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Abstract: In recent years, the important and fast growth in the development and demand of multimedia
products is contributing to an insufficiency in the bandwidth of devices and network storagememory. Conse-
quently, the theory of data compression becomes more significant for reducing data redundancy in order to
allowmore transfer and storage of data. In this context, this paper addresses the problem of lossy image com-
pression. Indeed, this newproposedmethod is based on the block singular value decomposition (SVD) power
method that overcomes the disadvantages of MATLAB’s SVD function in order to make a lossy image com-
pression. The experimental results show that the proposed algorithm has better compression performance
compared with the existing compression algorithms that use MATLAB’s SVD function. In addition, the pro-
posed approach is simple in terms of implementation and can provide different degrees of error resilience,
which gives, in a short execution time, a better image compression.

Keywords: Image compression, singular value decomposition, block SVD power method, lossy image com-
pression, PSNR.

1 Introduction
Singular value decomposition (SVD) is a generalization of the eigen-decomposition used to analyze rectan-
gular matrices. SVD plays an important role in many applications, and it is the most useful tool of linear
algebra with several applications including image compression [23]; mathematical models in economics,
physical processes, and biological processes; data mining applications; search engines to rank documents
in very large databases, including theWeb; image processing applications; etc. In addition, the use of SVD in
image compression has been widely studied [2, 13, 25, 27]. In this paper, we will study SVD applied to image
compression.

Image compression is a type of data compression that involves encoding information in images using
fewer bits than the original image representation. Themain idea of image compression is reducing the redun-
dancy of the image and transferringdata in an efficient form [15]. Image compression takes an important place
in several domains, like web design. In fact, maximally reducing an image allows us to create websites faster
and saves bandwidth for users; it also reduces the bandwidth of the servers, and thus saves time and money.
When talking about compression, we generally take into account two aspects: image size in pixels and the
degree of compression. There is also another aspect: pixel depth or bit cost to represent each pixel. The nature
of the image also plays a significant role. The main goal of such a system is to reduce the storage quantity as
much as possible while ensuring that the decoded image displayed in the monitor can be visually similar to
the original image as much as it can be.

Our main goal in this work is to find an algorithm that can involve encoding information in images using
fewer bits than the original image representation. Toward this end, we developed and tested our algorithm
for image compression based on various and real images.

*Corresponding author: Khalid El Asnaoui, Complex Systems Engineering and Human Systems, Mohammed VI
Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco, e-mail: Khalid.ELASNAOUI@um6p.ma.
https://orcid.org/0000-0003-4260-6898

Open Access. ©2020 Walter de Gruyter GmbH, Berlin/Boston. This work is licensed under the Creative Commons Attribution
4.0 Public License.

https://doi.org/10.1515/jisys-2018-0034
mailto:Khalid.ELASNAOUI@um6p.ma
https://orcid.org/0000-0003-4260-6898


1346 | K. El Asnaoui: Image Compression Based on Block SVD Power Method

The rest of this paper is structured as follows. We briefly introduce a review of previous related works in
Section 2. Section 3 deals with the algorithm of SVD function. Section 4 describes the proposed system for
image compression. The performance evaluation of the proposed algorithm is reported in Section 5. Finally,
conclusions are drawn in Section 6.

2 Related Work
In recent years, numerous image compression schemes and their applications in image processing have been
proposed [18–20]. In this section, a brief review of some important contributions from the existing literature
is presented.

In general, there are two approaches for image compression: lossy or lossless [16, 26]. A lossless compres-
sion is a kind of image compressionmethod that allows no loss of data, andwhich retains the full information
needed to reconstruct the original image. This type of compression is also known as entropy coding because
of the fact that a compressed signal is generally more random than the original one and the patterns are
removed when a signal is compressed. Lossless compression can be very useful for exact reconstruction of
images. The compression ratio provided by this kind of method is not sufficiently high to be truly used in
image compression. Lossless image compression is particularly useful in image archiving as in the storage
of legal or medical records. The lossless image compression methods include run-length coding, bit-plane
coding, Huffman coding [1], LZW (Lempel-Ziv-Welch) codes, and entropy coding.

Lossy compression is another type of image compression technique in which the original signal cannot
be exactly reconstructed from the compressed data. The reason behind this is that much of the detail in an
image can be discarded without greatly changing the appearance of the image. In lossy image compression,
even very fine details of the images can be lost, but ultimately, the image size is drastically reduced. Lossy
image compressions are useful in many applications such as broadcast television, video conferencing, and
facsimile transmission, in which a certain amount of error is an acceptable trade-off for increased compres-
sionperformance. Amongmethods for lossy compression,we find fractal compression [14], transformcoding,
Fourier-related transform, discrete cosine transform [5, 17], and wavelet transform.

Generally, SVD is a lossy compression technique that achieves compression by using a smaller rank
to approximate the original matrix representing an image. Furthermore, lossy compression yields good
compression ratio compared with lossless compression while lossless compression gives good-quality com-
pressed images [10].

When we give the definition of lossless or lossy methods, it is necessary to clarify that near-lossless
algorithms are theoretically lossless; however, they may suffer from numerical floating-point accuracy
reconstruction issues.

According to the state of the art, several works suggested using the SVD with other compression meth-
ods or with variations of SVD [e.g. Shuffled Singular Value Decomposition (SSVD) [22], Joint Singular Value
Decomposition (JSVD), and K-Singular Value Decomposition (KSVD)]. Awwal et al. [3] presented a new com-
pression technique using SVD and the wavelet difference reduction (WDR). The WDR is used for further
reduction. This technique has been tested with other techniques such as WDR and JPEG2000, and gives a
better result than the other techniques. Furthermore, usingWDRwith SVD enhances the peak signal-to-noise
ratio (PSNR) and compression ratio.

A technique based onwavelet-SVD,which uses a graph coloring technique in the quantization process, is
presented in Ref. [21]. This technique worked well and enhanced the PSNR and compression ratio. The gener-
ated compression ratio by this work ranged between 50% and 60%, while the average PSNR ranged between
40 and 80 db.

Ranade et al. [22] suggested a variation of SVD-based image compression. This approach is a slight
modification to the original SVD algorithm, which gives much better compression than the standard com-
pression using the SVDmethod. In addition, it performs substantially better than the SVDmethod. Typically,
for any given compression quality, this approach needs about 30% fewer singular values and vectors to be
retained.
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Bryt and Elad [6] suggested a method for compressing facial images using the KSVD algorithm, which is
an algorithm for training over complete dictionaries that lead to sparse signal representations. This method
was applied to grayscale images and shown to be most efficient, surpassing the JPEG2000 performance
significantly. This work is extended in Ref. [7].

Doaa and Chadi [9] proposed block truncation coding (BTC), it is an image compression method pro-
posed by Delp and Mitchell [8–24]. It is one of the simplest and easiest image compression algorithms, and
also an efficient image coding method that has been adopted to obtain the statistical properties of a block in
the compressed image.

The technique given by El Abbadi et al. [10] proposes to use SVD and moment preserving quantizer-BTC.
Using this method, the input image is compressed by reducing the image matrix rank, by using the SVD
process and then the result matrix compressed by using BTC.

The technique presented by El Asnaoui et al. [11] introduces two new approaches. The first one is an
improvement of the BTCmethod that overcomes the disadvantages of the classical BTC, while the second one
describes how to obtain a new rank of SVD method, which gives a better image compression. This method is
extended in Ref. [12].

Following the same objective of image compression using SVD, the most important problem is which
K rank to use for giving a better image compression. For this reason, El Asnaoui et al. [11] proposed a new
technique that gives a maximum value for K, which provides better compression.

To the best of our knowledge, this is the first work to suggest an image compressionmethod based on the
block SVD power method.

3 Singular Value Decomposition (SVD)
As we have earlier mentioned, the main goal of studying the SVD of an image (matrix of m × n) is to create
approximations of an image using the least amount of the terms of the diagonal matrix in the decomposition.
This approximation of the matrix is the basis of image compression using SVD, as images can be viewed as
matrices with each pixel being an element of a matrix.

In mathematics, the linear algebra of the SVDmethod of a matrix is an important tool for factorization of
real or complex rectangular matrices.

Let us say we have a matrix A with m rows and n columns, with rank r and r ≤ n ≤ m. Then, A can be
factorized into three matrices: U,

∑︀
, and VT such that [17] A = U

∑︀
VT , where U and V are orthogonal,

∑︀
is

a diagonal matrix, and U
∑︀

VT is the closest rank K approximation to A (see Figure 1).
The purpose of transforming matrix A into U

∑︀
VT is to approximate matrix A by using far fewer entries

than in the original matrix. By using the rank of a matrix, we remove the redundant information (the depen-
dent entries). SVD can be used to provide the best lower-rank approximation to matrix A and thus be used
for image compression.

• Theorem

Let A ∈ Mm*n(R) be two-unit matrices U ∈ Mm(R), A ∈ Mm*n(R) and a
diagonal matrix

∑︀
∈ Mm*n(R).

Then, there is a factorization of the form
A = U

∑︀V T ,
where ∑︀

=

(︃
D 0
0 0

)︃
and D = diag(σ1 , σ2 , . . . , σr).

* σi are the singular values of A such that σ1 ≥ σ2 ≥ . . . ≥ σr > 0.
* r is the maximum rank of the matrix A such that r ≤ min(n,m).
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m × n m × m m × n n × n

= UA Σ

V
T

Figure 1: Decomposition of Matrix A.

3.1 SVD vs. Memory

First, we need to know how much memory an original image I requires.
For the image of m × n pixels in grayscale, the memory has to store m × n values, one value for each

pixel: IM = m × n.
SVD is composed of threematrices:U,

∑︀
, andV. Originally,U is amatrix ofm×m; however,we onlywant

the first columns of K. Then, UM = m × K. Similarly, we only want the first K columns of V (which become
the VT lines); thus, we only need to store V as an n × K matrix with values n × K, then: VM = n × K.

Finally, because we exploit the first K columns of U and V, we need only the first K singular values:∑︀
M = K. Now, it is possible to calculate the total number of values needed to store this K rank. This rank

was determined by using this formula [11]:

K =
m × n

m + n + 1 , (1)

wherem and n are the size of original image.

3.2 Algorithm of SVD

The main idea of this section is to present two algorithms: the first one is MATLAB’s SVD function, while the
second one describes how to obtain a new SVD using the block SVD power method.

3.2.1 Algorithm of MATLAB’s SVD Function

Input: A ∈ Mm×n(R)

Output: A = Um×m ×
∑︀

m×n × Vn×nT , where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U and V are unitary matrices∑︀
= diag

(︀
σ1 , σ2 , . . . , σp

)︀
where p = min(m, n)

r = rank(A)
and σ1 ≥ σ2 ≥ . . . ≥ σr

σr > σr+1 = σr+2 = . . . = σp = 0[︀
U,

∑︀
, V

]︀
= svd(A) (MATLAB notation is used).

3.2.2 Block SVD Power Method [4]

The main goal in this section is to give a block iterative algorithm that computes the SVD. The idea is based
on the technique used in the block power method. From a block-vector V (0) ∈ Rm×s, we construct two block-
vector sequences, V (k) ∈ Rm×s and U(k) ∈ Rn×s, which converge, respectively to the s first right and left
singular vectors corresponding to singular values σ1 ≥ σ2 ≥ . . . ≥ σs.



K. El Asnaoui: Image Compression Based on Block SVD Power Method | 1349

Input: A matrix A∈ Rn×m, a block-vector V = V (0) ∈ Rm×s

and a tolerance tol
Output: An orthogonal matrix

U = [u1 , u2 , . . . , us] ∈ Rn×s,
V = [v1 , v2 , . . . , vs] ∈ Rm×s

and a positive diagonal matrix∑︀
= diag(σ1 , σ2 , . . . , σs)

such that AV = U
∑︀

While (err ≻ tol) do
AV = QR (factorization QR),
U ← Q(:, 1 : s)
(the s first vector columns of Q)
ATU = QR,
V ← Q(:, 1 : s) and

∑︀
← R(1 : s, 1 : s)

err = ‖AV − U
∑︀

‖
End.

4 Proposed Lossy Image Compression Technique
As it is mentioned in the related work, the SVD-based compression is lossy due to the nature of the process.

The contribution of this paper is the introduction of the concept of application of the block SVD power
method to image compression, as the main idea of image compression is reducing the redundancy of the
image and transferring data in an efficient form. As we have earlier mentioned, this work is the first one that
proposes an application of the block SVD power method to image compression. Most of the methods focus
on other methods and other variations of SVD. Moreover, our method is novel and efficient for solving our
problem. It is general, and many other computer visions can benefit from using it.

Figure 2: Color Image Pre-processing Using SVD.
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In this section, we propose our contribution in which we integrate the block SVD power method and
adopt it to create an algorithm that compresses an image. Figure 2 shows the main pipeline of the proposed
method.

When the SVD is applied to an image, it is not compressed, but the data take a form in which the first
singular value has a great amount of image information. With this, we can use only a few singular values to
represent the image with little differences from the original. The input image can be a color image with RGB
color components or may be a grayscale image. Furthermore, for creating a new image with MATLAB’s SVD
function, as indicated in Figure 2, we use the following:

Icomp = U(:, 1 : K) ×
∑︁

(1 : K, 1 : K) ×
(︁
V(:, 1 : K)T

)︁
. (2)

Our contribution in this paper is to set up a new algorithm for image compression that overcomes some
inconveniences encountered in existingmethods that useMATLAB’s SVD function. Ourmodification consists
of computing the SVD for each component, in which the entries in image I are computed using the block SVD
power method obtained by Bentbib and Kanber [4] instead of MATLAB’s SVD function, and keeps the K rank
determined by Eq. (1).

Thus, for the same compression, we have a better quality. We also provide a heuristic argument to justify
our experimental finding.

In the next section, the experimental results are reported. The results clearly show the superiority of the
proposed lossy image compression technique over MATLAB’s SVD function and some different compression
techniques in the state of the art.

5 Experimental Results
Our work is aimed at image compression. For this purpose, our experiments were performed on several
images available on Windows 7 Professional and numerical examples. Simulations were done in MATLAB
2009a using a personal computer with Processor: Intel(R) Core (TM) 2 CPU T5200 @ 1.60 GHz, 1.60 GHz,
2Go RAM running on a Microsoft Windows 7 Professional (32-bit). In addition, the results and discussion of
the proposed method are given in this section.

5.1 Parameters for Comparison

To evaluate the performance of the proposed method, the quality of the image is estimated using several
quality measurement variables, like mean square error (MSE), root MSE (RMSE), and PSNR. These variables
are signal fidelity metrics and do not measure how viewers perceive the visual quality of an image [3, 21, 22].

5.1.1 Compression Ratio

The degree of data reduction obtained by a compression method can be evaluated using the compression
ratio (Qcomp), which is defined by the following formula:

Qcomp =
size of original image

size of compressed image . (3)

5.1.2 MSE

The MSE for twom× nmonochrome images I and J, where one of the images is considered noisy approxima-
tion of the other, is defined as follows:

emse =
1
mn

m−1∑︁
i=0

n−1∑︁
j=0

[I(i, j) − J(i, j)]2. (4)
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5.1.3 RMSE

RMSE is one of many ways to quantify the difference between values implied by an estimator and the
true value of the quantity being estimated. The use of RMSE is very common, and it makes an excellent
general-purpose error metric for numerical predictions. This parameter is given as follows:

RMSE =
√
eMSE . (5)

A lower RMSE indicates that the model is better fitting.

5.1.4 PSNR

PSNR is measured in decibels (dB), and is only meaningful for data encoded in terms of bits per sample or
bits per pixel.

For example, an imagewith 8 bits per pixel contains integers from0 to 255. PSNR is given by the following
equation:

PSNR = 10log10log10
(2B − 1)2

eMSE
. (6)

A high PSNR value indicates that there is less visual degradation in the compressed image.

5.2 Numerical Examples

The results of the image compression depend strongly on the goodness of the algorithm to compress an image.
To illustrate it, first we checked if the chosen block SVD power method correctly detects the relative errors
occurring when computing the singular values and CPU time. For this purpose, we did several tests where we
chose some numerical examples.

We have compared and tested in this section the numerical results obtained by the algorithm [4]
with MATLAB’s SVD function. Toward this end, let A ∈ Rn*m be a rectangular matrix defined as fol-
lows: A ∈ Q

∑︀
UT , where Q and U are random orthogonal matrices. We give below the relative errors

occurring when computing the singular values and the CPU time. The started block-vector in the algo-
rithm [4] is given by V = V(0) = eye(m, s) (Matlab notation). The results are given from the algorithm
[4] after only at most K = 1 iteration. We have stopped the algorithm [4] whenever the error of the
reduction, err = ‖AV − U

∑︀
‖, is smaller than that achieved by MATLAB’s SVD function (see Figures 3

and 4).

Example 1: Let∑︁
= diag

(︁[︁
104, 104, 10−11, 10−11, 10−12, 10−12, 10−13, 10−13, 10−14, 10−14

]︁)︁
m = 1000; n= 1000; s = rank (A) = 10; after only K = 1 iteration, we have obtained:

MATLAB’s SVD function Algorithm [4]

Error ‖AV − U
∑︀

‖ = 2.3936e−011 9.1089e−012
CPU time (s) 19.3789 0.2830
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4
The SVD by Matlab

n = 1000 m = 1000 r = 10 
Block SVD power method
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Figure 3: Relative Errors Occurring When Computing the Singular Values.

Example 2: Let∑︁
= diag

(︁[︁
103, 103, 103, 10−12, 10−12, 10−13, 10−13, 10−13, 10−13, 10−13, 10−13, 10−13

]︁)︁
m = 1000; n = 1000; s = rank (A) = 12; after only K = 1 iteration, we have obtained:

MATLAB’s SVD function Algorithm [4]

Error‖AV − U
∑︀

‖ = 2.6714e−012 1.2523e−012
CPU time (s) 21.0487 0.5318

The SVD by Matlab n = 1000 m = 1000

r = 12Block SVD power method
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Figure 4: Relative Errors Occurring When Computing the Singular Values.
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5.3 Image Compression

To test our method, we have developed a user interface. The method was applied to various and real images
to demonstrate the performances of the proposed image compression algorithm.

This proposed algorithm is testedwithmany images, some of themare shown in Figures 5–10. Indeed, we
used in this paper only two color images, Chrysanthème and Desert available on Windows Professional (32-
bit), and one in grayscale (see Figure 5). Furthermore,we have usedPepper and lena (see Figure 10). Figures 6,
7, 10, and 11 show the test images and the result of compressed images usingMATLAB’s SVD function [11] and
the proposed compression method. From Figures 6, 7, 10, and 11, it is clear that the compressed images are
perceptually similar to the original images.

We recall that our goal is to approximate an image (matrix of m × n) using the least amount of informa-
tion. Thereby, to obtain a better quality of the compressed image using SVD, we use the K rank determined
by El Asnaoui et al. [11] [Eq. (2)].

The compression ratio and the variation of PSNRwith image rankwhenwe applyMATLAB’s SVD function
[11] and the proposed compression method are showed in Figures 8, 9, and 12.

5.3.1 Application to Color Image

To evaluate the performance of the proposed method, we apply MATLAB’s SVD function [11] and the new
method to color image. After rank K = 438, we obtain (see Figures 5–7):

Chrysantheme.jpg

1024 × 768,

858 ko,

K = 438

Desert.jpg

1024 × 768,

826 ko,

K = 438

Grayscale.jpg

1280 × 960,

480 ko

K = 548

A B C

Figure 5: Original Images.
(A) Chrysantheme, (B) desert, and (C) grayscale.

K = 438

RMSE = 0.54

PSNR = 53.48

K = 438

RMSE = 0.03

PSNR = 76.92

A B

Figure 6: Compressed Results.
Compressed results obtained by (A) MATLAB’s SVD function [11] and (B) the proposed method.
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K = 438

RMSE = 0.53

PSNR = 53.60

K = 438

RMSE = 0.6

PSNR = 92.97

A B

Figure 7: Compressed Results.
Compressed results obtained by (A) MATLAB’s SVD function [11] and (B) the proposed method.
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Figure 8: Relation between Image Rank, Compression Ratio, and PSNR for Chrysantheme.jpg, 1024 × 768, 858ko.
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Figure 9: Relation between Image Rank, Compression Ratio, and PSNR for Desert.jpg, 1024 × 768, 826ko.
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5.3.2 Application to Other Images

The proposed algorithm has also been tested with Pepper and lena images (see Figure 10). After K rank, we
obtain the results shown in Table 1.

848 × 850,

1.42 Μο,

K = 424

512 × 512,

65 Κο,

K = 255

A B

Figure 10: Images used for Proposed Algorithm.
Images used: (A) pepper.jpg and (B) lena.jpg.

Table 1: Application to Other Images.

Pepper.jpg Lena.jpg

RMSE PSNR RMSE PSNR

MATLAB’s SVD function [11] 0.03 76.54 0.83 49.71
Proposed method 0.009 88.23 0.11 67.12

5.3.3 Application to Grayscale Image

In order to compare this performance, we also applied MATLAB’s SVD function [11] and the new method to
the grayscale image. After rank K = 548, we obtain (see Figure 11):

K = 548

RMSE = 0.68

PSNR = 51.46

K = 548

RMSE = 0.28

PSNR = 58.94

A B

Figure 11: Compressed Results.
Compressed results obtained by (A) MATLAB’s SVD function [11] and (B) the proposed method.
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Figure 12: Relation between Image Rank, Compression Ratio, and PSNR for grayscale.jpg 1280 × 960, 480ko.

5.3.4 Comparison against Various Algorithms

To evaluate the robustness of our method, we have tested it with different compression techniques [7, 9–11].
The additional experimental results for three images are listed in Table 2.

5.4 Discussion

This study sets up a new algorithm for image compression that must be considered as an application of
the block SVD power method to image compression. With our preliminary experimental analysis, observa-
tion, and evaluation, the proposed method achieves promising performance and provides a good PSNR.
In addition, the proposed algorithm is compared with MATLAB’s SVD function and other state-of-the-art
algorithms.

The numerical examples given above show the efficiency of the new SVD [4] approach in computing the
decomposition, error, and CPU time.

When applying the new method to image compression (see Figures 6, 7, 10, and 11), it is clear that the
images compressed by two approaches are perceptually similar to the original images. However, the human
visual response to image quality is insufficient.

To compare the performances of the proposed method, several values were used in this study to mea-
sure the quality of the compressed image. We will only discuss PSNR and MSE values, because they are
used to compare the squared error between the original image and the reconstructed image. There is an
inverse relationship between PSNR and MSE. Therefore, a higher PSNR value indicates higher quality of the
image.

The above analysis shows the comparison when MATLAB’s SVD function [11] and the proposed method
are applied on real images. In these experiments, we used the K rank for different images. We see in this
case that the compression ratio, PSNR, and other values of images varied when changing the rank of the
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image during the SVD process, as shown in Figures 8, 9, and 12. Moreover, it is evident that the proposed
method gives better performance compared to MATLAB’s SVD function [11]. In addition, for MATLAB’s SVD
function [11], the value of K, which provides better PSNR value, is the maximum value of K = 438, while
for the proposed method, a better compression ratio, PSNR, is provided from K = 150 for color images (see
Figure 8). We can say that in this case, MATLAB’s SVD function approximately presents one-third of the
proposed method in terms of K rank. For Figure 9, the value of K that provides better PSNR value is the
maximum value of K = 438, while for the proposed method, a better compression ratio, PSNR, is provided
from K = 200.

Concerning the grayscale image tested (see Figure 11), it seems that the value of K that gives better PSNR
value is the maximum value of K = 548, while for the proposed method, a better compression ratio, PSNR,
is provided from K = 400 (see Figure 12).

We mainly compared the proposed algorithm with the other algorithms as illustrated in Table 2, because
these algorithms are well known and are mainly using MATLAB’s SVD function. Hence, we see that our
proposed algorithm performs comparably to current state-of-the-art techniques and is able to produce a
compressed image with better visual quality, as indicated by its PSNR.

6 Conclusion
We suggest in this work a novel lossy image compression technique by using the block SVD power method.
This approach is simple in terms of implementation, and can be used to overcome the limitations of exist-
ing algorithms that use MATLAB’s SVD function. The results obtained by the proposed technique are com-
pared with those of several state-of-the-art image compression techniques, and indicated that the proposed
approachmight be considered as a solution for the development of image compression. Satisfactory compres-
sion of expected images is provided faster due to the lower number of iterations in the compression algorithm.
Of course,MATLAB’s SVD function is accurate.However, in numerical analysis,we always focus on improving
results.

6.1 Future Works

Webelieve that this kindof blockSVDpowermethodopens thedoor tomanyother applicationsof thismethod
in the future. For example, using thismethod for statistical applications to find relations between data, in the
area ofmedical image denoisingwith different thresholding techniques associatedwith thesemulti-wavelets,
implements a compression technique using neural network. It is also useful with other techniques in image
restoration.

In addition, our future approach, which is defined in parallel with the Golub-Kahan method, will be to
present a JSVD decomposition of a 2n × 2m rectangular matrix A based on the J-bidiagonal matrix computed
by using symplectic reflectors. The obtained J-bidiagonal matrix is transformed to a diagonal matrix using
symplectic Givens rotations. It allows us to compute the eigen-values of the skew-Hamiltonian matrix AJA.
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