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Abstract: Pythagorean fuzzy set is one of the successful extensions of the intuitionistic fuzzy set for handling 
uncertainties in information. Under this environment, in this paper, we introduce the notion of Pythagorean 
fuzzy Einstein hybrid averaging (PFEHA) aggregation operator along with some of its properties, namely idem-
potency, boundedness, and monotonicity. PFEHA aggregation operator is the generalization of Pythagorean 
fuzzy Einstein weighted averaging aggregation operator and Pythagorean fuzzy Einstein ordered weighted 
averaging aggregation operator. The operator proposed in this paper provides more accurate and precise 
results as compared to the existing operators. Therefore, this method plays a vital role in real-world problems. 
Finally, we applied the proposed operator and method to multiple-attribute group decision making.

Keywords: Pythagorean fuzzy set, PFEHA aggregation operator, multiple-attribute group decision-making 
problem.

1  �Introduction
Multi-criteria decision making is one of the processes for finding the optimal alternative from all feasible 
alternatives according to some criteria or attributes. Traditionally, it has been generally assumed that all data 
that access the alternative in terms of criteria and their corresponding weights are expressed in the form of 
crisp numbers. However, most of the decisions in real-life situations are taken in the environment where the 
goals and constraints are generally imprecise or vague in nature. In order to handle the uncertainties, the 
intuitionistic fuzzy set [1] theory, one of the successful extensions of the fuzzy set theory [36], which is charac-
terized by the degree of membership and degree of non-membership, has been presented. Xu [25] developed 
some basic arithmetic aggregation operators, including intuitionistic fuzzy weighted averaging operator, 
intuitionistic fuzzy ordered weighted averaging operator, and intuitionistic fuzzy hybrid averaging operator. 
Xu and Yager [29] defined some basic geometric aggregation operators, such as intuitionistic fuzzy weighted 
geometric operator, intuitionistic fuzzy ordered weighted geometric operator, and intuitionistic fuzzy hybrid 
geometric operator. Wang and Liu [22, 23] introduced the notion of some Einstein aggregation operators, such 
as intuitionistic fuzzy Einstein weighted geometric operator, intuitionistic fuzzy Einstein ordered weighted 
geometric operator, intuitionistic fuzzy Einstein weighted averaging operator, and intuitionistic fuzzy Ein-
stein ordered weighted averaging operator, and applied them to group decision making. In Refs. [5, 6, 8, 9, 20, 
21, 24, 26, 27, 30, 31, 35], many scholars worked in the field of intuitionistic fuzzy sets and introduced many 
aggregation operators and applied them to group decision making.

However, there are many cases where the decision maker may provide the degree of membership 
and non-membership of a particular attribute in such a way that their sum is greater than 1. For example, 
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suppose a man expresses his preferences toward the alternative in such a way that degree of their satisfac-
tion is 0.6 and the degree of rejection is 0.8. Obviously, its sum is greater than 1. Therefore, Yager [33] intro-
duced the concept of another set called Pythagorean fuzzy set. Pythagorean fuzzy set is a more powerful 
tool to solve uncertain problems. Like intuitionistic fuzzy aggregation operators, Pythagorean fuzzy aggre-
gation operators have also become an interesting and important area for research, after the advent of the 
Pythagorean fuzzy sets theory. In 2013, Yager and Abbasov [34] introduced the notion of two new Pythago-
rean fuzzy aggregation operators, such as Pythagorean fuzzy weighted averaging operator and Pythagorean 
fuzzy ordered weighted averaging operator. In Refs. [10–19], Rahman et al. introduced the concept of many 
aggregation operators using Pythagorean fuzzy numbers and also applied them to group decision making. 
In Refs. [2–4], Garg introduced the notion of Einstein averaging aggregation operator and Einstein geometric 
aggregation operator, and applied them to group decision making. In Ref. [37], Zang and Xu introduced the 
notion of TOPSIS for multiple-criteria decision making with Pythagorean fuzzy sets. Xue et al. [32], Liang 
et al. [7], and Xu and Da [28] developed some methods and aggregation operators using Pythagorean fuzzy 
information.

Thus, keeping the advantages and applications of the above-mentioned aggregation operators, in this 
paper, we introduce the notion of Pythagorean fuzzy Einstein hybrid averaging (PFEHA) aggregation operator 
along with its desirable properties, namely idempotency, boundedness, and monotonicity. Actually, Pythago-
rean fuzzy Einstein weighted averaging (PFEWA) aggregation operator weights only the Pythagorean fuzzy 
arguments and Pythagorean fuzzy Einstein ordered weighted averaging (PFEOWA) aggregation operator 
weights only the ordered positions of the Pythagorean fuzzy arguments instead of weighting the Pythagorean 
fuzzy arguments themselves. To overcome these limitations, we introduce the concept of PFEHA aggregation 
operator, which weights both the given Pythagorean fuzzy value and its ordered position. Thus, the method 
proposed in this paper is more general, more flexible, and provides more accurate and precise results com-
pared to the existing methods.

The remainder of this paper is structured as follows. In Section 2, we give some basic definitions and 
results, which will be used in later sections. In Section 3, we introduce the notion of PFEHA aggregation oper-
ator and method. In Section 4, we apply the proposed aggregation operator to multiple-attribute group deci-
sion-making problems with Pythagorean fuzzy information. In Section 5, we construct a numerical example. 
In Section 6, we compare the proposed method to other methods. In Section 7, we provide our conclusion.

2  �Preliminaries
In the following, we developed Pythagorean fuzzy set, score function, and accuracy function.

Definition 1 ([37]). Let Z be a universal set, then a Pythagorean fuzzy set can be defined as

	
{ , ( ), ( ) | },P PP z z z z Zμ η= 〈 〉 ∈ � (1)

where μP(z) and ηP(z) are mappings from Z to [0, 1], such that 0 ≤ μP(z) ≤ 1, 0 ≤ ηP(z) ≤ 1, and also 
2 20 ( ) ( ) 1,P Pz zμ η≤ + ≤  for all z ∈ Z, and they denote the membership degree and non-membership degree of 

element z ∈ Z to set P, respectively. Let 2 2( ) 1 ( ) ( ),P P Pz z zπ μ η= − −  then it is called the Pythagorean fuzzy index 
of element z ∈ Z to set P, representing the degree of indeterminacy of z to P. Also, 0 ≤ πP(z) ≤ 1, for every z ∈ Z.

Definition 2 ([37]). Let α = ⟨μ
α
, η

α
⟩ be a Pythagorean fuzzy number, then the score function of α can be 

defined as

	
2 2( ) ,s
α α

α μ η= − � (2)

where s(α) ∈[ − 1, 1].
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Definition 3 ([37]). Let α = ⟨μ
α
, ν

α
⟩ be a Pythagorean fuzzy number, then the accuracy function of α can be 

defined as

	
2 2( ) ,h
α α

α μ η= + � (3)

where h(α) ∈[0, 1].

Definition 4 ([37]). Let 
1 11 , 

α α
α μ η= 〈 〉 and 

2 22 , 
α α

α μ η= 〈 〉 be the two Pythagorean fuzzy number, then the 
following conditions hold:
1.	 If s(α1) p s(α2), then α1 p α2.
2.	 If s(α1) = s(α2), then
1.	 If h(α1) = h(α2), then α1 = α2.
2.	 If h(α1) p h(α2), then α1 p α2.
3.	 If h(α1) f h(α2), then α1 f α2.

In the following, we developed some Einstein operational laws for sum and product.

Definition 5 ([2]). Let , ( 1, 2)
j jj j

α α
α μ η= 〈 〉 =  be the three Pythagorean fuzzy values and δ f 0 be any real 

number, then
2 2

1 2 1 2

2 2 2 2

1 2 1 2

2 2

1 21 2

2 2 2 2

1 2 1 2

1 2

1 2

2 2 2

2 2 2

(1) , .
1 1 (1 ) (1 )

(2) , .
1 (1 ) (1 ) 1

2( ) (1 ) (1 )
(3) , 

(2 ) ( ) (1 ) (1
ε

α α α ε α

ε

α ε α α ε α

α αα ε α

ε

α ε α α ε α

δ δ δ
δ α α α

δ δ δ
α α α

µ µ η η
α α

µ µ η η

η ηµ µ
α α

µ µ η η

µ η η
α

µ µ η

∧

 + ⋅
 ⊕ =
 + ⋅ + − ⋅ − 

 +⋅
 ⊗ =
 + − ⋅ − + ⋅ 

+ − −
=

− + + + 2

2 2 2

2 2 2 2

.
)

(1 ) (1 ) 2( )
(4) , .

(1 ) (1 ) (2 ) ( )

δ
α

δ δ δ
α α α

ε δ δ δ δ
α α α α

η

µ µ η
δ α

µ µ η η

 
 
 − 

 + − −
 ⋅ =
 + + − − + 

In the following, we developed some aggregation operators, such as Pythagorean fuzzy hybrid averaging 
(PFHA) operator, PFEWA aggregation operator, and PFEOWA aggregation operator.

Definition 6 ([17]). Let , ( 1, 2, 3, , )
j jj j n

α α
α μ η= 〈 〉 = …  be a collection of fuzzy Pythagorean values, then PFHA 

aggregation operator can be defined as

	

2

( ) ( ), 1 2 3
1 1

PFHA ( , , , , ) 1 (1 ) , ( ) ,j j

j j

n n
w w

w n
j j

σ σω α α
α α α α μ η

= =

 
= − −   

∏ ∏� �… � (4)

where 
( )jσ

α�  is the jth largest of the weighted Pythagorean fuzzy values ( ),j j j jnα α ω α=� �  w  = (w1, w2, w3, …, wn)T 
is the weighted vector of the PFHA operator, such that wj ∈[0, 1] and 

1
1.n

jj
w

=
=∑  ω = (ω1, ω2, ω3, …, ωn)T is the 

weighted vector of αj (j = 1, 2, 3, ..., n), such that ωj ∈[0, 1], 
1

1,n

jj
ω

=
=∑  and n is the balancing coefficient, which 

plays a role of balance. If the vector w = (w1, w2, w3, …, wn)T approaches to 
1 1 1 1, , , , ,

T

n n n n
 
  …  then the vector 

(nω1α1, nω2α2, nω3α3, …, nωnαn)T approaches to (α1, α2, α3, …, αn)T.

Definition 7 ([2]). Let , ( 1, 2, 3, , )
j jj j n

α α
α μ η= 〈 〉 = …  be a collection of fuzzy Pythagorean values, then the 

PFEWA aggregation operator can be defined as
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( ) ( )
( ) ( )

( )
( ) ( )

2 2 2

1 1 1
1 2 3

2 2 2 2

1 1 1 1

1 1 2
PFEWA ( , , ,  ,  ) ,  ,

1 1 2

j j j

j j j

j j j j

j j j j

n n nw w w

j j j
w n n n n nw w w w

j j j j

α α α

α α α α

µ µ η

α α α α

µ µ η η

= = =

= = = =

 
+ − − 

 =  
 + + − − +  

∏ ∏ ∏

∏ ∏ ∏ ∏
… � (5)

where w = (w1, w2, w3, …, wn)T is the weighted vector of αj(j = 1, 2, 3, …, n) such that wj ∈[0, 1] and 
1

1.n

jj
w

=
=∑

Definition 8 ([2]). Let , ( 1, 2, 3, , )
j jj j n

α α
α μ η= 〈 〉 = …  be a collection of fuzzy Pythagorean values, then the 

PFEOWA aggregation operator can be defined as

	

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2

1 1 1
1 2 3

2 2 2 2

1 1 1 1

1 1 2
PFEOWA ( , , ,  ,  ) ,  ,

1 1 2

j j j

j j j

j j j j

j j j j

n n nw w w

j j j
w n n n n nw w w w

j j j j

σ σ σ

σ σ σ σ

α α α

α α α α

µ µ η

α α α α

µ µ η η

= = =

= = = =

 
+ − − 

 =  
 + + − − +  

∏ ∏ ∏

∏ ∏ ∏ ∏
… � (6)

where w = (w1, w2, w3, …, wn)T is the weighted vector of α
σ(j) (j = 1, 2, 3, …, n) such that wj ∈[0, 1] and 

1
1.n

jj
w

=
=∑

Also, (σ(1), σ(2), σ(3), …, σ(n)) is a permutation of (1, 2, 3, …, n) such that α
σ(j) ≤ α

σ(j−1) for all j.

3  �PFEHA Aggregation Operator
In this section, we introduce the concept of PFEHA aggregation operator along with some of its basic proper-
ties, such as idempotency, boundedness, and monotonicity.

Definition 9. The PFEHA aggregation operator can be defined as follows:

	

( ) ( )

( ) ( )

( )

( ) ( )

2 2 2

( ) ( ) ( )

2 2 2 2

( ) ( ) ( ) ( )

1 1 1
, 1 2 3

1 1 1 1

1 1 2
PFEHA ( , , , , ) , ,

1 1 2

j j j

j j j

j j j j

j j j j

n n n
w w w

j j j
w n n n n n

w w w w

j j j j

σ σ σ

σ σ σ σ

α α α

ω

α α α α

μ μ η

α α α α

μ μ η η

= = =

= = = =

 
+ − − 

 =  
 + + − − +  

∏ ∏ ∏

∏ ∏ ∏ ∏

� � �

� � � �

… � (7)

where ( )jσ
α�  is the jth largest of the weighted Pythagorean fuzzy values ( ),j j j jnα α ω α=� �  w = (w1, w2, w3, …, wn)T is the 

weighted vector of the PFEHA operator such that wj ∈[0, 1], and 
1

1.n

jj
w

=
=∑  ω = (ω1, ω2, ω3, …, ωn)T is the weighted 

vector of αj (j = 1, 2, 3, …, n) such that ωj ∈[0, 1], 
1

1,n
jj

ω
=

=∑  and n is the balancing coefficient, which plays a role 

of balance. If the vector w = (w1, w2, w3, …, wn)T approaches to 
1 1 1 1, , , , ,

T

n n n n
 
  …  then the vector (nω1α1, nω2α2, 

nω3α3, …, nωnαn)T approaches to (α1, α2, α3, …, αn)T.

Theorem 1. Let , ( 1, 2, , )
j jj j n

α α
α μ η= 〈 〉 = …  be a collection of Pythagorean fuzzy values, then their aggregated 

value by using the PFEHA aggregation operator is also a Pythagorean fuzzy value, and

	

( ) ( )

( ) ( )

( )

( ) ( )

2 2 2

( ) ( ) ( )

2 2 2 2

( ) ( ) ( ) ( )

1 1 1
, 1 2 3

1 1 1 1

1 1 2
PFEHA ( , , , , ) , .

1 1 2

j j j

j j j

j j j j

j j j j

n n n
w w w

j j j
w n n n n n

w w w w

j j j j

σ σ σ

σ σ σ σ

α α α

ω

α α α α

μ μ η

α α α α

μ μ η η

= = =

= = = =

 
+ − − 

 =  
 + + − − +  

∏ ∏ ∏

∏ ∏ ∏ ∏

� � �

� � � �

… � (8)
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Proof. We can prove this theorem by mathematical induction on n.
For n = 2

( ) ( )
( ) ( )

( )
( ) ( )

1 1 1

1 1 1

1 1 1 1

1 1 1 1

2 2 2

1 1
2 2 2 2

1 1 2
, 

1 1 2

w w w

w w w w
w

α α α

α α α α

μ μ η
α

μ μ η η

 
+ − − =  

 + + − − + 

� � �

� � � �

�

and

( ) ( )
( ) ( )

( )
( ) ( )

2 2 2

2 2 2

2 2 2 2

2 2 2 2

2 2 2

2 2
2 2 2 2

1 1 2
, .

1 1 2

w w w

w w w w
w

α α α

α α α α

μ μ η
α

μ μ η η

 
+ − − =  

 + + − − + 

� � �

� � � �

�

Then

( ) ( )

( ) ( )

( )

( ) ( )

2 2 2

( ) ( ) ( )

2 2 2 2

( ) ( ) ( ) ( )

2 2 2

1 1 1
, 1 2 2 2 2 2

1 1 1 1

1 1 2
PFEHA ( , ) , .

1 1 2

j j j

j j j

j j j j

j j j j

w w w

j j j
w

w w w w

j j j j

σ σ σ

σ σ σ σ

α α α

ω

α α α α

μ μ η

α α

μ μ η η

= = =

= = = =

 
+ − − 

 =  
 + + − − +  

∏ ∏ ∏

∏ ∏ ∏ ∏

� � �

� � � �

Thus, the result is true for n = 2. Now, we assume that Eq. (8) holds for n = k. Thus

( ) ( )

( ) ( )

( )

( ) ( )

2 2 2

( ) ( ) ( )

2 2 2 2

( ) ( ) ( ) ( )

1 1 1
, 1 2 3

1 1 1 1

1 1 2
PFEHA ( , , , , ) , .

1 1 2

j j j

j j j

j j j j

j j j j

k k k
w w w

j j j
w k k k k k

w w w w

j j j j

σ σ σ

σ σ σ σ

α α α

ω

α α α α

μ μ η

α α α α

μ μ η η

= = =

= = = =

 
+ − − 

 =  
 + + − − +  

∏ ∏ ∏

∏ ∏ ∏ ∏

� � �

� � � �

…

If Eq. (8) is true for n = k, then we show that Eq. (8) is true for n = k + 1. Thus

	

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

2 2 2

( ) ( ) ( )

2 2 2 2

( ) ( ) ( ) ( )

1 12 2

1 1

1 1 1
, 1 2 3 1

1 1 1 1

1 1 2
PFEHA ( , , ,  ,  ) ,  

1 1 2

1 1

1

j j j

j j j

j j j j

j j j j

k k

k k

k

k k k
w w w

j j j
w k k k k k

w w w w

j j j j

w w

σ σ σ

σ σ σ σ

α α α

ω

α α α α

α α

ε

α

μ μ η

α α α α

μ μ η η

μ μ

μ

+ +

+ +

= = =
+

= = = =

 
+ − − 

 
=  

 + + − − +  

+ − −
⊕

+

∏ ∏ ∏

∏ ∏ ∏ ∏

� � �

� � � �

� �

�

…

( ) ( )
( )

( ) ( )

12

1

1 1 1 12 2 2 2

1 1 1 1

2
, .

1 2

k

k

k k k k

k k k

w

w w w w

α

α α α

η

μ η η

+

+

+ + + +

+ + + +

 
 
 
 + − − + 

�

� � �

�
(9)

Let

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2 2

( ) ( ) ( ) ( )

1 1 1 12 2 2 2 2

1 1 1 1 ( )

2 2

( ) ( )

1 1
1 1 1 1

2 2 1
1

1
1 1

1 1 , 1 1

1 1 , 1 1 , 2

2 , 

j j j j

j j j j

k k k k j

k k k k j

j j

j j

k k k k
w w w w

j j j j

k
w w w w w

j

k k
w w

j j

p q

p q r

s s

σ σ σ σ

σ

σ σ

α α α α

α α α α α

α α

μ μ μ μ

μ μ μ μ η

η η

+ + + +

+ + + +

= = = =

=

= =

= + − − = + + −

= + − − = + + − =

= − +

∏ ∏ ∏ ∏

∏

∏ ∏

� � � �

� � � � �

� � ( ) ( ) ( )1 1 12 2 2

1 1 12 22 , 2 .
k k k

k k k

w w w
r

α α α
η η η

+ + +

+ + +
= − + =� � �
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Now, putting these values in Eq. (9), we have

1 1 2 2
, 1 2 3 1

1 1 2 2

PFEHA ( , , , , ) , , .w k

p r p r
q s q sω ε

α α α α +

   
= ⊕      

…

By using the Einstein operation law, we have

	

1 1 2 2
, 1 2 3 1

1 1 2 2

2 2 2 2
1 2 2 1 1 2
2 2 2 2 2 2 2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

PFEHA ( , , ,  ,  ) ,  ,  

,  .
2

w k

p r p r
q s q s

p q p q r r
q q p p s s s r r s r r

ω ε
α α α α +

   
= ⊕      

 +
=  

 + − − + 

…
�

(10)

Now, putting the values of 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , 2p q p q q q p p r r s s s r r s r r+ + − − +  in Eq. (10), then

( ) ( )

( ) ( )

( )

( ) ( )

2 2 2

( ) ( ) ( )

2 2 2 2

( ) ( ) ( ) ( )

1 1 1

1 1 1
, 1 2 3 1 1 1 1 1

1 1 1 1

1 1 2
PFEHA ( , , ,  ,  ) ,   .

1 1 2

j j j

j j j

j j j j

j j j j

k k k
w w w

j j j
w k k k k k

w w w w

j j j j

σ σ σ

δ σ σ σ

α α α

ω

α α α α

μ μ η

α α α α

μ μ η η

+ + +

= = =
+ + + + +

= = = =

 
+ − − 

 =  
 + + − − +  

∏ ∏ ∏

∏ ∏ ∏ ∏

� � �

� � � �

…

Thus, Eq. (8) is true for n = k + 1. Thus, Eq. (8) is true for all n.� □

Lemma 1 ([24, 27]). Let αj f 0, wj f 0 (j = 0, 2, …n) and 
1

1,n

jj
w

=
=∑  then

	 1 1

( ) ,j

nn
w

j j j
j j

wα α
= =

≤ ∑∏ � (11)

where the equality holds if and only if α1 = α2 = … = αn.

Theorem 2. Let , ( 1, 2, 3, , )
j jj j n

α α
α μ η= 〈 〉 = …  be a collection of Pythagorean fuzzy values, then

	 , 1 2 3 , 1 2 3PFEHA ( , , , , ) PFHA ( , , , , ).w n w nω ω
α α α α α α α α≤… … � (12)

Proof. As

( ) ( ) ( ) ( )2 2 2 2

( ) ( ) ( ) ( )
1 1 1 1

1 1 1 1 .j j

j j j j

n nn n
w w

j j
j j j j

w w
σ σ σ σα α α α

μ μ μ μ
= = = =

+ + − ≤ + + −∑ ∑∏ ∏� � � �

Also

( ) ( )2 2

( ) ( )
1 1

1 1 2,
j j

n n

j j
j j

w w
σ σα α

μ μ
= =

+ + − =∑ ∑� �

then

( ) ( )2 2

( ) ( )
1 1

1 1 2,j j

j j

n n
w w

j j
σ σα α

μ μ
= =

+ + − ≤∏ ∏� �
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thus

	

( ) ( )

( ) ( )

( )
( ) ( )

( )
2 2 2

( ) ( ) ( )
2

( )
2 22 2

( ) ( )( ) ( )

1 1 1

1

1 11 1

1 1 2 1
1 1 1 ,

1 11 1

j j j

j j j
j

j
j jj j

j jj j

n n nw w w

n
wj j j

n nn n w ww w j

j jj j

σ δ σ

σ

σ σδ σ

α α α

α

α αα α

μ μ μ

μ

μ μμ μ

= = =

=

= == =

+ − − −
= − ≤ − −

+ + −+ + −

∏ ∏ ∏
∏

∏ ∏∏ ∏

� � �

�

� �� �

� (13)

where the quality holds if and only if 
( )

( 1, 2, 3, , )
j

j n
σα

μ =� …  are equal. Again

( ) ( ) ( ) ( )2 2 2 2

( ) ( ) ( ) ( )
1 1 1 1

2 2 .j j

j j j j

n nn n
w w

j j
j j j j

w w
σ σ σ σα α α α

η η η η
= = = =

− + ≤ − +∑ ∑∏ ∏� � � �

Also

( ) ( )2 2

( ) ( )
1 1

2 2
j j

n n

j j
j j

w w
σ σα α

η η
= =

− + =∑ ∑� �

then

( ) ( )2 2

( ) ( )
1 1

2 2,j j

j j

n n
w w

j j
σ σα α

η η
= =

− + ≤∏ ∏� �

thus,

	

( )( )
( ) ( )

( )
2

( )
2 2

( ) ( )

1

1

1 1

2
,

2

j

j
j

j
j j

j j

n
w

n
wj

n n
w w j

j j

σ

σ

σ σ

α

α

α α

η

η

η η

=

=

= =

≥

− +

∏
∏

∏ ∏

�

�

� �

� (14)

where the quality holds if and only if 2

( )
( 1, 2, 3, , )

j
j n

σα
η =� …  are equal.

Let

	 , 1 2 3PFHA ( , , , , )w nω
α α α α α=… � (15)

and

	 , 1 2 3PFEHA ( , , , , ) .w n
ε

ω
α α α α α=… � (16)

Then, Eqs. (13) and (14) can be transformed into the following forms:

	
, ,ε εα αα α

μ μ η η≥ ≤� �� � � (17)

thus

	 ( ) ( ).s s εα α≥ � (18)

If

	 ( ) ( ),s s εα α� � (19)



K. Rahman et al.: PFEHA Aggregation Operator for Multiple-Attribute Group Decision Making      743

then

	 , 1 2 3 , 1 2 3PFEHA ( , , , , ) PFHA ( , , , , ).w n w nω ω
α α α α α α α α… ≺ … � (20)

If

	 ( ) ( ),s s εα α= � (21)

then

	 ( ) ( ),h h εα α= � (22)

thus

	 , 1 2 3 , 1 2 3PFEHA ( , , , , ) PFHA ( , , , , ).w n w nω ω
α α α α α α α α=… … � (23)

From Eqs. (20) to (23), Eq. (12) always holds.� □

Example 1: Let

1 2

3 4

(0.4, 0.7), (0.5, 0.8),
(0.6, 0.7), (0.7, 0.6),

α α

α α

= =
= =

and w = (0.1, 0.2, 0.3, 0.4)T, then

1 2

3 4

(0.259, 0.867), (0.456, 0.836),
(0.643, 0.651), (0.812, 0.441).

α α

α α

= =
= =

� �
� �

By calculating the scores function, we have

1 2

3 4

( ) 0.684, ( ) 0.491,
( ) 0.010, ( ) 0.465.

s s
s s

α α

α α

= − = −
= − =

� �
� �

Hence,

4 3 2 1( ) ( ) ( ) ( ).s s s sα α α α� � � �� � �

Thus

( ) ( )2

( ) ( )

4 4

, 1 2 3 4
1 1

PFHA ( , , , ) 1 1 , 

(0.517, 0.717).

j j

j j

w w

w
j j

σ σω α α
α α α α μ η

= =

 
= − −   
=

∏ ∏� �

Now applying the PFEHA operator, we have

1 2

3 4

(0.253, 0.882), (0.448, 0.841),
(0.650, 0.641), (0.833, 0.402).

α α

α α

= =
= =

� �
� �

By calculating the scores function, we have

1 2

3 4

( ) 0.711, ( ) 0.505,
( ) 0.012, ( ) 0.532.

s s
s s

α α

α α

= − = −
= =

� �
� �
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As

4 3 2 1( ) ( ) ( ) ( ),s s s sα α α α� � � �� � �

thus

( ) ( )

( ) ( )

( )

( ) ( )

2 2 2

( ) ( ) ( )

2 2 2 2

( ) ( ) ( ) ( )

4 4 4

1 1 1
, 1 2 3 4 4 4 4 4

1 1 1 1

1 1 2
PFEHA ( , , ,  ) ,  .

1 1 2

(0.507, 0.742)

j j j

j j j

j j j j

j j j j

w w w

j j j
w

w w w w

j j j j

σ σ σ

σ σ σ σ

α α α

ω

α α α α

μ μ η

α α α α

μ μ η η

= = =

= = = =

 
+ − − 

 
=  

 + + − − +  

=

∏ ∏ ∏

∏ ∏ ∏ ∏

� � �

� � � �

Theorem 3. Let , ( 1, 2, 3, , )
j jj j n

α α
α μ η= 〈 〉 = …  be a collection of Pythagorean fuzzy values, then the following 

properties hold:
1.	 Idempotency: If 

( ) ,jσ
α α=� �  then

	 , 1 2 3PFEHA ( , , , , ) .w nω
α α α α α= �… � (24)

2.	 Boundedness:

	 min , 1 2 3 maxPFEHA ( , , , , ) ,w nω
α α α α α α≤ ≤� �… � (25)

where

	 ( )( ) ( )min min , max ,
j jj jσ σα α

α μ η= � �
� � (26)

	 ( )( ) ( )max max , min .
j jjj σ σα α

α μ η= � �
� � (27)

3.	 Monotonicity: Let 
( ) ( )( ) , ( 1, 2, , )

j jj j n
σ σσ α α

α μ η∗ ∗ ∗= 〈 〉 = …  be a collection of Pythagorean fuzzy values, and 

( ) ( )
,

j jσ σα α
µ µ∗≤  

( ) ( )
,

j jσ σα α
η η∗≥  for all j, then

	 , 1 2 3 , 1 2 3PFEHA ( , , , , ) PFEHA ( , , , , ).w n w nω ω
α α α α α α α α∗ ∗ ∗ ∗≤… … � (28)

Proof. Idempotency: As

1
1 1

1 1 1 1

2 2 2

, 1 2 3

2 2 2 2

2 2 2

2 2 2

(1 ) (1 ) 2( )
PFEHA ( , , , , ) , .

(1 ) (1 ) (2 ) ( )

(1 ) (1 ) 2( )
, 

(1 ) (1 ) (2

n nn
wjj jj

j j

n n n n

j j j j
j j j j

w w

w n
w w w w

α α α
ω

α α α α

α α α

α α α

µ µ η
α α α α

µ µ η η ν

µ µ η

µ µ η

∑
=

= =

= = = =

 ∑ ∑ + − − =
 ∑ ∑ ∑ ∑ + + − − + 

+ − −
=

+ + − −

� � �

� � � �

� � �

� � �

…

2) ( )
α

α
η ν

 
  =
 + �

�

Boundedness: Let 
2

2
2( ) , (0, 1],xf x x

x
−= ∈  then 

2

3 2
2( ) 0,

2
xf x

x x
−=′

−
≺  i.e. f(x) is decreasing function on (0, 1]. 

As 
min ( ) max

,
jσα α α

μ μ μ≤ ≤� � �
 for all j, then 

max ( ) min
( ) ( ) ( ),

j
f f f

σα α α
μ μ μ≤ ≤� � �

 that is ( )max min

( ) minmax

2 2 2

2 2 2

2 2 2
,j

j

σ

σ

α α α

α α α

μ μ μ

μ μ μ

− − −
≤ ≤

� � �

� � �

 then
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22 2

( )max min
2 2 2

max ( ) min

22 2

1 1( )max min
2 2 2

max ( ) min

1 1 1

1

22 2

22 2

2

jj j

j

j

n n

jj j

j jj

j

ww w
n n n

j j j

ww w
n

j

σ

σ

σ

σ

αα α

α α α

αα α

α α α

μμ μ

μ μ μ

μμ μ

μ μ μ

μ

= =

= = =

=

 −   − −
⇔ ≤ ≤             

 −   − −
⇔ ≤ ≤             

−
⇔

∏ ∏ ∏

∑ ∑
∏

�� �

� � �

�� �

� � �

22 2

( )max min
2 2 2

max ( ) min

22

maxmin

2
( )

2
( )

2

( )

min
2 2

( ) ( )

1

2

1

1

1 1

2 2
1 1 1

1
2 2

1

2 ( )

(2 ) ( )

j

j

j

j
j

j

wj

j

j

j j

w
n

j

wn

j

n

j

n n
w

j j

σ

σ

ασ

ασ

σ

σ σ

αα α

α α α

αα

μ

μ

α

α

α α

μ μ

μ μ μ

μμ

μ

μ

μ μ

=

−

=

=

= =

 −   −
+ ≤ + ≤ +             

⇔ ≤ ≤
  +  

⇔ ≤

− +

∏

∏

∏

∏ ∏

�

�

�� �

� � �

��

�

�

� �

max
.

wj
α

μ≤ �

�
(29)

Again, let 
2

2
1( ) , [0, 1],
1

yg y y
y

−= ∈
+

 then 
2

2 2 2
2 1( ) 0,

(1 ) 1
y yg y

y y
− +=′
+ −

≺  i.e. g(y) is a decreasing function on [0, 1]. 

As 
min ( ) maxjσα α α

η η η≤ ≤� � �
 for all j, then 

max ( ) min
( ) ( ) ( )

j
g g g

σα α α
η η η≤ ≤� � �

 for all j, that is ( )max min

max ( ) min

22 2

2 2 2

11 1
,

1 1 1
j

j

σ

σ

αα α

α α α

ηη η

η η η

−− −
≤ ≤

+ + +
�� �

� � �

 
then

	

22 2

( )max min
2 2 2

max ( ) min

22 2

( )max min
2 2 2

max ( ) min

m

1 1 1

11 1
1 1 1

11 1
1 1 1

1

jj j

j

j

jj j

j

j

ww w

ww w
n n n

j j j

σ

σ

σ

σ

αα α

α α α

αα α

α α α

α

ηη η

η η η

ηη η

η η η

η

= = =

 −   − −
⇔ ≤ ≤      + + +      

 −   − −
⇔ ≤ ≤      + + +      

−
⇔

∏ ∏ ∏

�� �

� � �

�� �

� � �

�

( ) ( )

22 2
1 1

( )ax min
2 2 2

max ( ) min

2 2

min max

( )

( )

2 2

( ) ( )

min

1

2

2
1

1 1

1 1
1 1 1

21 1
1

1
1

1 1

n n

jj j
j j

j

j

j

j

j

j j

j j

ww w
n

j

w
n

j

n n
w w

j j

j

σ

σ

σ

σ

σ σ

α α

α α α

α α

α

α

α α

α

η η

η η η

η η
η

η

η η

η

= =

=

=

= =

∑ ∑ −   −
≤ ≤      + + +      

⇔ + ≤ ≤ +
 −
  +

+  

+ − −

⇔ ≤

∏

∏

∏ ∏

� �

� � �

� �

�

�

� �

�

( ) ( )
max

2 2

( ) ( )
1 1

.
1 1j j

j j

n n
w w

j
σ σ

α

α α

η

η η
= =

≤

− + +∏ ∏
�

� �

� (30)

Let

	 , 1 2 3PFEHA ( , , , , ) ( , ).w nω α α
α α α α α μ η= = � �

�… � (31)
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Then, Eqs. (29) and (30) can be written as

	 min ( ) minjσα α α
μ μ μ≤ ≤� � � � (32)

and

	 min ( ) max
,

jσα α α
η η η≤ ≤� � � � (33)

thus

	 max( ) ( )s sα α≤� � � (34)

and

	 min( ) ( ).s sα α≥� � � (35)

If

	 max( ) ( )s sα α� �≺ � (36)

and

	 min( ) ( ),s sα α� �� � (37)

then

	 min , 1 2 3 max.PFEHA ( , , , , )w nω
α α α α α α� �≺ … ≺ � (38)

If

	 max( ) ( ),s sα α=� � � (39)

then

	 max( ) ( ).h hα α=� � � (40)

Thus

	 , 1 2 3 maxPFEHA ( , , , , ) .w nω
α α α α α= �… � (41)

If

	 min( ) ( ),s sα α=� � � (42)

then

	 min( ) ( ).h hα α=� � � (43)

Thus

	 , 1 2 3 minPFEHA ( , , , , ) .w nω
α α α α α= �… � (44)

Thus, from Eqs. (38) to (44), we have

min , 1 2 3 maxPFEHA ( , , , , ) . w nω
α α α α α α≤ ≤� �…

Monotonicity: Proof is similar to 2, so it is omitted here.� □



K. Rahman et al.: PFEHA Aggregation Operator for Multiple-Attribute Group Decision Making      747

Theorem 4. The PFEWA operator is a special case of the PFEHA operator.
Theorem 5. The PFEOWA operator is a special case of the PFEHA operator.

4  �An Application of the PFEHA Aggregation Operator to  
Multiple-Attribute Group Decision Making

In this section, we investigate an application of the PFEHA aggregation operators to multiple-attribute group 
decision making with Pythagorean fuzzy information.

Algorithm: Let G = {G1, G2, G3, …, Gm} be the set of m alternatives, A = {A1, A2, A3, …, An} be the set of n attrib-
utes, and D = {D1, D2, D3, …, Dk} be the set of k decision makers. Let ω = (ω1, ω2, ω3, …, ωn)T be the weighted 
vector of the attributes Gi(i = 1, 2, 3, …, m), such that ωi ∈[0, 1] and 

1
1.n

ji
ω

=
=∑  Let w = (w1, w2, w3, …, wk)T be 

the weighted vector of the decision makers Ds (s = 1, 2, 3, …, k), such that ws ∈[0, 1] and 
1

1.k

ss
w

=
=∑

Step 1:	� Construct the decision-making matrices, ( )[ ] ,s s
ij m nD α ×=  for decision. If the criteria have two types, 

such as benefit criteria and cost criteria, then decision matrices ( )[ ]s s
ij m nD α ×=  can be converted into 

the decision matrices ( )[ ] ,s s
ij m nR r ×=  where

, for benefit criteria 1, 2, , 
,

1, 2, , , for cost criteria ,

s
ij js

ij s
ij j

A j n
r

i ma A
α  ==   = 

…
…

	 and s
jia  is the complement of .s

jiα  If all the criteria have the same type, then there is no need of normalization.
Step 2:	� Utilize the PFEWA aggregation operators to aggregate all the individual normalized decision matri-

ces ( )[ ]s s
ij m nR r ×=  into a single Pythagorean fuzzy decision matrix R = [rij]m×n, where rij = (μij, ηij)(i = 1, 2, 

…, m, j = 1, 2, …, n).
Step 3:	 Utilize 

ij j ijnwα α=�  to derive the overall preference values.
Step 4:	� Utilize the PFEHA aggregation operators to derive the overall preference values.
Step 5:	� Calculate the scores of rj (i = 1, 2, 3, …, m). If there is no difference between two or more than two 

scores, then we have to find out the accuracy degrees of the collective overall preference values.
Step 6:	� Arrange the scores of all alternatives in descending order and select the alternative with the highest 

score function.

5  �Numerical Example
Suppose a company wants to invest its money in the following best option: G1, car company; G2, food company; 
G3, computer company; G4, TV company; and G5, fan company. The company must take a decision according 
to the following four attributes, whose weighted vector is ω = (0.4, 0.3, 0.2, 0.1)T. Here, A1: risk analysis, A2: 
growth analysis, A3: social political impact analysis, and A4: environmental analysis, where A1, A3 are cost-
type criteria and A2, A4 are benefit-type criteria. There are four experts, Ds (s = 1, 2, 3, 4), from a group to act as 
decision makers, whose weight vector is w = (0.1, 0.2, 0.3, 0.4)T.
Step 1:	 Construct the decision-making matrices (Tables 1–4).
Step 2:	 Construct the normalized decision-making matrices (Tables 5–8).
Step 3:	 Utilize the PFEWA operator, we have Table 9.
Step 4:	 Utilize ,ij j ijnwα α=�  we have
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Table 1: Pythagorean Fuzzy Decision Matrix D1.

A1 A2 A3 A4

G1 (0.8, 0.5) (0.7, 0.4) (0.7, 0.4) (0.7, 0.5)
G2 (0.8, 0.4) (0.7, 0.5) (0.8, 0.5) (0.8, 0.3)
G3 (0.5, 0.6) (0.6, 0.5) (0.7, 0.5) (0.8, 0.3)
G4 (0.6, 0.5) (0.6, 0.4) (0.6, 0.4) (0.8, 0.4)
G5 (0.6, 0.8) (0.6, 0.6) (0.7, 0.3) (0.6, 0.5)

Table 2: Pythagorean Fuzzy Decision Matrix D2.

A1 A2 A3 A4

G1 (0.6, 0.5) (0.8, 0.4) (0.6, 0.4) (0.6, 0.5)
G2 (0.7, 0.3) (0.8, 0.4) (0.7, 0.5) (0.7, 0.4)
G3 (0.6, 0.6) (0.6, 0.5) (0.6, 0.6) (0.7, 0.4)
G4 (0.7, 0.5) (0.6, 0.6) (0.7, 0.4) (0.8, 0.5)
G5 (0.6, 0.4) (0.7, 0.2) (0.8, 0.4) (0.8, 0.4)

Table 3: Pythagorean Fuzzy Decision Matrix D3.

A1 A2 A3 A4

G1 (0.7, 0.5) (0.7, 0.4) (0.6, 0.5) (0.6, 0.5)
G2 (0.8, 0.3) (0.7, 0.3) (0.8, 0.3) (0.9, 0.2)
G3 (0.6, 0.5) (0.6, 0.6) (0.7, 0.4) (0.8, 0.3)
G4 (0.7, 0.5) (0.8, 0.5) (0.9, 0.1) (0.6, 0.5)
G5 (0.7, 0.5) (0.8, 0.2) (0.8, 0.2) (0.7, 0.3)

Table 4: Pythagorean Fuzzy Decision Matrix D4.

A1 A2 A3 A4

G1 (0.8, 0.3) (0.8, 0.4) (0.7, 0.4) (0.7, 0.5)
G2 (0.8, 0.3) (0.8, 0.3) (0.8, 0.3) (0.8, 0.2)
G3 (0.6, 0.6) (0.7, 0.6) (0.7, 0.4) (0.8, 0.3)
G4 (0.7, 0.4) (0.8, 0.6) (0.8, 0.2) (0.7, 0.5)
G5 (0.6, 0.6) (0.8, 0.2) (0.8, 0.2) (0.8, 0.3)

Table 5: Normalized Decision Matrix R1.

A1 A2 A3 A4

G1 (0.5, 0.8) (0.7, 0.4) (0.4, 0.7) (0.7, 0.5)
G2 (0.4, 0.8) (0.7, 0.5) (0.5, 0.8) (0.8, 0.3)
G3 (0.6, 0.5) (0.6, 0.5) (0.5, 0.7) (0.8, 0.3)
G4 (0.5, 0.6) (0.6, 0.4) (0.4, 0.6) (0.8, 0.4)
G5 (0.8, 0.6) (0.6, 0.6) (0.3, 0.7) (0.6, 0.5)
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31 32

(0.542, 0.572), (0.815, 0.318), (0.387, 0.718), (0.424, 0.793)
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α α α α
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33 34

41 42 43 44

51 52 53 54

485), (0.411, 0.793), (0.527, 0.687)

(0.578, 0.518), (0.805, 0.470), (0.232, 0.830), (0.453, 0.787)

(0.700, 0.439), (0.818, 0.156), (0.249, 0.832), (0.5

α α

α α α α

α α α α

= =

= = = =

= = = =

� �

� � � �

� � � � 05, 0.699).

	 By calculating the score functions, we have Table 10.
Step 5:	 Utilize the PFEHA aggregation operator, we have

1 2 3 4 5(0.65, 0.49), (0.65, 0.50), (0.64, 0.50), (0.65, 0.57), (0.70, 0.35).r r r r r= = = = =

Table 8: Normalized Decision Matrix R4.

A1 A2 A3 A4

G1 (0.3, 0.8) (0.8, 0.4) (0.4, 0.7) (0.7, 0.5)
G2 (0.3, 0.8) (0.8, 0.3) (0.3, 0.8) (0.8, 0.2)
G3 (0.6, 0.6) (0.7, 0.6) (0.4, 0.7) (0.8, 0.3)
G4 (0.4, 0.7) (0.8, 0.6) (0.2, 0.8) (0.7, 0.5)
G5 (0.6, 0.6) (0.8, 0.2) (0.2, 0.8) (0.8, 0.3)

Table 9: Collective Pythagorean Fuzzy Decision Matrix R.

A1 A2 A3 A4

G1 (0.432, 0.728) (0.764, 0.400) (0.432, 0.649) (0.653, 0.500)
G2 (0.311, 0.779) (0.764, 0.335) (0.372, 0.779) (0.823, 0.239)
G3 (0.572, 0.589) (0.643, 0.568) (0.459, 0.679) (0.782, 0.317)
G4 (0.463, 0.689) (0.753, 0.546) (0.259, 0.789) (0.684, 0.489)
G5 (0.568, 0.629) (0.767, 0.224) (0.263, 0.789) (0.757, 0.335)

Table 6: Normalized Decision Matrix R2.

A1 A2 A3 A4

G1 (0.5, 0.6) (0.8, 0.4) (0.4, 0.6) (0.6, 0.5)
G2 (0.3, 0.7) (0.8, 0.4) (0.5, 0.7) (0.7, 0.4)
G3 (0.6, 0.6) (0.6, 0.5) (0.6, 0.6) (0.7, 0.4)
G4 (0.5, 0.7) (0.6, 0.6) (0.4, 0.7) (0.8, 0.5)
G5 (0.4, 0.6) (0.7, 0.2) (0.4, 0.8) (0.8, 0.4)

Table 7: Normalized Decision Matrix R3.

A1 A2 A3 A4

G1 (0.5, 0.7) (0.7, 0.4) (0.5, 0.6) (0.6, 0.5)
G2 (0.3, 0.8) (0.7, 0.3) (0.3, 0.8) (0.9, 0.2)
G3 (0.5, 0.6) (0.6, 0.6) (0.4, 0.7) (0.8, 0.3)
G4 (0.5, 0.7) (0.8, 0.5) (0.1, 0.9) (0.6, 0.5)
G5 (0.5, 0.7) (0.8, 0.2) (0.2, 0.8) (0.7, 0.3)
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Now we calculate the scores of s(ri) (i = 1, 2, 3, 4, 5), we have

1 2 3 4 5( ) 0.18, ( ) 0.17, ( ) 0.16, ( ) 0.09, ( ) 0.37.s r s r s r s r s r= = = = =

Step 6: Arrange the scores in descending order, we have G5 is the best option (Table 11).

6  �Comparison with Other Methods
In order to verify the effectiveness of the proposed method, we can compare the proposed method with other 
methods. First, we compare the proposed method with the method proposed by Rahman et al. [17]. The aggre-
gation operator proposed by Rahman et al. [17] is based on algebraic operations, and that in this paper is 
based on Einstein operations. Obviously, the operator or method proposed in this paper is more general, 
more accurate, and more flexible. The Einstein operators proposed by Garg [2] are only the special cases of 
the proposed operator in this paper. The methods or operators proposed by Garg [2] are PFEWA aggregation 
operator, which weights only the Pythagorean fuzzy arguments, and PFEOWA aggregation operator, which 
weights only the ordered positions of the Pythagorean fuzzy arguments instead of weighting the Pythagorean 
fuzzy arguments themselves. To overcome these limitations in this paper, we have developed the notion of 
PFEHA aggregation operator, which weights both the given Pythagorean fuzzy value and its ordered position.

7  �Conclusion
The objective of this paper is to present the PFEHA aggregation operator based on Pythagorean fuzzy numbers 
and to apply it to the multi-attribute group decision-making problems where the attribute values are Pythago-
rean fuzzy numbers. First, we have developed the PFEHA aggregation operator along with its properties. 
Furthermore, we have developed a method for multi-criteria group decision making based on this operator, 
and the operational processes have been illustrated in detail. An illustrative example of selecting the best 
company to invest money has been considered for demonstrating the approach. The suggested methodology 
can be used for any type of selection problem involving any number of selection attributes. We ended the 
paper with an application of the new approach in a group decision-making problem.

In further research, it is necessary and meaningful to give the applications of this operator to the other 
domains, such as induction, interval numbers, fuzzy numbers, linguistic variables, pattern recognition, 
fuzzy cluster analysis, uncertain programming, etc.

Table 10: Pythagorean Fuzzy Hybrid Decision Matrix.

A1 A2 A3 A4

G1 (0.815, 0.318) (0.542, 0.572) (0.387, 0.718) (0.424, 0.793)
G2 (0.815, 0.318) (0.564, 0.627) (0.393, 0.648) (0.333, 0.824)
G3 (0.704, 0.390) (0.695, 0.485) (0.527, 0.687) (0.411, 0.793)
G4 (0.805, 0.470) (0.578, 0.518) (0.453, 0.787) (0.232, 0.830)
G5 (0.818, 0.156) (0.700, 0.439) (0.505, 0.699) (0.249, 0.832)

Table 11: Comparisons with Previous Operators.

Operators   Score functions   Ranking

PFEWA operator   s(r5) f s(r2) f s(r1) f s(r3) f s(r4)  5 f 2 f 1 f 3 f 4
PFEOWA operator   s(r5) f s(r2) f s(r3) f s(r1) f s(r4)  5 f 2 f 3 f 1 f 4
PFEHA operator   s(r5) f s(r1) f s(r2) f s(r3) f s(r4)  5 f 1 f 2 f 3 f 4
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