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Abstract: This paper presents a robust, dynamic, and unsupervised fuzzy learning algorithm (RDUFL) that
aims to cluster a set of data samples with the ability to detect outliers and assign the numbers of clusters
automatically. It consists of three main stages. The first (1) stage is a pre-processing method in which possi-
ble outliers are determined and quarantined using a concept of proximity degree. The second (2) stage is a
learning method, which consists in auto-detecting the number of classes with their prototypes for a dynamic
threshold. This threshold is automatically determined based on the similarity among the detected prototypes
that are updated at the exploration of a new data. The last (3) stage treats quarantined samples detected from
the first stage to determine whether they belong to some class defined in the second phase. The effectiveness
of this method is assessed on eight real medical benchmark datasets in comparison to known unsupervised
learning methods, namely, the fuzzy c-means (FCM), possibilistic c-means (PCM), and noise clustering (NC).
The obtained accuracy of our scheme is very promising for unsupervised learning problems.
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1 Introduction

Clustering is one of the most relevant data-mining tasks [42]. It is the process of organizing objects into a set
of classes. The classes provided by the classical methods are considered hard, and each object is assigned
to a single and unique class. This assumes that the boundaries between classes are well defined, whereas,
in fact, class boundaries are often fuzzy and uncertain. This uncertainty is shown by the fact that an object
possesses features that make it more likely to belong to more than a single class. Thus, in the fuzzy classi-
fication, an object does not belong exclusively to a single class but possesses a degree of membership to all
existing classes [36]. The degree of membership is in the interval [0, 1], and the obtained classes are not neces-
sarily disjoint. Clustering becomes very difficult in unsupervised contexts where no prior information on the
experimental objects is provided. This difficulty increases when these objects contain outliers [39]. An outlier
refers to a value that appears to be suspicious because it is significantly inconsistent with the rest of that set
of data. According to Han and Kamber [27], outliers are the set of objects that are considerably dissimilar from
the remainder of the data.

In clustering, giving an outlier the same importance that is given to other objects destabilizes the analy-
sis and distorts the results [3]. Hence, outlier detection is important [44, 47]. However, these outliers are not
necessarily erroneous and may contain a meaningful indication [45], such as the case during fraud detection
[9] or computer network intrusion [35]. Therefore, outliers ought not to be systematically rejected [5].

Handling clustering and outlier detection at the same time is a highly desirable task [33, 38, 40]. Many
strong methods that have emerged in this direction take all the data into account, but minimize the influ-
ence of outliers [20, 21]. The best-known algorithm is the noise clustering (NC), also called the robust-fuzzy
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c-means (FCM) [19]. In this algorithm, the notion of noise class is introduced. The class of these outliers is

characterized by a fictitious prototype that has a constant distance 6 to other objects. Hence, it is important

to determine the distance 8, which is a critical parameter of the algorithm [17].

In this paper, we propose a robust approach, which allows clustering data by auto-detecting the classes
they form and providing the existing outliers without giving any parameter. The proposed approach consists
of three stages:

— A pre-processing stage using similarity to detect objects likely to be outliers and which will be considered
as possible outliers. These objects are quarantined and excluded from the second stage.

— A second stage in which classes are determined based on a dynamic threshold. This threshold is based on
the minimum similarity among the detected prototypes, which are updated at the exploration of any new
object. This minimum similarity is considered as the condition of adding a new cluster.

— A final stage, which is a processing of possible outliers in order to determine whether they belong to one of
these classes detected in the second phase. To this end, each possible outlier is compared to its neighbors
to confirm that it is really an outlier.

A more formal description of this method is presented in Section 3 following a brief related work in Section 2.
The results obtained from experiments on real and artificial data are presented in Section 4. Section 5 presents
the main conclusions of this paper.

2 Related Work

Clustering is commonly used in real-world problems encountered in a variety of applications [13-15, 51,
54, 58]. It is an exploratory data analysis tool, which aims to find structure in a dataset according to the mea-
sured characteristics or similarities [12, 48, 52]. It consists in grouping a set of n data points into homogeneous
groups, called clusters, without any prior information on the structure or the nature of the clusters.

Clustering can be classified as hard or fuzzy. Hard clustering assigns each data point to a unique clus-
ter with a degree of membership equal to one. Conversely, fuzzy clustering assigns each data point to every
cluster with different membership degrees.

In mathematical terms, partitioning a learning base X = fxi, x5, ..., xng <P into ¢ clusters can be
represented by a (¢ n) partition matrix U = [u;], which satisfies the following conditions:

up 2f0,1g, 1 k ¢, 1 i n 1
X
up=1, 1 i n %)
k=1
X
o< upr<n 1 k c 3)

The space of hard partitions is, thus, defined by Bezdek [6]:

C = - D,
My, = U2<CX"/u,-k2f0,198i,k; up=181i;0< U <n, 8k

k=1 i=1

Hard clustering assumes that clusters are disjointed, and their boundaries are well defined. However, the
boundaries between clusters are not always definite in real-world datasets. Fuzzy clustering was proposed to
deal with overlapping clusters.

Partitioning X into ¢ fuzzy clusters can be defined by c fuzzy sets Ej, ..., E- and a membership function
[57] assuming values in the interval [0, 1] such as:

E, = f}lk(Xi)/Xi 2X,1 i ng (@)
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where u, is interpreted as the membership degree to which the object i belongs to the k™ cluster 1k ¢
and1 i n)[6,19]. Therefore,a(c n)fuzzy membership matrix U = [u;] can be used to represent the
fuzzy partition of X. The k™ row of this matrix contains values of the k™ membership function Uy of the subset
Ej. Elements u;;, satisfy the following conditions:

0 Uik 1; 1 k c1 i n (6)

X
o< up <n 1 k Cc (7)
i=1

Thereby, fuzzy clustering is considered as a generalization of hard clustering that can be used to describe
imprecise or fuzzy information [30, 50, 53]. The most widely used clustering algorithm is FCM [15], which is
highlighted in what follows:

2.1 The FCM Algorithm

FCM generalizes the hard c-means algorithm [K-means] to allow a point to partially belong to all existing
clusters [6, 7]. FCM is an iterative process, which optimizes an objective function J,;, defined by:

KX m
Jm(U, V5 X) = (uip) ™ d” (x, vi) (8)
k=1i=1

where:

— uy is the degree to which the element x; belongs to the i class(1 i ¢,1 k n).

- m(1 < m < o) is an exponent of the weighting used to monitor the relative contribution of each object x;
and the fuzziness degree of the final partition.

- V = (v1, vo, ..., vc) represents a c triplet of prototypes, in which each prototype characterizes a class.

— d(x, v;) is the distance between the i prototype and the k™ object.

Bezdek demonstrated that FCM converges to an approximate solution when two conditions are satis-
fied [10]:

2 3,
< ) 2/m 1
= 4 %Exk’vl; 5.1 i g1 k n ©)
=1 Xk Vj
P
()™ X
v = kzlf_@ i1 i ¢ (10)
()™

The pseudo-code of the FCM algorithm is given in Figure 1.

The idea of clustering data is natural. Indeed, we tend to group a large number of data into a small num-
ber of groups in order to facilitate further analysis. The search for these groups is not a simple task when
data is affected by outliers. Generally, outliers are far from all the other items without neighbors. Outliers
may significantly affect the estimation of the centers of detected clusters, which is the case for the FCM algo-
rithm. Two methods were proposed to handle this problem: the possibilistic C-means algorithm (PCM) [34]
and robust-FCM [19]. These are summarized in what follows.
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Store unlabeled Dataset X = {x, x,, ..., x,} < RP;
Input parameters

— 1l<c<n //number of clusters

- m>1 /I weight exponential
-t // iteration number

= ax // iteration maximal
- & /I given tolerance;

— norm for clustering criterion J,, (e.g. Euclidean distance):
T U ViX)= 3 ()" dv) + o m, 3, (1= )™
k=1 i=1 =1 k=1
— norm for termination error £, = IV, - V_|ll
Initialize

err’

— prototypes Vo= (v g, Vy s -+ Vo) € Rexp
- =0
do {

- tH+
— Calculate U, = membership matrix at the iteration t using V,_, and

. 21771
Uy = ZM 1 1<i<ce;1<k<n
! S\ dxev)

—  Calculate V, = prototypes matrix at the iteration t using U, and

n
m
E,(uik) Xk
_ e

v= = 1<i<c

i n
E ( uik)m
k=1

} while ((IIV,— V_,ll..>¢)and (t <t ,));

Ut=U; V¥=V;
Use U* and V*,

Figure 1: FCM Algorithm.

2.2 The PCM Algorithm

The PCM introduces a possibilistic type of membership function to describe the degree of belonging [56] and
releases the objective function [, [Eq. (8)] by dropping the sum to 1 [Eq. (2)]. Hence, membership degrees
became independent [41].

The PCM optimizes the objective J;, defined as follows:

KX m x X m
Im(U, V; X) = (W) d" g, vi)+  mi (1 ugy) (11)
k=1 i=1 =1 k=1

where:
- n; 1 <I <c)is a parameter defined by:

P
(ui)™ d? (xg, vi)

ni = Kkzl P , K=0 (12)
()™
k=1
and uy is defined by:
1] # 1
2 ] 1/m 1
up = 1+ 4" (e, vi) i1 i 1 k n (13)

ni
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The parameter n; is a positive weight defined for modulating the opposing effects of the two terms in Jm.
It is set by the user and chosen according to each class. Unfortunately, it is not always available.

2.3 The Robust-FCM Algorithm

Dave [19] proposed a new method known as the «robust-FCM». It consists in introducing an additional class
of noise that contains all the outliers. The fictive prototype of the noise cluster is set such that it is always
at the same distance from the considered data points. This distance is called the noise distance 6. Thus, an
object is not an outlier if its distance from one of the prototypes is inferior to 6.

The presence of the noise cluster modifies the objective function defined by Eq. (8) as follows:

KX m ;2 x 2
Jm(U, V;X) = ()" d” (g, vi) +  uii.6 (14)
k=1 i=1 k=1

where ux is the membership degree of the object x; to the noise cluster, and § is the distance of noise defined,
respectively, by:

X
Us = 1 Uik (15)
i=1
P P
d(st Vi)
2 _gksti=t
6°=A e D (16)

By minimizing the objective function defined by Eq. (14), we obtain:

1

p N iz h Tz
Algev)) ™ 1 4 dxev) ™ot
- d(x,vy) 6

(17)

Ujx =

The variable A is a multiplying factor for obtaining §. Thus, the choice of § depends on A. Dave proposed
a heuristic to select this parameter. However, this choice does not always give satisfaction.

Recently, some approaches were proposed on outlier detection [33, 43], and the outliers, themselves,
become the “focus” in outlier-mining tasks [16].

3 Proposed Approach (RDUFL)

Handling simultaneously clustering data and detecting outliers, as mentioned earlier, is a highly desirable
task. The intuitive approach consists in applying a clustering algorithm and considering objects that are dis-
tant from their nearest prototype as outliers. However, this algorithm may, itself, be extremely sensitive to the
outliers that may have a disproportionate impact on prototypes [26]. Hence, detecting outliers is important
in clustering tasks.

RDUFL allows to cluster the considered data and to detect eventual outliers. RDUFL consists of the
following three phases:

3.1 Detection of Possible Outliers

The first phase of our approach consists in detecting objects that are likely to be outliers and which we
will refer to as «possible» outliers. It originates from the fact that a normal object has more neighbors with
which it shares similar characteristics [11, 27]. It is based on the proximity degree of an object in relation to
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other objects. This concept consists in calculating the sum of similarities of an object to all other objects [22]
and not just to its neighbors [1]:

(0] 1
X
D(x;) = B sim (x;, Xj)§ (18)
j=0
j&=i
with:
kx; k
Sim(x;, x;) = 1 ip% (19)
where:

— Sim (x;, x;) is the similarity between the two objects x; and x; [25].
- pis the dimension of the objects space: x; = (x;1, Xi2, ..., X;p) 2 <P.
— Aisthep p matrix defined by Bouroumi [10]:

) %j=t

20
0, otherwise (20)

Ajt =

The factor r; stands for the difference between the maximum and minimal values of an attribute. It is
defined by:

r,-= max Xij mjn Xij , 1 ] p (21)
1 in 1 in

The choice of this measure of similarity is motivated by the following properties [10§5, 26]:
P (x xi)? pﬁ

2
r?
j=1 j

(@) Sim (x;, xi) 2[0,1]; 8 X3, x, 2 <Psince (x; xi5) 1,81 j pandkyx; xk, =

(11) Sim (X,‘, Xk) =1for Xi = Xi
(iii) Sim (x;, x,)) — Ofor (x; x;5) — r;81 j p, which means that objects present a maximum of
difference of each of their p components.

Therefore, an object has a high degree of proximity when its neighbors are several, and the object with a
low value «D» is more likely to be an outlier. It is considered as «possible» outlier.

This phase does not require any notion of clusters or expected number of outliers [29]. It allows deter-
mining the top objects within the small proximity degree. We note M as their number. Once these objects are
detected, they are quarantined, and we proceed to the learning of the set X without taking into account these
M possible outliers.

3.2 Learning Phase

Assuming that object vectors, which form the training database X, belong at least to two distinct classes and
given an inter-point similarity measure, the learning algorithm of this phase starts by the creation of two
classes around two first objects x; and x> [4].

RDUFL sequentially explores all the «n-2-M» objects of the training base X and analyzes their resem-
blances by utilizing the measure of similarity given by Eq. (19). A dynamic threshold ¢ is utilized to detect
when a new object is dissimilar to all existing prototypes. This threshold represents the minimum similarity
that each object must have with its nearest prototype [4, 10, 23]. When this threshold is not attained, a new
class is created, and its prototype is initialized with the current object.

In this paper, ¢ is dynamic and depends on the current object. It is automatically calculated at each
iteration as follows:
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If x; is the current object and vy, its nearest prototype, ¢ is defined by:

Sim (v, vy)
= Min /2%
§ 1j ¢ 2
j&k

(22)

The algorithm utilizes the similarity measure and its associated threshold in order to build classes. At
each iteration, the similarity of the current object to the existing prototypes is calculated. Following the
maximum of this similarity, two decisions will be conceivable [10]:

(a) A new class is created when:

1M]ax (Sim (x;, x)) < & (23)

This means that the current item x; is not sufficiently similar to the prototypes of the previously detected
classes. It is supposed to come from a class that has not been detected yet and must, therefore, represent a
new class [10]. Thus, we put:

c=c+1andv,=x;.
(b) The prototypes are updated when:

1M;?X (Sim (x;, x1)) & (24)

In this case, x; is considered to have the minimal similarity required with the prototypes of the previously
detected classes. Therefore, we must not create any new classes.

The prototypes of the previously created classes are then updated according to the following learning
rule:

SmOL,vo G ) 1 ke o 2 (25)
n (i)

vid=wv @ 1)+
where:
vi(@), vi(i 1) are, respectively, the prototypes of the class k before and after the addition of x;.
n;(k) designates the fuzzy cardinal of the class k after the addition of x;, defined by:

kK
n;(k) = Sim (x;, vi) 1 k ¢, i n (26)
j=1

Failure to consider the possible outliers during this phase allows the stabilization of prototype calculation
and the no distortion of the automatic detection of the number of classes.

3.3 Treatment of Possible Outliers

In this phase, we deal with the M possible outliers 0;(1 i M) that have been detected and quarantined
during the first phase. For each possible outlier O;, we look for its nearest prototype v, and its corresponding
class marked Cj. For this class Cy, the farthest element x; is determined:

= Max d(x;, 2
X1 x,-zac)i (x5, Vi) 27)

If the point x; is closer to the outlier O; than to its nearest prototype vy, the point O; has neighbors that
are neighbors of x;. This point 0; is not, therefore, an outlier. Hence, two cases are possible:
— If Sim (0, x;) < Sim (x;, vi): O; is a true outlier.
- IfSim (0;,x;)  Sim (x, vi): O; is not an outlier.

The pseudo-code of RDUFL is presented in Figure 2.
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Let the dataset X = {x,, x,, ..., x,} € RP;
Step 1: Determine the possible M outliers O,.

1 — Fori=1to n calculate D(x,) defined by:

D(x)=| ", sim (x, x)
i
2 — Search for the minimum values of D(x,);

3 — If the variance is bigger, then the corresponding point is an Outlier.
Step 2: Partition the set X after removing temporarily the points O,.

X, —X
1 — Choose a similarity measure Sim (x;, x,) =1 — M;

p

2 — Initialise ¢ = 2, prototypes v, = x,, v, = X,

3-Fori=2ton
{ Determine the nearest prototype v, to the object x;
. Sim (v, v)
If | Max (Sim (x;, x;)) < Min | ———— | | {c++; v; = x;}
Igj<e J Isj<c 2
J#k

Otherwise {update the prototypes v;, 1 <j < ¢ (Eq. 28) }}

Step 3: Fori=1toM {

1 — Determine the nearest prototype v, to the objet O, (C, is its corresponding
class)
2 — Determine the point x; of the class C, that is the farthest of the prototype v,
3 —1If (Sim (O,, x) < Sim (x;, v;)) Then O; is an outlier.
Otherwise reassign O, to the class C;,

Figure 2: Pseudo-Code of RDUFL.
4 Results and Discussion

To assess the performance of our approach, some experiments were conducted on an artificial dataset X,
and on eight real-world databases that are available in UCI [8]: Lymphography, Diabetes, Indian, Haberman’s
Survival, BCW, Post-operative Patient, Parkinsons, and EEG Eyes State.

A first comparison is based on the recognition rate defined by:

Number of correctly identified objects
Total number of objects

Recognition rate = 100 * (28)

A second comparison is based on:

TP+ TN
Accuracy = TPrINT FPEEN (29)

where:

— TP (true positive) is the number of objects correctly identified

— FP (false positive) is the number of objects incorrectly identified
— TN (true negative) is the number of objects correctly rejected

— FN (false negative) is the number of objects incorrectly rejected.

4.1 Artificial Dataset

To illustrate the usefulness of the proposed algorithm, we consider the dataset X;, which is a two-dimensional
artificial example derived from Ref. [10]. It is divided into three classes with 58 points in the plan and seven
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outliers (Figure 3). This two-dimensional dataset is important due to the possibility it presents in terms of
visualization.

For the dataset X7, RDUFL detected seven possible outliers. The learning and treatment phases of the out-
liers demonstrated that these are true outliers. The number of detected classes is three, and the recognition
rate is 100% (Figure 4).

On the other hand, we applied on X; the following algorithms: FCM, PCM, and robust-FCM.

First, the FCM algorithm failed to detect the existing outliers for ¢ = 3 (Figure 5A). This algorithm detected
two outliers for ¢ = 4 (Figure 5B) and three outliers for ¢ = 5 (Figure 5C). It is only for ¢ = 6 (Figure 5D) that
the FCM detected all the seven outliers by considering them as points that belong to two clusters with a weak
cardinal.

As for the robust-FCM algorithm intended to detect the outliers, it only detects two outliers (Figure 6). In
addition, the obtained recognition rate for the robust-FCM equals 92.31%, whereas our approach was able to
recognize all the objects.

For the tests we carried out, the value of A ranged between 0.01 and 0.9, and the best result is obtained
forA = 0.7

Table 1 presents the recognition rate of learning through the considered algorithms compared to RDUFL.

These results show the sensitivity of these algorithms toward the outliers and their difficulties in correctly
extracting the classes [31, 32].

9.0

7.0 x x

6.0

0.0 2.0 4.0 6.0 8.0

Figure 3: Representation of X; (65 Points).

0.0 20 A0 60 8.0

Figure 4: Results of RDUFL on the Dataset X;.
The number of detected classes is ¢ = 3; the outliers are indicated in yellow.
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Figure 5: Clustering of X; by FCM and Different Values of c.

(A) ¢ = 3, Outliers are not detected and belong to existing classes. (B) ¢ = 4, FCM detects only two outliers, represented by a
star. (C) ¢ = 5, FCM detects three outliers, two represented by stars and one by the sign +. (D) ¢ = 6, all outliers are detected,
they are represented as follows: One by the sign +, two by stars and four by lozenge.

) 2.0 40— 60

Figure 6: Results of Robust-FCM on the Dataset X;.
The number of detected classes is 3; the class of outliers is in red.
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Table 1: Recognition Rate Obtained by the Four Considered Algorithms on Synthetic Dataset X;.

FCM PCM Robust-FCM RDUFL

89.23% 40% 92.31% 100%

RDUFL has the highest rate whereas PCM has the lowest.
4.2 Real-World Dataset

The first considered real dataset is «Lymphography», which has 148 objects with 18 attributes. These are
observations, which were made on patients with cancer in the lymphatic of the immune system. It comprises
four classes: normal (two objects), metastases (81 objects), malignant lymphs (61 objects), and fibrosis (four
objects).

The second dataset is «Diabetes», and it is composed of 768 objects with four attributes. The data fall into
two classes: the class 0 with 500 instances and the class 1 interpreted as “tested positive for diabetes” with
268 instances.

The third dataset is the «Indian» dataset, which comprises 583 objects with 10 attributes. There are two
classes: the first with 416 objects and the second with 167 objects.

The fourth dataset is Haberman’s Survival dataset that is the result of a measure of 306 cases on the sur-
vival of patients who had undergone surgery for breast cancer. It is a three-dimensional pattern classification
problem from two classes.

The Breast Cancer dataset is a nine-dimensional pattern classification problem with 699 samples from
malignant (cancerous) class and benign (non-cancerous) class. The two classes contain, respectively, 458 and
241 points.

The Parkinsons Disease dataset is composed of a range of biomedical voice measurements. There are
22 attributes and 195 samples from the two classes corresponding to healthy people and those with
Parkinson’s disease. The two classes contain, respectively, 48 and 147 points.

The Postoperative Patient dataset aims to determine where to send patients in a postoperative recovery
area. The number of instances is 90 distributed over three classes: class I (patient sent to Intensive Care Unit)
with two items, class S (patient prepared to go home) with 24 items, and class A (patient sent to general
hospital floor) with 64 items.

The EEG Eyes dataset consists of EEG values and a value indicating the eye state. This eye state was
detected via a camera during the EEG measurement and added later manually to the file. It is a 14-dimensional
pattern classification problem with 14,980 samples. The two classes contain, respectively, 8257 and
6723 points.

Table 2 describes the data and provides information on the attributes, size, and number of classes.

We initially checked if there are possible outliers in the considered datasets. To this end, we calculated
the proximity degree for the objects and looked for their small values.

Once possible outliers were determined and isolated, we applied RDUFL to the other objects by assess-
ing an object at each iteration. At the end of the learning phase, we obtained the detected classes with their
prototypes.

Table 2: Description of Real Datasets.

Data No. of samples No. of attributes No. of classes
Lymphography 148 18 4
Diabetes 768 8 2
Indian 583 10 2
Haberman’s Survival 306 3 2
BCW 699 9 2
Post-operative Patient 90 8 3
Parkinsons 197 23 2
EEG Eyes State 14,980 14 2
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Table 3: Number of Detected Classes by RDUFL, Possible and True Outliers.

Dataset Number of detected classes Number of possible outliers Number of true outliers
Lymphography 2 15 11
Diabetes 2 6 3
Indian 2 32 14
Haberman’s Survival 2 12 6
BCW 2 18 0
Post-operative Patient 2 2 2
Parkinsons 2 9 3
EEG Eyes State 2 4 2

The treatment phase of the possible outliers O; allowed to obtain the results described in Table 3.

The first finding is that RDUFL allows detecting the exact number of classes for all the examples of the
considered data based on the defined dynamic threshold and the learning rule.

For the Lymphography dataset, there really exist four clusters in which two classes are considered rare
(classes 1 and 4) given their small size [28, 29]. Class 1 contains two items, and class 4 contains four. The
RDUFL detects these six outliers, whereas the robust-FCM detects five outliers in which only two items belong
to the rare classes. The PCM does not recognize any rare classes of this set.

For the BCW dataset, the concept of proximity degree allows detecting 18 possible outliers, which were
isolated and not considered in the learning phase. The algorithm clusters the dataset into two clusters. The
comparison of the 18 possible outliers with the prototypes of detected clusters demonstrates that these items
had enough characteristics in common with these detected prototypes. Therefore, they are not true outliers.

We recreate a very unbalanced distribution of the breast cancer data by choosing one in every six malig-
nant records [29]. The result dataset has 39 malignant records (8%) and 444 benign records (92%). For testing
the RDUFL, different values of possible outliers are considered instead of excluding all possible outliers. To

Table 4: Sensitivity and Specificity Percentages for Modified BCW Data Using RDUFL.

Possible outliers Number of malignant % of malignant Sensitivity Specificity
5 39 100 100% 80%
10 39 100 100% 79%
15 39 100 100% 78%
20 39 100 100% 77%
25 39 100 100% 76%
30 39 100 100% 72%
35 39 100 100% 70%
39 39 100 100% 67%

FCM and RDUFL have the same accuracy Percentage.

Table 5: Recognition Rates Obtained for the Considered Data.

Data set FCM PCM Robust-FCM RDUFL
Lymphography 50.05% 64.87% 58.11% 72.30%
Diabetes 66.02% 37.11% 58.47% 67.89%
Indian 30.37% 66.03% 46.14% 70.65%
Haberman’s Survival 49.02% 50.33% 42.81% 60.13%
BCW 65.96% 61.52% 41.35% 96.57%
Post-operative Patient 61.11% * 72.22% 73.33%
Parkinsons 74.36% 54.87% 69.04% 75.90%
EEG Eyes State 55.28% 49.71% 50.82% 57.61%

RDUL has the highest recognition rate of 96.5M% on BCW, while if we consider the other algorithms, FCM achieves 74.36% on
Parkinsons data, and Robust-FCM achieves 72.22% on Post-operative Patient dataset. *Indicates that it is not possible to learn
Post-Operative Patient dataset by using the PCM algorithm.
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Table 6: Accuracy Percentage Obtained for the Considered Data.

Data set FCM PCM Robust-FCM RDUFL
Lymphography * * * 70%
Diabetes 66% 44% 61% 66%
Indian 69% 66% 45% 76%
Haberman’s Survival 48% 49% 42% 59%
BCW 95% 65% 76% 95%
Post-operative Patient * * * 70%
Parkinsons 74% 55% 73% 75%
EEG Eyes State 55% 50% 51% 58%

*Indicates that it is not possible to learn Post-Operative Patient dataset by using the PCM algorithm.

evaluate cluster solutions, we measured the sensitivity and the specificity defined by:

. TP
Sensitivity = P+ N (30)
. IN
Specificity = N+ P (1)

where:
— Sensitivity is the ability to correctly identify ill patients.
— Specificity is the ability to correctly identify patients without the disease.

The RDUFL detects anomalies for this dataset and identifies outliers (small class) for each considered value
of possible outliers. We report the results in Table 4.

Moreover, the RDUFL can improve considerably the performance of clustering and allows an increase of
30.61% on the BCW dataset. Those results show that the adopted approach can lead to an increase in accu-
racy for class discovering even in the absence of outliers. Indeed, the RDFUFL improves learning and yields a
good recognition rate as depicted in Table 5. The recognition rates of each of the studied learning algorithms
are also reported, for each dataset, in Table 5.

The accuracy percentage is also determined for each algorithm, based on the values of the equation
[Eq. (29)]. The results of the considered algorithms are shown in Table 6. According to this table, we say that
RDUFL has the highest accuracy percentage.

5 Conclusion

In this paper, we introduced an adapted approach in order to partition a dataset and detect outliers. This
approach consists of three stages. The first stage is a method of pre-treatment, which identifies objects that
are likely to be considered possible outliers by utilizing the concept of proximity degree. The second stage is
an unsupervised fuzzy learning algorithm, which detects existing classes formed by the data without possible
outliers. In this stage, the algorithm equally provides the prototypes of these detected classes and the mem-
bership degrees of each object to these classes. The creation of classes is carried out according to a dynamic
threshold, which is recalculated at each iteration of the algorithm. This threshold is based on the similarity
among the prototypes updated at the exploration of a new object. As for the last stage, it consists in com-
paring the similarity of each possible outlier to the farthest object belonging to the class that corresponds
to its nearest prototype. The experimental results demonstrated the effectiveness of the proposed approach
especially that it does not require any user-specified parameter.

Future work will introduce the notion of granular computing [18, 24, 46, 55] to quantify the imprecision
and the tolerance of uncertainty in the given large attribute dataset [2, 37, 49]. Indeed, granularity allows
simplification, clarity, low cost, and tolerance of uncertainty [36]. It “underlies the remarkable human ability
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to make rational decisions in an environment of imprecision” [36]. Thereby, a new robust fuzzy algorithm for
unsupervised learning using granular computing techniques will be developed.
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