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Abstract: The term “big data” means a large amount of data, and big data management refers to the efficient
handling, organization, or use of large volumes of structured and unstructured data belonging to an organi-
zation. Due to the gradual availability of plenty of raw data, the knowledge extraction process from big data
is a very difficult task for most of the classical data mining and machine learning tools. In a previous paper,
the correlative naive Bayes (CNB) classifier was developed for big data classification. This work incorporates
the fuzzy theory along with the CNB classifier to develop the fuzzy CNB (FCNB) classifier. The proposed FCNB
classifier solves the big data classification problem by using the MapReduce framework and thus achieves
improved classification results. Initially, the database is converted to the probabilistic index table, in which
data and attributes are presented in rows and columns, respectively. Then, the membership degree of the
unique symbols present in each attribute of data is found. Finally, the proposed FCNB classifier finds the
class of data based on training information. The simulation of the proposed FCNB classifier uses the localiza-
tion and skin segmentation datasets for the purpose of experimentation. The results of the proposed FCNB
classifier are analyzed based on themetrics, such as sensitivity, specificity, and accuracy, and comparedwith
the various existing works.
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1 Introduction
Data mining [6] has become a prevailing technique for the discovery of valuable information available on
network platforms. Big data [6] significantly promotes the traditional industries to achieve better progres-
siveness, and hence data retrieval from the big data environment is necessary. The term “big data” is derived
from the phrase “a large amount of data,” usually in zettabytes processed in a year. Hence, datamanagement
options should be openly available to each organization for better handling of big data [15, 22]. The data can
be concluded as big data based on the factors of volume, velocity, variety, and veracity. Also, big data from
Internet sources arrives in a continuous pattern, and thus the processing of data is more difficult [5].

Datamining schemes come under twomajor categories: clustering and classification. Various classifiers,
such as support vector machine [13], naive Bayes (NB) [24], and extreme learning machine (ELM) [12] primar-
ily contribute toward big data classification [9, 11]. The ELM [5] algorithm provides multiclassification of data
rather than binary classification [6]. While processing data with high volume, the computational complexity
of algorithms is increased [1]. The supervised classification approaches classify big data through a learning
algorithm, and thus finds the suitable classes for the database [7]. The prevailing problem by the large size
of data can be solved by introducing MapReduce schemes. Google introduces the MapReduce [1, 3, 14, 25, 29]
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framework formining data of size larger than petabytes. MapReduce contains themapper and reducer for the
parallel processing of the datasets [4].

Big data include the collection of data from different fields, and the employment of the classification
algorithm solves the data mining issues in big data. The main idea behind the classification task is to build a
model (classifier) that classifies the data with the goal to accurately predict the target class for each item in
the data [14]. There are many techniques, such as decision trees, Bayes networks, genetic algorithms, genetic
programming, and so on, to comply with the classification of big data [1]. The properties, such as continuity
and distributed blocks, present in the big data pose additional challenges to the ELM algorithms [5]. The big
data also has imbalanced datasets and the fuzzy rule-based classification systems (FRBCS) [17, 18], denoted
as Chi-FRBCS-Big Data CS, have achieved significant results during the classification of the imbalanced big
data [18]. Literature work has also discussed the MapReduce-based fuzzy c-means clustering [19], k-nearest
neighbor algorithm [20], fuzzy associative classifier [23],machine learning tools [28], and Chi-FRBCS-BigData
algorithm [8] for big data classification.

The primary contribution of this research is the development of the fuzzy correlative NB classifier (FCNB)
for big data classification. The proposed model permits the MapReduce framework to deal with the big data.

The paper organization is done in the following manner: Section 1 presents the introduction to the big
data classificationmodel. Section 2 presents the proposed FCNB algorithm along with theMapReduce frame-
work for the big data classification. Section 3 presents various simulation results obtained for the proposed
FCNB classifier based on the evaluation metrics. Section 4 concludes the research work.

2 Proposed Method: Proposed FCNB Classifier with the
MapReduce Framework for Big Data Classification

This research work deals with big data classification with the proposed FCNB classifier. The proposed FCNB
classifier is the extensive work of the correlative NB (CNB) classifier defined in Ref. [2]. The FCNB classifier is
developed by integrating the CNB classifier and the fuzzy theory [9]. Also, this work includes the MapReduce
framework for dealingwith the big data. In datamining and the cloud environment, there is a continuous flow
of data. The existing fuzzy NB (FNB) classifier has various merits, such as dealing with the missing attributes
of the data sample, incremental learning, and performing the training with low data samples. In the pro-
posed work, the FNB classifier is modified by adding the correlation between the data samples. This makes
the proposed FCNB algorithm a dependent hypothesis. As the research allows the classification of big data,
the inclusion of the MapReduce framework is necessary. The MapReduce framework eliminates the problem
of the classification of a large dataset and the storage problems.

2.1 Algorithmic Description of the Proposed FCNB Classifier

The proposed FCNB classifier gets the training data fromvarious sources as the input. The training data needs
to be represented as the probability index table. The probability index table represents the data samples as
the data matrix. The rows and columns of the probability index table represent the data and their respective
attributes. The training sample for the proposed FCNB classifier is represented as follows:

T =

⎧⎨⎩Tp,q; 1 ≤ p ≤ d

1 ≤ q ≤ a

⎫⎬⎭, (1)

where the term Tp,q represents the pth data sample in the qth attribute of the probability index table. The
terms d and a represent the total data samples and the attributes present in the training dataset, respectively.
The proposed model aims at classifying the data samples into various classes. Equation (2) expresses the
classes indicated in the vector form:

G = {gp; 1 ≤ p ≤ d}, (2)
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where the term gp represents the class of the pth data sample. The attributes present in the data sample con-
tribute more toward the data classification. Consider the training data sample having a number of attributes;
hence, the attributes of the data sample are represented as follows:

H = {hq; 1 ≤ q ≤ a}, (3)

where the term hq represents the qth attribute of the data sample. The data samples categorized under
each attribute have unique symbols. The proposed FCNB classifier calculates the fuzzy membership degree
depending on the unique data symbols within the attribute. Consider that there is S number of unique data
symbols within the attribute. For the calculation of the membership degree of the proposed FCNB classifier,
consider the qth attribute in the training sample that contains s number of unique symbols. The symbols in
the qth attribute are indicated by hq ∈ ms, and the value of s varies in the range 1 ≤ s ≤ S. The expression
for the membership degree of training samples provided to the proposed FCNB classifier is represented by
the following expression:

µsq =

⃒⃒
ms

q
⃒⃒

d , (4)

where the term µsq shows the membership degree of the sth symbol present in the qth attribute of the
training sample. Also, the term

⃒⃒
ms

q
⃒⃒
represents the total occurrence of the sth symbol in the qth attribute

and d indicates the data sample in the attribute. The proposed FCNB classifier classifies the data samples
into K number of classes. The variation of the total number of classes is represented as Gk, and the value
of k is in the range 1 ≤ k ≤ K. The proposed FCNB classifier also calculates the membership degree of each
class for the ground truth information. The membership degree for the kth class provided with the ground
truth information is represented as follows:

µkc =

⃒⃒⃒
mk

⃒⃒⃒
d , (5)

where the term
⃒⃒⃒
mk

⃒⃒⃒
represents the total occurrence of the kth class in the ground truth information. The

membership degree acts as a prime factor in the data classification. The model size of both the member-
1ship degrees derived in Eqs. (4) and (5) is expressed as [(a * S) + K], where K is the total number of
classes, S represents the number of unique data symbols, and a is the number of attributes.

2.1.1 Adapting the FNB Classifier with the Correlation Function

The existing FNB classifier utilizes the NB and the fuzzy-based approaches for the data classification. In
this work, the proposed FCNB classifier adapts the FNB classifier with the virtual correlation function to
make the proposed algorithm dependent on the hypothesis. Also, the correlation function makes the pro-
posed algorithm an incremental learner. The proposed FCNB classifier finds the virtual correlation factor for
each attribute present in the training database. Equation (6) expresses the virtual correlation between each
attribute of the training data:

Ck = f (h1, h2, h3, . . . .hq , . . . , ha), (6)

where the term Ck represents the virtual correlation of the attributes in the kth class. The term f (.) represents
the correlation function. The correlation function between the attributes of the data samples is constructed
by representing the attributes and the symbols of the training sample as the diagonal matrix. Equation (7)
represents the correlation function between the attributes of the training data:

f (h1, h2, h3, . . . hq , . . . ha) =
1

1 + 2 + . . . + (a − 1)

a∑︁
q=1

a∑︁
s=q+1

r(he , hq), (7)
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where the term r(he , hq) represents the correlation between the eth and the qth attributes. The term 1 + 2 +
. . . + (a − 1) in Eq. (7) can be expressed as a(a−1)

2 based on the triangular number series [10]. Now, Eq. (7)
can be rewritten as

f (h1, h2, h3, . . . hq , . . . , ha) =
1

a(a−1)
2

a∑︁
q=1

a∑︁
s=q+1

r(hs , hq). (8)

f (h1, h2, h3, . . . hq , . . . , ha) =
2

a(a − 1)

a∑︁
q=1

a∑︁
s=q+1

r(hs , hq). (9)

In this research work, the proposed FCNB classifier considers the correlation factor for finding the rela-
tion between the data samples present in the training data. The proposed FCNB classifier finds the correlation
of the independent data sample present in the training set. The correlation factor for finding the relation
between the unique symbols present in the attributes is represented as follows:

r(hs , hq) =
[︂
correlative(hs , hq) + 1

2

]︂
, (10)

where the function correlative(hs , hq) indicates the Pearson’s correlation coefficient [16]. The function
correlative(hs , hq) finds the linear correlation between the data samples. The general expression for the
Pearson’s correlation coefficient is expressed by the following equation:

correlative(hs , hq) =

∑︀d
p=1 (tpq − t̄q)(tps − t̄s)√︁∑︀d

p=1 (tpq − t̄q)2
√︁∑︀d

p=1 (tps − t̄s)2
, (11)

where the term t̄q indicates the average of the data samples present in the qth attribute and the term t̄s rep-
resents the average of the unique data symbols in the qth attribute. The final output from the training of the
proposed FCNB classifier contains the membership degree from the attribute, membership degree from the
ground truth information, and the correlation factor. The output of the proposed FCNB classifier is expressed
as follows:

FCNB =
{︁
µkq , µkc , C

}︁
. (12)

The membership degree for the attributes has the size of (d * S), while the membership degree for the
ground truth information has the size of (1 * K). The correlation factor between the unique symbols of the
attributes represented by each class has the size of (1 * K). The results of the training of the proposed FCNB
classifier have the total size of (d * S + 2K).

2.2 Testing of the Proposed FCNB Classifier

This section presents the testing phase of the proposed FCNB classifier. The proposed FCNB algorithm uti-
lizes the posterior probability of the NB classifier, the fuzzymembership degree, and the correlation function
to classify the test data. For the training phase, the proposed FCNB classifier is provided with the test data
represented as X. The proposed FCNB algorithm tries to classify the test data into K number of classes. The
output of the proposed FCNB classifier is represented as follows:

G = arg Max
k=1 to K

P(gk|X ) * Ck , (13)

where the term P(gk|X ) defines the posterior probability based on the test data X for the class gk and the
term Ck represents the correlation for the class k. The value of P(gk|X ) is represented based on the following
expression:

P(gk|X ) = P(gk)
a∏︁

q=1

[︂
P(hq|gk )
P(hq)

* µq
]︂
, (14)
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where P(hq|gk ) and P(hq) represent the posterior probability for the attribute hq based on the class k and
the probability of occurrence of the attribute hq in the class. The proposed FCNB model uses the Laplacian
correction [2] in the above expression for avoiding the missing of the attributes during the training phase.
The adjustment is done based on the following expressions:

P(X|gk ) =

[︁∑︀
X∈d µ

X
q · µkX

]︁
+ 1[︀∑︀

X∈d µkX
]︀

+ |dom(hq)|
, (15)

P(gk) =

[︁∑︀
X∈d µ

k
X

]︁
+ 1

d + |dom(G)| , (16)

where the term dom(G) represents the total number of classes and the term dom(hq) represents the total
number of data symbols present in the qth attribute.

2.3 Pseudo Code of the Proposed FCNB Classifier

This section presents the pseudo code of the proposed FCNB classifier. As shown in Algorithm 1, the proposed
FCNB classifier classifies the data into K number of classes. In the training phase, the proposed FCNB clas-
sifier gets the training data T as the input. For the training data, the membership degree and the correlative
function are calculated. In the testing phase, the probability index of the test data is calculated and based on
the classification output in Eq. (13), the class of the test data is found by the proposed FCNB classifier.

2.4 Adapting the FCNB Classifier in the MapReduce Framework

The application of the proposed FCNB classifier to the concept of the big data classification can be achieved
by introducing the MapReduce framework in the proposed FCNB classifier. The MapReduce framework has
the mapper and the reducer that allow the simultaneous functioning of the large dataset. This research
performs big data classification through the training and testing phases of the proposed FCNB classifier.

Algorithm 1: Pseudo Code of the Proposed FCNB Classifier.

Algorithm: FCNB classifier

Serial no. Steps
1 Input: Data sample: T
2 Output: class: G = {G1 , G2 , ..., GK}
3 Begin
4 // Training phase
5 Read the training data T
6 For (p = 1 to d)
7 Read the data samples
8 For (q = 1 to a)
9 Read the attributes
10 Calculate the membership degree of the qth attribute
11 Calculate the membership degree of the ground value
12 Calculate the correlation factor Ck

13 End for
14 End for
15 //Testing phase
16 Read the test input X
17 Calculate the probability index of the class P(gk|X )
18 Find the class G for the test data using Eq. (13)
19 Return the class G
20 End
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Reducer V
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Training data

Figure 1: Training of the FCNB-Based MapReduce Framework.

In the training phase, the training data T is fed to the MapReduce function. Figure 1 presents the architecture
of the proposed FCNB classifier enabled with the MapReduce for the training phase.

2.4.1 Training Phase

Training of the mapper: The mapper present in Figure 2 gets the training data as the input. The training
data is represented in thematrix, with the rows indicating the data and the columns indicating the attributes.

U1 U2 U3 U
U

V1 V2 V3 V
k

G1 G2 G3 G
K

X1 X2 X3

Testing data

X
U

Figure 2: Testing of the FCNB-Based MapReduce Framework.
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The training data to themapper of the proposed FCNB classifier is represented as given in Eq. (17). As the data
that arrives at the proposed classifier is a continuous data, the size of the data is very large. Hence, the data
requires partitioning. In this work, the training data sample T is partitioned into U parts. Each part of the
training sample is represented by the following expression:

T = {Qi; 1 ≤ i ≤ U}, (17)

where the termQi represents the ith part of the datamatrix. Each partitioned data is provided to themapper of
the proposed model. Hence, the number of mappers in the model equals the number of data sample parts.
Consider that the proposed model has U mappers and V reducers. The data present in the mapper is
represented by the following expression:

Qi =

⎧⎨⎩nb,q; 1 ≤ b ≤ Ai

1 ≤ q ≤ a

⎫⎬⎭, (18)

where the term nb,q represents the part of the data provided to the ith mapper. The value of b varies based
on the data present in the mapper Ai. The mappers present in the proposed classification model find the
classes from the training data. Eachmapper provides the data to the reducer of size (d * S)+2K. Themapper
generates the probability index table for the training sample, and it is represented as follows:

Ui = {µq(i), µc(i), C(i), Ai}, (19)

where µq(i) represents the membership degree of the qth attribute for the data sample i, µc(i) shows the
membership degree for the ground value, C(i) represents the correlation factor, and the term Ai indicates
the number of data present in the mapper i.

Training of the reducer: For the training of the reducer, the outputs of each mapper are provided to the V
reducers in the proposedmodel. The probability index table obtained from the mapper is of size (d * S)+2K.
The reducer tries tomerge the probability index table from themapper to a single function of size (d*S)+2K.
The reducer uses the aggregation mechanism to merge the outputs of the mapper. The membership degree
present in the mapper output is reduced at the reducer phase based on the following expressions:

µkq =
∑︀U

i=1 µ
k
q(i)

U , (20)

µkc =
∑︀U

i=1 µ
k
c(i)

U , (21)

where the terms µkq and µkc represent the membership degrees of the attribute and the ground information
of the data part i, respectively. The classified information from each mapper is merged in the reducer and is
expressed as follows:

Vk =
∑︀U

i=1 V
k(i)

U , (22)

where the term Vk(i) represents the classified output of the data part i.

2.4.2 Testing Phase

The testing phase of the proposed FCNB classifier with the MapReduce is explained in this section. Figure 2
presents the MapReduce framework with the proposed FCNB classifier during the testing phase. For the
testing, the test data X is provided to the MapReduce framework.
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Testing of the mapper: The test data provided to the mapper is represented as X. Initially, the test data X is
subjected for the partitioning and is expressed as follows:

X = {Xx; 1 ≤ x ≤ U}, (23)

where the term Xx represents the xth part of the test data X. The test data contains d number of data sam-
ples and a number of attributes. For the test data, the membership degree, the correlative function, and the
number of data for each mapper are calculated. Finally, the mapper provides the information to the reducer.

Testing of the reducer: In the testing phase, the output of the mapper is fed to the reducer. The reducer
merges the information and provides the information about the class variable of each part of the test data
sample. The reducer provides K number of classes and is represented as follows:

G = {G1, G2, . . . , GK}. (24)

3 Results and Discussion
The simulation results achieved by the proposed FCNB classifier are presented in this section, which also
contains the results of the comparative discussion achieved by analyzing the results of various comparative
models.

3.1 Experimental Setups

Experimental setup 1: The experimentation setup 1 contains a set of four mappers for analyzing the
performance of different algorithms.

Experimental setup 2: The experimentation setup 2 contains a set of five mappers for the simulation
purpose.

The entire experimentation is done on the Java platform installed in a personal computer with the
following configurations: Windows 10 OS, 4 GB Ram, and Intel I3 processor.

3.2 Dataset Description

The experimentation of the proposed FCNB classifier is done with the standard dataset localization dataset
[16] and the skin segmentation dataset [26] utilized from the University of California, Irvine (UCI) machine
repository, and their descriptions are provided as follows:

Localization dataset [16]: The localization dataset from the UCI machine repository contains information
about the activities of the person, and is obtained through the observation of various persons wearing the
data tag on their ankle, leg, etc. The localization dataset contains a large set of instances (total of 164,860)
under eight attributes. Table 1 shows the description of the localization database.

Table 1: Description of Localization Dataset.

Dataset characteristics Univariate, sequential, time series

Number of instances 164,860
Area Life
Attribute characteristics Real
Number of attributes 8
Associated tasks Classification
Missing values N/A
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Table 2: Description of Skin Segmentation Dataset.

Dataset characteristics Univariate

Number of instances 245,057
Area Computer
Attribute characteristics Real
Number of attributes 4
Associated tasks Classification
Missing values N/A

Skin segmentation dataset [26]: This dataset is collected from people of various age groups with different
skin colors. The learning sample taken for the experimentation varies as 245,057, and they are grouped under
four attributes. This dataset is more suitable for big data classification as the simulation results can be cat-
egorized under the skin set and the non-skin set. Table 2 shows the description of the skin segmentation
dataset.

3.3 Comparative Models

The performance of the proposed FCNB classifier for big data classification is compared with various meth-
ods, such as NB [27], CNB [2], gray wolf optimization-based CNB (GWO-CNB), cuckoo gray wolf-based CNB
(CGCNB), and FNB classifier [27]. The NB classifier performs data classification by defining the probabilis-
tic definition, and the CNB classifier uses the correlative function along with the NB for making the suitable
decision. Incorporating the GWO [21] with the CNB leads to the formation of the GWO-CNB classifier, and the
optimization scheme is used for defining the class. The CGCNB classifier is designed with the integration of
the cuckoo search (CS) algorithm and the GWO algorithm with the CNB. The FNB classifier uses the fuzzy
theory along with the NB for the classification purpose.

3.4 Comparative Analysis

Comparative analysis is done by varying the training percentage of the localization and the skin datasets
for the various numbers of mappers, and the performance of each model is measured by the sensitivity,
specificity, and accuracy.

3.4.1 Analysis Based on Accuracy

Figure 3 presents the comparative analysis of the proposed FCNB classifier based on the accuracy metric for
the varying training percentages of the dataset and the mapper. Figure 3A presents the performance of the
classifiers with the mapper size of 4 and varying training percentages of the localization dataset. For 90%
training of the localization dataset, the existing NB, CNB, GWO-CNB, CGCNB, and FNB classifiers achieved
accuracy values of 76.504%, 77.9505%, 79.862%, 80.8977%, and 72.33%, respectively, while the proposed
FCNB classifier had an improved accuracy value of 91.7816%. Figure 3B presents the performance analysis
of the classifiers in the skin dataset with mapper = 4. Here, the comparative models NB, CNB, GWO-CNB,
CGCNB, and FNB classifiers achieved the accuracy values of 75.723%, 76.636%, 77.770%, 79.327%, and 53.45%,
respectively; however, the proposed FCNB classifier achieved the accuracy value of 91.7817%. Figure 3C
and D present the performance analysis of the classifiers in the localization and skin datasets for
mapper = 5. For 90% training of the localization dataset, the existing NB, CNB, GWO-CNB, CGCNB, and FNB
classifiers with five mappers achieved the accuracy values of 76.996%, 77.808%, 79.7638%, 80.6568%, and
72.3310%, respectively, while the proposed FCNB achieved the high accuracy value of 91.78164%. For the
skin dataset, the proposed FCNB with mapper = 5 achieved an accuracy value of 91.78165%.
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Figure 3: Comparative Analysis of the FCNB Classifier Based on Accuracy.
For mapper = 4 in (A) localization dataset and (B) skin dataset. For mapper = 5 in (C) localization dataset and (D) skin dataset.

3.4.2 Analysis Based on Sensitivity

Figure 4 presents the comparative analysis of the proposed FCNB classifier based on the sensitivity met-
ric for the varying training percentages of the dataset and the mapper. Figure 4A presents the analy-
sis of the classifiers based on sensitivity with the mapper size of 4 and varying training percentages of
the localization dataset. For 90% training of the localization dataset, the existing NB, CNB, GWO-CNB,
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Figure 4: Comparative Analysis of the FCNB Classifier Based on Sensitivity.
For mapper = 4 in (A) localization dataset and (B) skin dataset. For mapper = 5 in (C) localization dataset and (D) skin dataset.
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CGCNB, and FNB classifiers achieved a sensitivity of 80.699%, 81.899%, 83.2474%, 84.399%, and 99.986%,
respectively, while the proposed FCNB classifier achieved a sensitivity value of 94.79%, which was less than
that of the FNB classifier. This is due to the factor that the training data taken for the classification is classified
toward the same class. Figure 4B presents the performance of the classifiers in the skin dataset along with
mapper = 4 based on sensitivity. Here, the comparative models NB, CNB, GWO-CNB, CGCNB, and FNB clas-
sifiers achieved the sensitivity value of 80.845%, 81.845%, 82.466%, 84.2254%, and 36.811%, respectively;
however, the proposed FCNB classifier achieved the sensitivity value of 94.79%. Figure 4C and D present the
performance of the classifiers in the localization and skin datasets for mapper = 5 based on the sensitivity
metric. For 90% training of the localization dataset, the existingNB, CNB, GWO-CNB, CGCNB, and FNB classi-
fiers with five mappers achieved the sensitivity value of 80.879%, 81.4741%, 83.447%, 84.478%, and 99.98%,
respectively, while the proposed FCNB achieved the sensitivity value of 94.79%. Similarly, for the 90% train-
ing of the skin dataset, the existing NB, CNB, GWO-CNB, CGCNB, and FNB classifiers achieved the sensitivity
values of 80.960%, 81.986%, 82.918%, 84.316%, and 34.76%, respectively. For the same dataset, the proposed
FCNB with mapper = 5 achieved an accuracy value of 94.79%. From the analysis, the proposed FCNB seems
to have the sensitivity value of 94.79% for both the localization and skin datasets.

3.4.3 Analysis Based on Specificity

Figure 5 presents the comparative analysis of the proposed FCNB classifier based on the specificity metric for
the varying training percentages of the dataset and the mapper. Figure 5A presents the performance of the
classifiers with themapper size of 4 and varying training percentages of the localization dataset based on the
specificity metric. For 90% training of the localization dataset, the existing NB, CNB, GWO-CNB, CGCNB, and
FNB classifiers achieved specificity values of 72.884%, 73.953%, 75.9060%, 76.9617%, and 36.12%, respec-
tively, while the proposed FCNB classifier had improved specificity value of 88.891%. Figure 5B presents
the performance of the classifiers in the skin dataset along with mapper = 4 based on specificity. Here,
the comparative models NB, CNB, GWO-CNB, CGCNB, and FNB classifiers achieved the specificity value of
70.8791%, 71.8203%, 72.7240%, 74.2836%, and 70.67%, respectively; however, the proposed FCNB classifier
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Figure 5: Comparative Analysis of the FCNB Classifier Based on Specificity.
For mapper = 4 in (A) localization dataset and (B) skin dataset. For mapper = 5 in (C) localization dataset and (D) skin dataset.
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Table 3: Time Complexity of the Comparative Methods.

Methods Time complexity (s)

NB 7.4
CNB 8.2
GWO-CNB 7
CGCNB 6.8
FNB 6.3
Proposed FCNB 5

had the specificity value of 88.891%. Figure 5C presents the performance of the classifiers in the localiza-
tion for mapper = 5 based on the specificity metric. For 90% training of the localization dataset, the NB,
CNB, GWO-CNB, CGCNB, and FNB classifiers with five mappers achieved the specificity value of 72.7007%,
73.8631%, 75.8758%, 76.991%, and 36.127%, respectively, while the proposed FCNB had a high specificity
value of 88.89%. Figure 5D presents the performance of the classifiers in the skin dataset for mapper = 5
based on the specificity metric. For the skin dataset, the proposed FCNB with mapper = 5 achieved a
specificity value of 88.8912%.

3.4.4 Analysis Based on Time Complexity

Table 3 shows the time complexity of the comparative methods. The time complexity of the proposed FCNB
is 5 s; on the other hand, the time complexity of the existing methods, such as NB, CNB, GWO-CNB, CGCNB,
and FNB, is 7.4, 8.2, 7, 6.8, and 6.3 s, respectively. The time complexity of the proposed method is less when
compared to the existing methods, which shows the effectiveness of the proposed method.

4 Conclusion
This work introduces the classification algorithm based on the fuzzy network, called FCNB, for data clas-
sification in the big data framework. The proposed FCNB classifier is designed through the integration of
the correlation and the fuzzy theory, along with the MapReduce framework. As the proposed FCNB com-
bines the fuzzy theory and the NB, it has improved classification performance in the large data framework.
The proposed FCNB classifier is used along with the MapReduce framework for dealing with the large data
environment. The simulation of the proposed FCNB classifier is done by considering the localization and
skin segmentation datasets from the UCI repository. Also, the performance of the proposed FCNB classi-
fier is compared against the existing NB, CNB, GWO-CNB, CGCNB, and FNB classifiers. From the simulation
results, the proposed FCNB classifier shows improved performance in both the localization and skin segmen-
tation datasets under the conditions of mapper = 4 and mapper = 5. For the skin segmentation, the FCNB
classifier has high values of 91.78166%, 94.79%, and 88.8912% for accuracy, sensitivity, and specificity,
respectively.
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