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Abstract: Currently, there is a necessity for the expansion of precise, rapid, and intentional quality assurance
with respect to the character of food and horticultural food items, because it is difficult to maintain and orga-
nize food products in an elevated quality and secure manner for the increasing population. In this article,
we propose a procedure to resolve difficulties and to categorize food as either a broken or quality product.
Therefore, the proposed process encompasses four segments, such as preprocessing, segmentation of broken
division, feature extraction, and classification. At the first stage, the preprocessing method is used to remove
all unnecessary noises. After that,modified region expansion-related segmentation is undertaken to segment
the broken division of the food product. Then, feature extraction is used to remove the distinctive attributes
of each food product to categorize their evaluation. Finally, the neural network classification procedure is
used to examine the food quality. The proposed method is executed in the operational platform of MATLAB,
and the consequences are examined by using obtainable methods.

Keywords: Histogram equalization, modified region growing segmentation, color histogram features, gray
level co-variance matrix features, artificial neural network classifier, back-propagation algorithm.

1 Introduction
Quality is important for the satisfaction of the customer, more than providing supplementary products of an
identical kind. The customer is one of the significant parts of product quality decision [8]. Also, quality can be
distinguished as the summation of the entire attributes in the manufacture of products that are satisfactory
to the customer [14]. Recently, importing countries are gradually increasing the quality of some products. It
involves not only securing the domestic seafood market but also protecting the quality of food from other
countries [15]. Exterior quality mainly indicates the direct sensory quality of agricultural products. Gener-
ally, the exterior quality of fruits and vegetables are estimated based on their color, texture, size, shape, and
visual faults [2]. In foodmanufacturing companies, the supervisors are not only concerned about the amount
of production and profits but are also subjectively aware of the eminence of their product, the exterior social
surroundings, and the difficulties that farmers face in their agricultural tasks [16].

Food industries possess computerized visual examination systems to diminish function expenditure and
augment product eminence control [5]. The augmented knowledge and complexity of customers produce
enhanced eminence in consumer food products [9]. The proposed method in this study consists of image
acquisition, image preprocessing, and image interpretation for image investigation, which directs to quan-
tification and categorization of images [7, 11]. To meet the requirement of an increasing populace, technical
expansion is progressively needed in the areas of agriculture and food [14]. In food product manufacture,
color machine vision systems are used to evaluate the actual color of palm oil, fresh fruits, or beef; to rec-
ognize melanin spots in Atlantic salmon fillets; to evaluate the red color of grapefruit juice; to recognize the
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precise color attributes in food processing; and others [10]. Some of the conventions in the assessment of
imported foods and related products are established by the Bureau of Standards, Metrology, and Inspection
and the Taiwan Food and Drug Administration [4].

Hyperspectral and multispectral computer vision systems are equipped with dominant tools to iden-
tify faults that are unfeasible or complicated to identify using the conventional computer vision systems by
reason of the dominance of spectral images. Nevertheless, there are numerous challenges to overcome to
perform the fault recognition more quickly and precisely in sequence. Some of the challenges are stem-calyx
identification, the irregular allocation of precision on a curvature surface, entire surface assessment, the
time-consuming process of attainment and processing of the spectral image, competent wavelength choice
for dissimilar function, dissimilar fault discrimination, and others.

The requirements of precise, quick, and intentional quality control of food products are expanding by
means of augmented potential in food products and protection principles. Generally, computer vision offers
a computerized, non-destructive, and expenditure-effectual procedure tomeet these necessities. A computer
vision system is a systematic device developed for industrial and agricultural use for enhanced production,
constant enhancement in expenditure, accessibility, and algorithmic sturdiness. The conventional computer
vision system is a dominant tool for the examination of color, texture, size, shape, and comparatively notice-
able faults; however, it has less effectiveness in identifying faults. Therefore, the requirement for explaining
such disadvantages prompted the authors to accomplish this work.

The contributions of this paper are as follows:
– Amodified region growing (MRG) segmentationmodule is proposed to segment the broken division of food

products.
– A feature extraction module is used to remove the distinctive attributes of each food product.
– The proposed artificial neural network (ANN) classifier is used for ranking the food products.
– The proposed approach is implemented in the platform of MATLAB.
– The performance of the proposed approach is improved in terms of sensitivity, specificity, and accuracy.
– The remaining parts of this paper are organized as follows. Section 2 illustrates the related works where

our proposedmethodwas based. Section 3 offers the obtainable difficulty and the explanation about using
our proposed method. Section 4 gives the simulation results with the performance metrics based on the
proposed and existing methods. Finally, Section 5 summarizes the conclusion of our proposed method.

2 Related Works
Calvo et al. [3] have presented a framework that uses computer vision and inductive characterization with
a reduced set of features, along with three cases where this framework has been successfully applied to
improve the quality inspection process. Three different basic food products were studied, namely Hass avo-
cado,Manilamango, and corn tortillas. These productswere very important in economical terms for the sheer
volume of their production and marketing. Each product has particular characteristics that involve different
ways of handling the quality inspection process, but the presented framework allows addressing common
key points that allow automating this process.

Wang et al. [13] have developed an improved food traceability system that could not only achieve forward
tracking and diverse tracing like other systems do, but also evaluate food quality timely along the supply
chain and provide consumers with the evaluation information, to mainly enhance the consumer experience
and help firms gain the trust of consumers. For the food quality evaluation, themethod of fuzzy classification
was used to evaluate the food quality at each stage of the supply chain, while ANN was adopted for the final
determination of the grade of food quality according to all stages of quality evaluation.

Narendra and Hareesh [12] have offered the current expansion and function of image investigation and
computer vision system in the quality assessment of products in the areas of agriculture and food. It is neces-
sary for the fundamental perception and equipment related to the computer vision systembecause this device
is employed for image investigation and computerized categorization and ranking. The effectiveness and the
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appropriate evaluation progression are significant to augment the efficiency in the agricultural industry. The
agriculture industry is enhanced greatly, mainly in expressions of fruit ranking. The evaluation of the fruit
is used to develop the eminence of fruits, because high-quality fruits are exported to other countries and
engender a large profit.

Dubey and Jalal [6] have introduced and validated an image processing-based apple fruit disease clas-
sification approach. The presented approach comprised four steps. The K-means clustering-based defect
segmentation method was used in the first step for region of interest extraction. In the second step, state-
of-the-art color-, texture-, and shape-based features were drawn from the segmented apple diseases. The
different types of features were combined to form the more distinctive feature in the third step. In the last
step, the training and classification were done using a multiclass support vector machine.

Al-Marakeby et al. [1] proposed a vision-related categorization system to augment the eminence of food
products. The categorization progression relies on detaining the image of the fruit or product and examining
this image to remove the faulty products. Signals send computer-interfacing cards to organize the categoriza-
tion gates. Four dissimilar systems for dissimilar food products are enhanced, like apples, tomatoes, eggs,
and lemons.

3 Proposed Food Quality Grading Method
The quality of foodproduct is very significant to humanhealth. The preferred quality is diminishedbecause of
the large populace and the augmented necessities of food products. In themanualmethod, organizing tons of
fruits and vegetables is slow, expensive, and inaccurate; however, computer vision is fast, profitable, and con-
stant where an intention analysis procedure is applied to numerous diverse industries. Due to the expansion
of complete computerized progression, the speed and exactness meet the manufacture and quality require-
ments. Automation is an action that is used to manage a progression at the best effectiveness. Moreover, it
handles the systemwith an instruction that is programmed into it. The automated grading system accelerates
the time of progression and also diminishes the faults of the system. Therefore, this food quality examination
process is derived from image analysis that carries out diverse functions in the food industry.

The overall architecture of the proposed food quality grading technique is given in Figure 1.

3.1 Outline of the Proposed Method

The steps involved in the proposed method are given as follows:
(i) Preprocessing

– Histogram equalization
(ii) MRG segmentation
(iii) Feature extraction

– Color histogram features
– Gray-level co-occurrence matrix (GLCM) features

(iv) ANN

Each stage in the proposed method is detailed in the following sections.

3.2 Preprocessing

In the beginning, the preprocessing method is used to reduce the unnecessary noise elements that com-
plicate the computation. The preprocessing method is conducted by way of RGB (red, green, blue) to gray
level image renovation method with the histogram equalization method, where the contrast of the image is
augmented.
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Figure 1: Overall Architecture of the Proposed Food Quality Grading Technique.

a. Histogram Equalization
In this segment, the histogram equalization procedure augments the image contrast. The histogram equaliza-
tion process distributes the intensity valueswith the overall series of values to accomplish advanced contrast.
An image is signified bymeans of closely contrasting values, like the background and foreground is bright or
dark at the identical time, and this process is helpful.

Histogram equalization is the conversion of gray level s to gray level t, where the circulation of gray level
t is identical. In this conversion, the method enlarges the series of gray levels for the histogrammaxima. The
conversion also enhances the detectability of numerous image attributes because the contrast is extended for
several image pixels.

The probability density function of a pixel intensity level Qm can be given by

pdfQ(Qm) =
pm
p , (1)

where 0 ≤ Qm ≤ 1, m = 0, 1, . . . , 255; pm is the number of pixels at intensity level Qm; and pdenotes the
total number of pixels.
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Now, the histogram can be derived by plotting pdfQ(Qm) against Qm. At this time, a new intensity level
rm is produced and defined as

rm =
m∑︁

n=0

pn
p =

m∑︁
n=0

pdfQ(Qn). (2)

The consequence of contrast is altering the strength of each pixel based on its local region. The image
encompasses a great dissimilarity of strength among the maximum and minimum strength levels, and then
the image contains high contrast. Therefore, the region of local contrast obtains a superior contrast that
does not disturb the universal contrast in the histogram equalization image. Then, images are provided for
attribute removal progression to augment the image contrast.

3.3 MRG Segmentation

The region growing segmentation is generally placed at a starting position, which is developed in the order
of the starting position from the adjacent pixels through the intensity limitations. A threshold value is pre-
defined for this intention. Additionally, the development of the region fulfills the threshold. However, the
standard region development method has some drawbacks.

a. Drawbacks of Region Growing
– It is based on noise addition or alteration of intensity values, which may provide holes or oversegmenta-

tion.
– Moreover, the dimness of actual images is complicated to discriminate.
– The calculation overrides the time or power.

The flowchart of the MRG technique is given in Figure 2.
In the region growing algorithm, the choice of a starting position is a fundamental process that concerns

the segmentation consequences. In the fully mechanical method, the region growing algorithm chooses a
starting position by using the information of a histogram. In our proposed process, customized region grow-
ing is established to conquer the disadvantage of the standard region growing process. Thus, the customized
region growing process is identical to the standard region growing process. However, the block alteration
and the choice of starting position discriminate the conventional region growing algorithm. At this point, the
choice of starting position is determined by the greatest intensity value that is acquired from the histogram
of images.

b. Steps Involved in the MRG Segmentation Method
The process of the proposed MRG segmentation technique is specified below.

i. Image Block Conversion
In the initial process, image blocking is used to separate the food images as identical blocks for progression.
The blocks are produced to create precise dimensions. The quantity of blocks is derived from the necessity.
The grids contain 4, 18, and 24 blocks. At this point, the 4 × 4 blocks are prepared for investigation and each
block is generated in a discrete manner. Therefore, a 4096 quantity of 256 × 256 blocks is generated for the
input image.

ii. Plot Histogram
The histogram H is obtained for each pixel position in each 4 × 4 block.

iii. Initialize Seed Points
The greatest intensity pixel is established from the histogram for each block. The greatest intensity pixel is
the starting position S.
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Figure 2: Flowchart of the MRG Technique.

iv. Set Threshold (T)
The threshold value is predetermined and region growing is prepared by fulfilling the thresholds in adjacent
pixels.

v. Euclidean Distance Calculation
Afterward, the progression of region growing is carried out by developing the cluster that obtains the adjacent
pixels in the order of the preferred starting position. In the block, the detachment among pixels is calculated
by using the starting position. The Euclidean detachment measure is exploited for the detachment assess-
ment. In this computation, development of the region is made in the region of the starting position when the
value of detachment gratifies the threshold. The Euclidean detachment among the starting position pixels
and its adjacent pixel are estimated in the following equation:

Distmp =
√︁
(sm − nm)2 + (sp − np)2, (3)

where (sm , sp) and (nm , np) are the pixel coordinates of seed point and its neighborhood pixel.
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vi. Region Growing Constraint
The limitation (Distmp ≥ T) checks the adjacent pixels for the period of regional development in the order
of the starting position. The detachment value is better than or identical to the threshold, and the region is
created in the order of the starting position.

vii. Iterative Step
Reiterating the above step (ii) to step (vi) for the entire blocks, up to 4096 segments are created.

viii. Image Pruning
When the progression of segmentation is finished,we obtain a number of segmented output images of (4 × 4)
dimensions (i.e. 4096 segments). In these segments, the blocks that include no helpful information are elim-
inated. Only 10–15 blocks will be selected for each food image from this consequence. At last, the color values
are loaded at every block.

ix. Termination
This is the final step, which concludes the progression.

The segmented images are provided for categorization for detecting the faulty product. Some typical
attributes are removed for the exclusive class of images.

3.3.1 Feature Extraction

Subsequently, the definite texture-related and color-related attributes are removed from image segmenta-
tion, which is used for the image classification. The segment of a food product is established as faulty in
classification, then the complete product is indicated as a faulty product. The texture attributes are removed
through the exploitation of GLCM. Similarly, the color histogram attributes are acquired for the entire image
segmentation regions.

By the GLCM matrices, 22 attributes are predetermined. Therefore, we take out 22 attributes for every
color element of the RGB color images, which provide 66 attributes for each image. Moreover, the mean of
color histogram attributes provides one attribute value. As a result, a total of 67 attributes are removed for
each block.

a. GLCM Features
GLCM is established by means of Haralick. It illustrates the texture through arithmetical illustration of
how definite gray levels take place in association with further gray levels. The GLCM is a computation of
a combined probability density function of gray level couples in an image.

Thus, the GLCM can be expressed as

glcm (x, y); (x, y = 0, 1, 2, . . . , Z − 1), (4)

where Z is the number of pixels in the color image. The GLCM-related attributes contain autocorrelation, con-
trast, correlation, cluster prominence, cluster shade, dissimilarity, energy, entropy, homogeneity, maximum
probability, sum of squares: variance, sum average, sum variance, sum entropy, difference variance, differ-
ence entropy, information measure of correlation, inverse difference, inverse difference normalized, inverse
difference moment normalized, and others.

Some of the definitions and equations of the most commonly used features are given below.

(i) Correlation
Correlation is used to estimate the linear addition of gray levels of adjacent pixels. Digital image correlation
is a visual procedure that exploits the image alteration. Generally, it is utilized to estimate the deformation,
displacement, strain, and optical flow, and is a typical function for evaluating the movement of an optical
mouse. It is described in the subsequent equation:

g1 =
Z−1∑︁
x=0

Z−1∑︁
y=0

(xy) glcm(x, y) − mean(1)mean(2)
SD2

1SD2
2

, (5)
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where mean(1), mean(1), and SD2
1, SD2

2 are the mean and variance of x, y, given as

mean(1) =
Z−1∑︁
x=0

x
Z−1∑︁
y=0

glcm(x, y);mean(2) =
Z−1∑︁
y=0

y
Z−1∑︁
x=0

glcm(x, y),

SD2
1 =

Z−1∑︁
x=0

(︀
x − mean(1)

)︀2 Z−1∑︁
y=0

glcm(x, y); SD2
2 =

Z−1∑︁
y=0

(︀
y − mean(2)

)︀2 Z−1∑︁
x=0

glcm(x, y).

(ii) Contrast
Contrast is the conflict of gray level, which is the disparity among the greatest and the least values of a group
of pixels. The GLCM contrast is consistently related by way of spatial frequencies. It is given by Eq. (6).

g3 =
Z−1∑︁
x=0

Z−1∑︁
y=0

(︀
glcm(x, y)

)︀2. (6)

(iii) Energy or Angular Second Moment
The angular second moment is otherwise called homogeneity or energy. It represents the sum of squares of
entries in the GLCM. It evaluates the image homogeneity and is found to be high when the image possesses
excellent homogeneity or when the pixels are very identical.

g2 =
Z−1∑︁
x=0

Z−1∑︁
y=0

|x − y|2 glcm(x, y). (7)

(iv) Entropy
Entropy is the quantity of image information that is used to assist image compression (i.e. the failure of image
information). Entropy also deals with arithmetical uncertainty. The image does not textually match numer-
ous GLCM fundamentals; rather, it acquires irrelevant values, which specify that the entropy is remarkably
great. Entropy is represented in Eq. (8):

g4 =
Z−1∑︁
x=0

Z−1∑︁
y=0

glcm(x, y) * log
(︀
glcm(x, y)

)︀
. (8)

(v) Homogeneity
Homogeneity is used to distinguish the circulation of the values on the transverse GLCM to the circulation of
the values in the GLCM. Homogeneity is specified as

g5 =
Z−1∑︁
x=0

Z−1∑︁
y=0

glcm(x, y)
1 + |x − y| . (9)

With the GLCM attributes removed for the entire three color elements of the RGB color image, the color
histogram attributes are also estimated.

b. Color Histogram Features
Color histogram feature is usually employed in the image processing procedure. In a color histogram, it
is computationally very insignificant to estimate, because slight alterations do not concern the histogram
in camera. In computer vision and image processing, numerous researchers are illustrating that color his-
togram is invariant to convert, revolving the image on the observation axis, tiny off-axis alteration, scale
alteration, and incomplete occlusion. A color histogram is also incapable of altering the image and histogram
resolution.
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c. Steps to Extract Color Histogram Features of an RGB Color Image

Input: RGB color image

Output: Feature vector Binj(R, G, B) = [fR0 , fR1 , . . . , fR7 , fG0 , fG1 , . . . , fG7 , fB0 , fB1 , . . . , fB7] and its mean
Color plane separation: Decompose the RGB color image into its three color components, i.e. red (R), green (G), and blue (B).
Plot the histograms from the color components R, G, and B.
For each color component, compute the probability histogram as follows:

S(xj) =
Number of pixels in xj

H × W
, ∀j ∈ [0, I − 1], (10)

where S(xj) denotes the probability of (xj)th intensity value of the range [0, I − 1].
Divide the probability histogram into y (<<I) number of non-uniform bins where the (j)th bin is computed by

Binj =
minBound∑︁

k=minBound

S(xk) ≤
1
y
, ∀j ∈ [0, y − 1]. (11)

Here, the size of bin is set as (j = 8). Bin 0 corresponds to intensities 0–31, bin 1 to 32–63, bin 2 to 64–95, bin 3 to 96–127,
bin 4 to 128–159, bin 5 to 160–191, bin 6 to 192–223, and bin 7 to 224–255.
Now, a vector Binj(R, G, B) corresponding to the R, G, B color components are formed, where Binj(R, G, B) =
[fR0 , fR1 , . . . , fR7 , fG0 , fG1 , . . . , fG7 , fB0 , fB1 , . . . , fB7] is of dimension equal to 24, as the size of bin considered is (j = 8),
where [fR0 , fR1 , . . . , fR7] [fG0 , fG1 , . . . , fG7] and [fB0 , fB1 , . . . , fB7] are the bins (i.e. feature values) computed for each color
components R, G, and B, respectively.
Finally, the mean of the feature vector is computed.

Color Hist Feature (mean) =
1
24

y−1∑︁
j=0

Binj(R, G, B). (12)

For all the food products, the color histogram features are extracted using the above steps.

3.3.2 ANN

ANN is an information and computing process that is inspired by genetic neurons. ANN is broadly imple-
mented in diverse areas of science and technology, and includes time sequence, model identification, and
progression control. At this point, ANN categorization is used to examine the food eminence (as a damaged
or quality food product), which is derived from the color histogram and GLCM attributes. Generally, ANN
contains three layers, such as an input layer, hidden layer, and output layer. The input layer encompasses
the current information of the network (i.e. the GLCM-related attributes and color histogram attributes of the
broken and quality food product images). Moreover, the output layer provides the reaction of the specified
input (i.e. the quality grades of the food products). The arrangement of an ANN is specified in Figure 3.

The recent vast research activities in classification have established that the neural network is a promis-
ing alternative to various conventional classification methods. The objective of the neural network is to
convert the inputs into significant outputs. The neural network was trained by using the back-propagation
algorithm. The different combinations of functions and the effect of using ANN as a classifier is studied, and
the correctness of these functions are analyzed for various kinds of datasets. The back-propagation neural
network (BPNN) can be used as a highly successful tool for dataset classification with a suitable combination
of training, learning, and transfer functions. When the maximum likelihood method was compared with the
BPNN method, the BPNN was more accurate than the maximum likelihood method.

a. Back-propagation Algorithm
The back-propagation algorithm is established through the assessment of the output model to the intention
model. The fault values are predetermined from the output components. The alteration of incoming weight
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Figure 3: Structure of ANN.

is established by the input layer and crosses the hidden layer. The benefit of the algorithm is that it obtains
accurate network weights and lessens the preparation faults of the categorization process.

Step 1
Consider that the primary value is a diminutive random value for each interconnection weight among the
input to hidden and the hidden to output layers.

Step 2
Introduce the knowledgemodel combination (i.e. the input attributes of the preparationmodels and its result
and intention through eminence and faulty label) and activate steps 3 to 5 by way of model combination. The
preparation model is specified below:

Input =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g11, g12, . . . , g167

g12, g22, . . . , g267
...

g1 t , gt2, . . . , gt67

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (13)

where g11, g12, . . . , g167 represents the set of features for the first training sample.
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Step 3
Compute the output (i.e. quality and defective food image segments) of each network layer in the image,
which is derived from the equation below:

oz = biasz +
y∑︁

u=1
wuzqu , (14)

where

qu =
1

1 + exp−(∑︀v
r=1 wrugr+biasu) . (15)

From Eq. (14), oz is the productivity of the network from zth output node. biasz is the predisposition of
output node z. wuz is the association weight among hidden and output nodes, and qu is the reaction of the
hidden layer.

Moreover, wru is the association weight among input and hidden nodes. biasu is the predisposition of
hidden node u. gr is the input FFT-related attribute position.

Step 4
Calculate training error (δ) using the following equation:

δ = odesiredz − ooutputz , (16)

where odesiredz is the target label and ooutputz is the network output label.

Step 5
The accurate weights of subsequent iteration [w(c + 1)] are derived from the back-propagation fault (δ), and
the weight of the existing iteration is [w(c)].

w(c + 1) = w(c) + ∆w(c + 1). (17)

From Eq. (17), ∆w(c + 1) is the rectification expression whose value is derived from the fault attained for
the period of the existing iteration.

Step 6
Verify whether the productivitymeets the exactness requirement of the preparationmodels and conclude the
preparation progression.

The preparation progression is accomplished, and then the network is qualified to identify the faulty
food images that are derived from its attributes. At this point, every dissimilar division of the food product
is verified and ranked. The proposed food quality ranking process ranks the food product as an eminence
product if all divisions of the image are not faulty.

4 Results and Discussion
This section provides the results and discussion about an efficient quality inspection of food products using
MRG-based segmentation and ANN-based classification approaches. The proposed algorithm is executed
usingMATLAB software, and the experimentation is carried out using a systemwith 4 GBRAManda 2.10-GHz
Intel i-3 processor.

For analysis, the food images are collected from databases. These acquired data were preprocessed, ana-
lyzed, classified, and segmented for defect detection. In this experiment, the defective part of the image is
identified with the help of MRG-based segmentation and ANN-based classification approaches.

Therefore, the structure obtained for the existing method is illustrated in Figure 4.
The input food images in the database are demonstrated in Figure 5.
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Figure 4: Neural Network Structure Obtained for the Proposed Method.

Figure 5: Input Database Images.
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In the database, the input images are preprocessed by means of RGB to gray level conversion and then
the histogram equalization technique. The preprocessed output is shown in Figure 6.

The preprocessed image is segmented by means of MRG segmentation. Then, the image is divided into
uniform blocks for processing and the seed point is grown from that point. Afterward, the similar segments
are removed. The segmented portion of the food image is given in Figure 7.

The regions have grown from the segmented image, which is illustrated in Figure 8.

Figure 6: Preprocessed Images.

Orange_1 Potato_9 Potato_15

Figure 7: Segmented Images.

Orange_1 Potato_9 Potato_15

Figure 8: Images of the Segmented Region.
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4.1 Evaluation Metrics

The assessment metrics are sensitivity, specificity, accuracy, precision, false-positive rate (FPR), and false-
negative rate (FNR). The standard count values are true positive (TP), true negative (TN), false positive (FP),
and false negative (FN), which are depicted below.

Sensitivity
The ratio of a number of TP to the sum of TP and FN is called sensitivity:

Sensitivity =
No. of (TP)

No. of (TP) + No. of (FN) × 100.

Specificity
Specificity is the ratio of a number of TN to the sum of TN and FP:

Specificity =
No. of (TN)

No. of (TN) + No. of (FP) × 100.

Accuracy
Accuracy is calculated using the measures of sensitivity and specificity. It is denoted as follows:

Accuracy =
TP + TN

TP + TN + FP + FN × 100.

FPR
The FPR is calculated as the number of incorrect positive predictions divided by the total number of

negatives. It can also be calculated as 1 − specificity:

FPR =
FP

FP + TN .

FNR
The FNR is calculated as the number of incorrect negative predictions divided by the total number of

negatives:

FNR =
FN

TP + FN .

4.2 Performance Analysis

In this section, the performance assessment of the proposed MRG-based ANN image classification method is
illustrated. The sensitivity, specificity, accuracy, FPR, and FNR values of the proposed and existing methods
for database images for segmentation result are summarized in Table 1.

The sensitivity, specificity, accuracy, FPR, and FNR values of proposed and existing methods for classifi-
cation result are summarized in Table 2.

By analyzing the tables, it is clear that the proposed method is more accurate than any other existing
technique. From Table 1, the sensitivity, specificity, and accuracy values for the food type orange_1 is 97%,

Table 1: Sensitivity, Specificity, Accuracy, FPR, and FNR Values for the Segmentation Result for Different Food Images.

Image name Sensitivity Specificity Accuracy FPR FNR

Orange_1 0.975798 0.797067 0.828506 0.202933 0.024202
Potato_9 0.795961 0.931094 0.922211 0.068906 0.204039
Potato_15 0.569136 0.937142 0.909851 0.062858 0.430864
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Table 2: Sensitivity, Specificity, Accuracy, FPR, and FNR Values for the Classification Result
for Different Food Images.

Metrics NN KNN NB

Sensitivity 1 0.333333 0.888889
Specificity 0.5 0.5 0.166667
Accuracy 0.8 0.4 0.6
FPR 0.5 0.5 0.833333
FNR 0 0.666667 0.111111

NN, neural network; KNN, K-nearest neighbor; NB, naive Bayes.

79%, and 82%, respectively. Likewise, the sensitivity, specificity, and accuracy values for other food types
like potato_9 and potato_15 are tabulated.

While analyzing classification accuracy values, the proposed MRG-ANN technique obtained 80% accu-
racy when compared with other existing approaches like the K-nearest neighbor and naive Bayes algorithms.
Moreover, the sensitivity and specificity values are more reliable for the proposed MRG-ANN technique when
comparedwith an existing technique. Likewise, both FPR andFNRvalues attain good results for the proposed
and existing methods for different food products.

Finally, the segmentation and classification comparison plots for the proposed and existing techniques
for food images are provided in Figures 9 and 10.

The comparison results show that the segmentation and classification results of the proposedMRG-based
segmentation and ANN-based classification are more reliable.

0.975798057
0.797067101 0.82850647

0.795961003 0.931093617 0.922210693

0.569135802

0.937141539 0.909851074

Segmentation result

Orange_ 1 Potato_ 9 Potato _15

Sensitivity Specificity Accuracy

Figure 9: Comparison Plot for Different Food Images.

1

0.333333333

0.888888889

0.5

0.5

0.166666667

0.8

0.4

0.6

NN KNN NB

Classification result

Sensitivity Specificity Accuracy

Figure 10: Comparison Plot for Proposed vs. Existing Technique for Different Food Images.
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5 Conclusion
In this article,we established a competent food eminence ranking process,which is derived fromMRG-related
segmentation andANN-related categorizationmethods. Initially, the input images are preprocessedbymeans
of the histogram equalization procedure. Afterward, MRG-related segmentation is used to separate the def-
inite appropriate attributes like GLCM-related and color histogram attributes. After that, the ANN classifier
ranks the food products. The presentation of the proposed procedure is estimated and contrasted by means
of an obtainable process. The results of the proposedmethod illustrate an effectual method of food eminence
ranking in comparison with other methods.
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