std 28.90 20.81 21.43
TestData2 Best 1470 1365.2 1326.4
Avg 1511.32 1414.10 1395.16
Std 29.67 34.36 35.88
TestData3 Best 1032.6 953.4 950.4
Avg 1063.46 993.04 987.04
Std 23.60 30.95 23.63
TestData4 Best 1564.8 1454.2 1392.6
Avg 1598.56 1503.64 1471.80
Std 32.45 43.14 39.13
TestData5 Best 693.2 687.2 672.8
Avg 712.18 703.80 688.98
Std 14.33 9.07 14.62
TestData6 Best 972.4 922.2 927.6
Avg 1036.48 986.90 968.72
Std 33.57 32.89 27.98

Best results are in bold.

4.2.3 The Effect of HMS on the HS Algorithm Performance

The effect of the value of HMS on the HS algorithm convergence and performance is studied in this section.
Table 6 presents the averages and stds of the results obtained by HS when applied on the 6 instances of the
dataset. These results are produced when HMCR=0.99 and PAR=0.10. The values tested for HMS are 5, 10,
and 30. The results show that the best value for all the datasets is produced when the HMS value is 10 (case 8).
This value is recommended as it provides enough variations between the solutions, but without expanding
the number of solutions, which could result in increasing the diversity of the solutions. Such scattering of the
solutions can lead to losing the concentration toward the global optimal solution.
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Table 6: Results of Studying HMS Parameter.

Dataset Case7 Case 8 Case 9
TestDatal Best 808.4 764 811.6
Avg 854.94 804.40 863.74
Std 30.56 21.43 38.36
TestData2 Best 1452.8 1326.4 1447
Avg 1512.12 1395.16 1532.42
Std 30.28 35.88 33.50
TestData3 Best 1054.4 950.4 987
Avg 1074.44 987.04 1048.30
Std 20.15 23.63 44.30
TestData4 Best 1523 1392.6 1510.6
Avg 1597.82 1471.80 1581.90
Std 49.61 39.13 49.89
TestData5 Best 699.2 672.8 688
Avg 706.62 688.98 706.90
Std 5.28 14.62 14.26
TestData6 Best 971 927.6 1003.6
Avg 1041.96 968.72 1035.22
Std 33.59 27.98 17.44

Best results are in bold.

4.3 Comparative Evaluation and Discussion

The parameter values of the proposed method used in comparative evaluation are set based on the experi-
ments conducted in the previous section. In order to obtain comparative results, the parameter values are set
as follows: HMS =10; HMCR =0.98; PAR=0.1; and NI=2,000,000. We compare the proposed method with the
nine other well-regarded methods using the same PAS datasets. These comparative methods are abbreviated
in Table 7.

Table 8 shows the best, average, std, and the rank based on the average and std (presented as a/b) for our
approach and the other state-of-the-art algorithms using the abbreviation mentioned before. The following
example clarifies how the rank value is computed. The rank (a/b) can be calculated for TestDatal to equal
(1/2). This means that the proposed HS method is ranked first in terms of the average results and its std is
ranked second. Note that this ratio of rank (1/2) is relevant to the order of all the nine methods.

Note that in some comparative methods, the Best obtained results are not recorded, namely: HH-SA,
HH-IE, and TS. These are marked in Table 8 as “NA”. Therefore, the only available results are presented in the
comparison.

Table 8 summarizes the results of the proposed method in terms of best, average, and std of the 10 runs
accomplished for each dataset. The results presented in Table 8 prove that the proposed method is able to

Table 7: Key to Comparative Methods for Solving the PAS Problem.

Key Method name Reference
NLGD Non-linear great deluge [15]
HH-SA Simulated annealing with hyper-heuristic [4]
HH-IE Improved with equal hyper-heuristic [4]
SA Simulated annealing [6]
TS Tabu search [4]
DHS-SA Simple random simulated annealing with dynamic heuristic [5]
DHS-0I Simple random improvement with dynamic heuristic [5]
DHS-GD Simple random great deluge with dynamic heuristic [5]

BBO Biogeography-based optimization [14]
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obtain competitive results when compared to all other state-of-the-art algorithms in terms of the best and
average, which is highlighted in bold font. Our proposed method is ranked fifth for almost all datasets based
on the average. However, based on the std for each data instance, our approach is ranked nearly in the sixth
place. The results prove that the proposed HS approach is a very efficient alternative algorithm for PAS, which
is able to compete well with the other well-regarded methods.

Table 9 summarizes the violation of the soft constraints (SC1-SC7) for the best results recorded for all
the datasets experimented. The numbers in the table refer to the proposed algorithm efficiency in satisfying
the soft constraints. Apparently, the total number of transfer constraint (SC6) is satisfied in all the datasets
due to the fact that the solution representation does not allow the violation of this soft constraint. The age
constraint (SC5) also is fulfilled in all the best solutions recorded. The room preference constraint (SC7) is the

Table 9: The Violations of Soft Constraint of Best Solutions Obtained.

Dataset SC1 SC2 SC3 SC4 SC5 SCé6 SC7 Sum of violations
TestDatal 5.0 16.0 0.0 21.0 0.0 0.0 700.0 742.00
TestData2 0.0 0.0 0.0 60.0 0.0 0.0 1213.6 1273.60
TestData3 0.0 16.0 0.0 46.0 0.0 0.0 846.4 908.40
TestData4 15.0 80.0 4.0 117.0 0.0 0.0 1118.4 1334.40
TestData5 0.0 0.0 0.0 0.0 0.0 0.0 668.0 668.00
TestData6 5.0 10.0 1.0 23.0 0.0 0.0 877.6 916.60
. " 980 .
820 | : 1380} ] 970t !
1 1
810 ' '
8 : 8 1360} : 8 %60 :
= 800 | ! S X E '
Z 1 c 1 c 950' 1
S 790t ' 2 1340t 2
2 g <
2 780 p = 940
2 2 13207 2
g 770¢ 3 8 930}
'E Qo 1 o)
O 760 © 1300} - © -
: ! 920t !
750 1 1 1
0 4 12807 4 ] 910} .
Testbata1 TestData2 TestData3
— 980 f T
1460 T 695 | :
! ! 970 |
o O ! $ 690 - : 2
S ' ) ! 3960 |
S 1420f s ' s
= 5685 S
2 1400} g g %0y -
S 2 2 1
° © 680 | o '
2 2 2940 |
% 1380} ! g g '
g ' Sers| S a0l
1360 X
1 1
' 670 | X 1 I !
1340 H ] 4 920 .
Testbata4 TestData5 TestData6

Figure 1: All the Instances Summarized Using Box and Whisker Charts.
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most violated constraint. This means that the proposed algorithm cannot deal properly in satisfying such
constraint. A very few violations of the soft constraints (SC1, SC2, and SC3) are reported for the best solutions.
SC4, which is the room needs speciality, is modestly violated.

Notably, all soft constraints related to room activities is violated more than those related to the patient
activities. This is because most of the local neighborhood structures used in pitch adjustments N1-N5 are con-
sidering patient preferences rather than room preferences. It is worthy to mention that all hard constraints
are satisfied in these solutions.

To further study the performance of the proposed HS algorithm for the PAS problem, Figure 1 shows the
box-and-whisker diagram for all the PAS problem instances used. The figure reveals the result distributions
for all the instances. In Figure 1, we can see the differences in the skewness pattern for each data instance,
where the box plots show that the spreading of the solutions has different patterns. For example, in Test-
Datal and TestData6, most of the results are condensed in the scale lower bound; then, the results are right
skewed. Moreover, the results are spread evenly split at the median for TestData2 and TestData4. This shows
that the distributions are symmetric for these instances. For TestData3 and TestData5, the distributions of the
results are skewed to the upper end of the results. From Figure 1, we can observe that the behavior of the HS
algorithm differs from one instance to another, due to the differences in the structures of the data instances.

5 Conclusion and Future Work

A daily routine of hospitals is patient admission scheduling. However, the medical resources are limited, and
the hospitals will try to achieve patient satisfaction by taking their preferences into consideration. A com-
puter program that can provide a feasible solution that does not break the problem constraints is required, as
it can help the hospital in planning for allocating the patients to the rooms with the needed facilities.

In this study, we develop the novel HS algorithm to solve the PAS problem. The algorithm is modified
to ensure the feasibility of the obtained solution. We intensively tune the different parameters of the HS
algorithm using several convergence cases. The parameter values that obtain the best results are HMS=10,
HMCR=0.98, and PAR=0.1. These values are then used to solve the PAS problem. The proposed HS algorithm
is ranked fifth when compared with other nine algorithms that are state-of-the-art.

In the future, we plan to hybridize the proposed HS algorithm with other local search methods to improve
its performance. As a future direction, the proposed algorithm can be applied to the dynamic patient admis-
sion problem [19] and into other instances of the dataset.

Conflict of interest: The authors declare that they have no conflict of interests.
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